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Abstract: Surface defect inspection is a key technique in industrial product assessments. Compared
with other visual applications, industrial defect inspection suffers from a small sample problem
and a lack of labeled data. Therefore, conventional deep-learning methods depending on huge
supervised samples cannot be directly generalized to this task. To deal with the lack of labeled data,
unsupervised subspace learning provides more clues for the task of defect inspection. However,
conventional subspace learning methods focus on studying the linear subspace structure. In order to
explore the nonlinear manifold structure, a novel neural subspace learning algorithm is proposed
by substituting linear operators with nonlinear neural networks. The low-rank property of the
latent space is approximated by limiting the dimensions of the encoded feature, and the sparse
coding property is simulated by quantized autoencoding. To overcome the small sample problem,
a novel data augmentation strategy called thin-plate-spline deformation is proposed. Compared
with the rigid transformation methods used in previous literature, our strategy could generate more
reliable training samples. Experiments on real-world datasets demonstrate that our method achieves
state-of-the-art performance compared with unsupervised methods. More importantly, the proposed
method is competitive and has a better generalization capability compared with supervised methods
based on deep learning techniques.

Keywords: deep learning; thin-plate-spline; auto-encoder; low-rank; defect detection

MSC: 68-02

1. Introduction

Visual inspection is a key step in surface-defect detection of industrial products for
ensuring product quality. Compared with manual inspection, automated inspection sys-
tems based on computer vision are much more efficient and reliable. A company can save
numerous workers by the usage of a vision-based automatic system. In this paper, we focus
on the task of product surface defect detection, which is one of the most important steps in
industrial manufacturing processes.

The majority of conventional defect detection methods can be summarized in four
categories: statistical-based methods [1,2], structural-based methods [3], spectral-based
methods [4] and model-based methods [5–8]. However, most conventional methods are
built on hand-crafted visual features and concentrate on studying the linear subspace
structure. They suffer from poor generalization and robustness, especially for cases in
complex circumstances and variable illumination.

Recently, deep neural networks(DNNs) have demonstrated competitive performance
in various fields. They have a powerful ability to extract high-level features. DNNs [9–15]
have also gained great improvements in the task of defect detection compared with tradi-
tional methods. Most existing DNN-based inspection methods are based on supervised
learning, which implies that a large number of manually annotated data are required.
However, the collection of manually annotated data in industrial manufacturing processes
is difficult and expensive. Although data augmentation technologies [16–18] based on
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generative adversarial networks (GANs) bring us plausible solutions, the data’s generative
ability is limited by the number of samples, especially for the industrial products, whose
amounts are only several hundreds or even dozens. Therefore, most existing DNN-based
methods still suffer from the small sample problem and a lack of labeled data.

In this paper, a novel unsupervised defect detection method based on neural subspace
learning is proposed. The proposed method is created by combining the clear mathematical
theory of traditional subspace learning and the powerful learning ability of DNNs. The
main assumption of the proposed method is that defect images can be decomposed into
two main components: dominant content and sparse flaw regions. This hypothesis is rea-
sonable and common for human-made products and is used in many vision tasks [19–22].
The dominant background component will be learned by the proposed neural subspace
learning method, and the sparse defects will be computed by solving a `1 variational
regularization problem.

First, to deal with the lack of labeled data, an unsupervised neural subspace learning
method is proposed. The proposed method strives to learn the dominant background
component by exploring the latent manifold property of the data in an unsupervised
way. Low-rank and sparse representation are two typical manifold structures in subspace
learning. Compared with traditional linear subspace learning methods, the proposed
method tries to explore the nonlinear subspace structure by integrating traditional low-
rank representation theory and sparse coding into a deep autoencoder architecture. In
detail, the low-rank property of the latent space is approximated by limiting the dimen-
sion of the encoded feature, and the sparse representation property is simulated by a
quantized autoencoder.

Second, to deal with the small sample problem, a novel data augmentation strategy
called thin-plate-spline deformation is proposed. Due to the fact that most defects to be
detected have continuous contours, traditional rigid transformation based augmentation
methods will introduce numerous samples in conflict with the ground truth data’s distribu-
tion. In contrast, the proposed thin-plate-spline deformation method can generate more
reliable training samples by non-rigid spline transformation.

In summary, the main contributions of the proposed method include:

1. A novel, non-rigid data augmentation method is proposed for surface defects detec-
tion. The proposed thin-plate-spline deformation method can generate more reliable
training samples than rigid transformation based methods.

2. A novel, unsupervised neural subspace learning method is proposed by combining
the clear mathematical theory of traditional subspace learning and the powerful
learning ability of DNNs.

3. The proposed method achieves competitive performance and has better generalization
than other methods.

This paper is organized as follows: Section 2 reviews the existing works of defect
detection using supervised and unsupervised methods. In Section 3, we introduce the
principle and algorithmic framework of the proposed method in detail. Section 4 con-
tains the implementation details of the proposed algorithm and the experimental results.
Conclusions are discussed in Section 5.

2. Related Work

Computer vision has been widely used in defect detection systems. In this section we
will briefly review the related work about defect detection, including traditional methods
based on hand-crafted features and data-driven deep learning methods.

The majority of traditional approaches can be divided into four categories: statistics-
based approaches, structural-based approaches filter-based approaches and model-based
approaches [23]. We think these methods are different in extracting high level seman-
tic features consistent with defects, especially the filter-based methods. Statistics-based
methods detect defects by computing the spatial distribution of image pixels, such as
histogram-of-oriented-gradient [24], co-occurrence matrix [1], and local-binary-pattern [2].
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Structural-based approaches mainly focus on the spatial location of textural elements. The
main methods are primitive measurement [25], edge features [26], skeleton representa-
tion [27] and morphological operations [3]. Filter-based methods employ filter banks to
generate features that consist of filter responses. The main methods include spatial domain
filtering [28], frequency domain analysis [29] and joint spatial/spatial frequency [4]. Model-
based approaches try to obtain certain models with special distributions or attributes, which
require a high computational complexity. The main methods include fractal model [5], ran-
dom field model [6], texem model [7], auto-regressive [8] and the modified PCA model [22].
Especially, the modified PCA model [22] demonstrated that defect-free regions usually had
low-rank attributes.

Deep-learning techniques have demonstrated great advantages in the task of defect de-
tection. These works can be classified into supervised learning and unsupervised methods
according to whether the annotated data are required.

Supervised learning. Song et al. [9] proposed EDR-Net which utilized the salient
object detection method for strip surface defects. Zhang et al. [30] leveraged a real-time
surface-defect segmentation network (FDSNet) based on a two-branch architecture to locate
the flaw areas. Dong et al. [10] proposed a pyramid feature fusion network with global
attention for surface-defect detection. Augustauskas et al. [31] proposed a pixel-level defect
segmentation network by using the residual connection and attention gate. Although
supervised learning methods obtain pretty good results, a large number of manually
annotated data are required. The collection of manually annotated data in industrial
manufacturing processes is difficult and expensive. Most existing DNN-based methods
suffered from the small sample problem and the lack of labeled data.

Unsupervised learning. Auto-Encoder [32], as a kind of effective and powerful artifi-
cial neural network, can learn high-level features by the encoder-decoder architecture. It
has been studied for the task of defect detection. Chow et al. [33] trained an auto-encoder
on defect-free images and argued that defective pixels would obtain a high reconstructive
error. Mujeeb et al. [34] chose binary cross-entropy as a loss function, which measured the
distribution error between the reconstructed result and the original data. Tian et al. [35]
used cross-patch similarity loss and iteratively chose the best latent variables iteratively.
Bergmann et al. [36] proposed the use of a perceptual loss function for examining inter-
dependencies among image regions. The loss function was defined to measure the struc-
tural similarity by taking into account luminance, contrast, and structural information.
In addition, Mei et al. [11] proposed a convolutional denoising auto-encoder network by
utilizing multiple Gaussian pyramid features. Similar ideas based on multi-scale features
are also used by this literature [37,38]. Yan et al. [39] proposed an adversarial auto-encoder
network to monitor defective regions in rolling production. The method combined the
power of GAN and the variational auto-encoder, which could be served as a nonlinear
dimension reduction technique.

Despite the powerful learning ability of auto-encoder, most existing unsupervised
methods did not take into account the prior manifold structure of the data space, such as
low-rank and, sparse representation. In this paper, a novel unsupervised defect detection
method is proposed by integrating the structure prior to low-rank and sparse representation
into the auto-encoder architecture.

3. Methodology

In order to deal with the small sample problem and the lack of labeled data in industrial
defect inspection, a novel unsupervised neural subspace learning method is proposed in
this section. The pipeline of the proposed method is shown in Figure 1. Firstly, a novel data
augmentation method based on non-rigid thin-plate-spline transformation is proposed
to deal with the small sample problem. Secondly, a novel auto-encoder regularized by
low-rank and sparse representation priors is designed to learn the dominant feature of the
image background. Finally, the defects can be detected by solving a `1 variational problem.
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Figure 1. Architecture of our low-rank representation quantized network. The sparse result is
postprocess with binarization to compare with ground truth. Both encoder E and decoder D contain
4 convolutional layers with size 4× 4 and step (2, 2). The codebook contains 2000 code and each code
is 8 dimensions.

3.1. Data Augmentation

Previous researchers usually use rigid transformation, such as flipping, rotating and
cropping operations, to augment training datasets. However, due to the fact that most de-
fects in the training data have continuous contours, these rigid operations do not generalize
“new” samples. In this paper, a novel data augmentation method based on thin-plate-spline
(TPS) deformation method [40] is proposed.

We model the image as a function defined on a 2-dimensional grid X . In order to
generate highly reliable samples similar to the true defect images, we first compute a shifted
grid Y by shifting each grid point onX through sampling distance in a uniform distribution
randomly, then the TPS deformation technique is utilized to fit a smooth warping function
between the original grid X and Y to obtain a more realistic twist. In detail, the warping
transformation f (·) can be computed by solving the following optimization problem

min
f

∑
X
‖Y − f (X )‖2 + β

∫∫
X

fxx + fyy + 2 fxydxdy , (1)

where fxx, fxy and fyy denote the second order partial derivatives of warping function f . β
is a regularization constant determining the smoothness of the warp. We find that satisfac-
tory results can be obtained when β is randomly generated from the interval [−0.1, 0.1].
Equation (1) can be effectively solved by the method [41].

The augmented training data set is generated through random TPS warping. Figure 2a
shows some augmented results by the proposed augmentation method on different kinds
of surfaces. It is easy to find that the curve distortions by TPS do not deviate from the defect
characteristics in the ground truth training data, and more reliable training samples can be
generated by the non-rigid transformation. For example, some new samples of cracked
roads are given in the second line of Figure 2a. In contrast, the augmented results (Figure 2b)
by rigid transformation are only changed with the variance of view, resolution, etc., and
cannot introduce more valuable training data within the same distribution of ground
truth data.
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(a) Deformation results of TPS (b) Deformation results of rigid transformation

Figure 2. Data augmentation based on TPS (a) and rigid transformation (b). The leftmost is the
original image for each type of surface, others are deformation results.

3.2. Neural-Subspace Learning with Low-Rank and Sparse Representation Priors

The proposed neural subspace learning method combines the nonlinear learning
ability of neural networks and manifold structure priors whose theories and effects have
been proved and evaluated in traditional subspace learning [42,43]. By utilizing the priors
of manifold structure regularization, such as low-rank and sparse representation, the
proposed method can accomplish defect detection in an unsupervised way.

Given the training data X ∈ Rm×n composed of a collection of defect images
X = [X1, X2, · · · , XN ] without any annotation, where Xi ∈ Rm is the i-th training sam-
ple, m is the dimension of each sample and n is the number of training samples. We assume
that X can be decomposed into two components, dominant content and sparse flaw regions.
This hypothesis is reasonable and common in many vision tasks [19–22]. In order to explore
the intrinsic manifold structure of the dominant component, low-rank representation is a
popular choice [44–46] in traditional subspace learning as shown in Equation (2),

min
Z,N
‖Z‖∗ + λ‖N‖1, s.t. X = XZ + N (2)

where Z ∈ Rn×n is self-representation coefficient matrix, N represents the sparse flaw
component, λ is a const regularization parameter for adjusting the degree of sparsity, ‖ · ‖∗
denotes the nuclear norm, which is a convex approximation of matrix rank and ‖ · ‖1
defines the sparse elementwise `1 norm.

Although the nuclear norm is an optimal convex approximation of matrix rank, a
complex and expensive singular value decomposition operation is required in each iteration.
Therefore, another approximation based on the Frobenious norm is proposed [47],

min
U,V,N

1
2
(‖U‖2

F + ‖V‖2
F) + λ‖N‖1, X = XUV + N (3)

where U ∈ Rn×d, V ∈ Rd×n, d� n and ‖ · ‖F is the Frobenious norm.
In addition to the reduction of optimization complexity, we can learn more from

Equation (3). Matrix U and V can be seen as two transformations, i.e., data X is first
encoded to a low-dimensional space by XU, then another transformation V maps the latent
feature back to the original data space by (XU)V. It is interesting to find that the main idea
of optimization problem (3) coincides with popular autoencoder, i.e., U and V can be seen
as encoder and decoder function. One of the main differences between subspace learning
model (3) and deep autoencoder is that traditional subspace learning methods focus on
studying linear subspace structure, while autoencoder is designed to learn the nonlinear
manifold structure. Despite methods for defect detection ignore the powerful manifold
priors used in traditional subspace learning, and they suffer from the small sample problem.
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In this section, a novel neural subspace learning framework is proposed by integrating
deep autoencoder into the traditional subspace learning method. The proposed neural
subspace learning can be represented as follows,

min
θ,N

1
2
(‖D‖2

F + ‖E‖2
F) + λ‖N‖1, s.t. X = D(E(X)) + N (4)

where E(·), D(·) are respectively the encoder network and decoder network, and θ is the
parameters of networks E(·) and D(·).

Firstly, the linear transformations U and V in traditional subspace learning are sub-
stituted by deep neural networks E(·) and D(·). Benefiting from the nonlinear learning
potential of neural networks, the proposed method can learn high-level feature representa-
tion compared with linear learning methods.

Secondly, in order to make full use of the manifold structure prior, we integrate the
deep autoencoder into the traditional learning framework (3). On the one hand, this
strategy improves the interpretability of the proposed algorithm. On the other hand, the
proposed method can accomplish defect detection in an unsupervised way.

Two kinds of manifold structure priors are utilized in this paper, namely low-rank
and sparse representation. As the dominant defect-free surfaces of industrial products
are always simple and homologous, low-rank is a proper latent prior. As for encoder and
decoder do not have explicit matrix expression, it is hard to optimize 1

2 (‖E‖2
F + ‖D‖2

F) in
Equation (3), we apply two tricks in the designing of a neural network to accomplish the
low-rank regularization. The first trick is to implicitly impose a rank constraint on the
learned representation by limiting the dimensions of the encoded feature F = E(X) to a
relatively small constant d� n. This implies that the rank of the encoded feature matrix
E(X) is at most d. The second trick is to remove all nonlinear activation in the decoder to
ensure that the rank can not be magnified after a series of linear decode transformations.

Low-rank prior provides a global regularization for the learned feature space. Sparse
representation (5) can explore more clues about the local relationship of the image.

min
P,α

1
2
‖F− Pα‖2 + ‖α‖1 (5)

where P is the overcomplete dictionary, and α is the representation coefficient. In order to
integrate the sparse representation prior into the autoencoder, we propose a neural sparse
coding framework inspired by the idea of vector quantized variational autoencoder [48].
First, the dictionary P can be simulated by the optimal codebook in VQ-VAE. The learned
dictionary P can be regarded as a group on the basis of the latent space extracted by the
encoder network. Instead of choosing the nearest code as introduced in reference [48], we
propose to learn a sparse representation coefficient vector Cs by feeding the encoded feature
into a shallow multilayer perceptron (MLP) φ as shown in Figure 3, where Cs = φ(F). To
keep the main component learned by VQ-VAE, a regularization loss based on the `1 distance
between the learned sparse coefficient Cs and the one-hot vector Co learned by VQ-VAE is
introduced. The encoded feature F can be reconstructed by a sparse represnetation F̃ = PCs.
Finally, F̃ will be fed into the decoder network to produce the dominant content by D(F̃).

The total loss function for the deep neural-subspace learning method can be summa-
rized as follows,

L(E(θ), D(θ), P, φ, N) = ‖X− D(P · φ(E(X))−N‖2
F + µ‖Co − Cs‖1 + λ‖N‖1 (6)



Mathematics 2022, 10, 4351 7 of 16

Figure 3. The pipeline of the learning sparse representation coefficient vector.

In summary, the proposed model strives to make full use of the advantage of both
subspace learning and neural autoencoder. On the one hand, the method can learn high-
level features by utilizing deep neural network. On the other hand, the method can
accomplish unsupervised defect detection by integrating low-rank and spare representation
priors into the neural network.

The proposed model can be trained by alternate optimization. First, given an initial N,
the parameters of the convolutional auto-encoder network and MLP φ can be optimized
by minimizing

L(E(θ), D(θ), P, φ) = ‖X− D(P · φ(E(X))−N‖2
F + µ‖Co − Cs‖1 (7)

Next, fixing the parameters of all neural networks, the flaw component can be opti-
mized by minimizing

L(N) = ‖X− D(P · φ(E(X))−N‖2
F + λ‖N‖1 (8)

The above optimization problem can be solved analytically by the soft thresholding
operator, 

(X− D(P · φ(E(X)))i,j − λ
2 i f (X− D(P · φ(E(X)))i,j >

λ
2

(X− D(P · φ(E(X)))i,j +
λ
2 i f (X− D(P · φ(E(X)))i,j < − λ

2
0 else

. (9)

Equations (7) and (8) are alternately optimized until the derivative of the overall
objective is below a certain threshold or the maximum iteration number is reached. In the
testing phase, given a defect image I, its flawless image can be directly obtained by D(E(I))
and the noise N can be calculated by Equation (8).

4. Experiments

In this chapter, we will conduct our experiments on two kinds of defect datasets [49,50]
and show the results compared with state-of-the-art methods: PCA [51], structural similar-
ity autoencoder (SSIMAE) [36], feature augmented VAE (FAVAE) [38] and encoder-decoder
residual network (EDR) [9] and surface-defect segmentation network (FDSNet) [30]. All
experiments are implemented using Pytorch and trained on a single Nvidia GeForce RTX
2080ti GPU on Ubuntu 20 system. The learning rate of the Adam optimizer is 0.001 and the
constant parameters λ and µ are set to 0.1 and 200, respectively. The training epoch is set to
100 with the batch size set to 64. We follow the rule of taking 80% samples for training and
20% for the test.
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4.1. Implement Detail
4.1.1. SD-Saliency-900

SD-Saliency-900 dataset [49] is related to the defect detection of strip steel. In this
dataset, we randomly pick 480 images for training and 120 images for testing. For each
training image, we use the TPS technique to generate two deformation images. Therefore,
we obtain a total of 480× 3 training images. Before training, we set the initial noise N to
zero matrices and its size is equal to the size of the input image. It only costs 6 ms for
predicting the corresponding clean image and defect region for a given image.

4.1.2. CrackForest

CrackForest dataset [50] contains 118 defection images of cracked roads. In this dataset,
we randomly select 94 images for training and 24 images for testing. First, we transform the
original color image into a grayscale image with the size of 128× 128. Then, we generate
five images for each training image by using the TPS deformation method. In this way,
we can expand the original training set by 5 times and obtain 564 training images. In this
dataset, the initial noise N is also set to zero matrices. It only takes 6 ms to predict the
defect area of a picture.

4.2. Evaluation

We use four quantitative metrics to evaluate the performance of different methods in
this paper. They are accuracy, recall, precision and F1-score, respectively, and which are
defined by:

Accuracy =
TP + TN

TP + TN + FP + FN
(10)

Recall =
TP

TP + FN
(11)

Precision =
TP

TP + FP
(12)

F1 =
2× Recall × Precision

Recall + Precision
(13)

where true positive (TP) refers to positives that are correctly identified, and true negative
(TN) means negatives that are correctly identified. False positive (FP) indicates that nega-
tives still yield positive test results and while false negative (FN) is a test result that falsely
indicates that a condition does not hold. Accuracy is the proportion of correct predictions
among the total number. Recall measures the proportion of positives that are correctly
identified, and Precision is the fraction of relevant instances among the retrieved instances.
F1-score that combines precision and recall is the harmonic mean of Precision and Recall.

4.3. Experimental Results

In this section, the method proposed in this paper is first compared with three unsu-
pervised methods by qualitative and quantitative analysis. We also compare the proposed
method with two state-of-the-art supervised methods to evaluate the performance and
generalization. Finally, an ablation study is conducted to illustrate the advantages of the
proposed data augmentation method based on the TPS deformation technique.

4.3.1. Comparison with Unsupervised Methods

Table 1 displays the performance of different defect detection methods on SD-Saliency-
900 and CrackForest datasets. It can be found that our method achieves the best results
in all of the above four metrics for the SD-Saliency-900 dataset. For another dataset, our
method still obtains the best performance in three metrics. For example, compared with
PCA, SSIMAE, FAVAE, the F1-score has increased by at least 20 points in the SD-Saliency-900
dataset and almost 30 points in the CrackForest dataset. Although PCA based method get
the highest score in the Precision metrics, the Recall metric lags far behind other methods.
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Table 1. Quantitative pixel-level defect detection results among unsupervised approaches. The best
results are highlighted in bold.

SD-Saliency-900 PCA SSIMAE FAVAE Ours

Accuracy 93.1 93.6 87.8 95.0
Recall 14.0 32.2 39.0 41.4
Precision 54.6 57.2 28.1 75.8
F1-score 22.3 41.2 32.6 53.6

CrackForest PCA SSIMAE FAVAE Ours

Accuracy 95.1 95.0 94.3 98.5
Recall 24.4 76.2 60.5 79.1
Precision 80.0 35.1 28.1 71.4
F1-score 37.4 48.1 38.4 75.1

Some defect detection samples are displayed in Figures 4 and 5 for different methods
on the test datasets of SD-Saliency-900 and CrackForest. For each method, we first separate
the original defect image into the clean image and the defect foreground image. Then the
defect binary map is obtained by threshold operation. We can find that the FAVAE method
detects too many flawless areas because it heavily depends on the thermodynamic map,
the detection results of the SSIMAE method contain too much noise due to it is achieved
by comparing the similarity of local patches in the image and the PCA method is very
suitable for detecting the small defect of the road surface. Compared with these methods,
our approach achieves the best detection results.

4.3.2. Comparison with Supervised Method

In order to further demonstrate the effectiveness of our unsupervised method, the
proposed approach is compared with state-of-the-art defect detection methods, EDR [9]
and FDSNet [30]. Both are supervised learning methods. As FDSNet need additional
data pre-processing process and they only provide the results of the SD-Saliency-900
dataset, we only compare it to the dataset in the paper. Table 2 shows the results of
different methods. Although our methods is weaker than the supervised methods in the
SD-Saliency-900 dataset, the proposed method obtains satisfactory results in the CrackForst
dataset, especially on the Recall and F1-score metrics, which are important for product
quality. These results are acceptable because supervision promotes the network to extract
more discriminating features. The visualization results of some test samples are shown in
Figures 6 and 7. It can be seen that the detection results of these three methods are very
similar. However, supervised learning methods requires a lot of labor to label the data. Our
method uses an unsupervised strategy, which is more suitable for industrial production.

Table 2. Quantitative pixel-level defect detection results among different methods.

SD-Saliency-900 Accuracy Recall Precision F1-Score

EDR 95.9 54.1 100 70.2
FDSNet 96.2 72.9 72.6 72.8
Ours 95.0 41.4 75.8 53.6

CrackForest Accuracy Recall Precision F1-Score

EDR 98.2 56.0 98.8 71.5
Ours 98.5 79.1 71.4 75.1
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(a) Original image (b) Ground truth (c) PCA (d) FAVAE (e) SSIMAE (f) Ours

Figure 4. The results of different approaches on SD-Saliency-900.
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(a) Original image (b) Ground truth (c) PCA (d) FAVAE (e) SSIMAE (f) Ours

Figure 5. The results of different approaches on CrackForest.
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(a) Original (b) Ground truth (c) EDR (d) FDSNet (e) Ours

Figure 6. The outputs of EDR method and ours on SD-Saliency-900 dataset.

(a) Original (b) Ground truth (c) EDR (d) Ours

Figure 7. The outputs of EDR method and ours on CrackForest dataset.

In addition, in order to compare the generalization of these methods on a new dataset,
we use the cross-domain strategy for testing. Namely, train the model on dataset A and test
on datset B. Table 3 gives the quantitative statistical results of EDR method, FDSNet method
and ours. It can be found that the EDR and FDSNet methods with supervised learning
have very poor performance on the new dataset. As a comparison, our method looks better.
Compared with the results without cross-domain test in Table 1, the performance has not
dropped much in the precision metric. Figures 8 and 9 show some visualization results by
using a cross-domain strategy. From these figures, we can find that the EDR method is
completely ineffective in detecting defects. Our method still has good performance.

(a) Original (b) Ground truth (c) EDR (d) Ours

Figure 8. The results of training on CrackForest and testing on SD-Saliency-900.
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(a) Original (b) Ground truth (c) EDR (d) FDSNet (e) Ours

Figure 9. The results of training on SD-Saliency-900 and testing on CrackForest.

Table 3. Quantitative pixel-level defect detection results on cross-domain dataset between EDR and
ours. The best results are highlighted by bold fonts.

Train on SD-Saliency-900, Test on CrackForest Accuracy Recall Precision F1-Score

EDR 91.2 1.0 59.2 1.8
FDSNet 97.1 10.8 48.9 17.7
Ours 94.3 34.3 68.3 45.7

Train on CrackForest, Test on SD-Saliency-900 Accuracy Recall Precision F1-Score

EDR 97.3 4.9 95.9 9.4
Ours 94.7 7.1 97.4 13.2

4.4. Comparison among Different Data Augmentation Strategy

In order to verify the robustness and effectiveness of thin-plate-spline deformation
on data augmentation, we conduct some experiments on the SD-Saliency-900 dataset,
including training the same network on the dataset without augmentation, with rigid
augmentation, with non-rigid augmentation, and with both rigid and non-rigid augmen-
tation, respectively. On the same training dataset, we augment 960, 960 and 1920 images
through TPS deformation, rigid transformation and the combination of the above two
operations, respectively. The statistical performance of the same test dataset is shown in
Table 4. We can find that, the prediction performance of the network which is trained on
the dataset without data augmentation falls short. Non-rigid transformation can bring
more remarkable performance than rigid operations, such as the Precision and F1-score,
and the effectiveness of the combination of two operations is not obvious. Therefore, we do
not adopt the combination strategy in this paper.

Table 4. Quantitative pixel-level defect detection results among different augmentation strategies.

SD-Saliency-900 Accuracy Recall Precision F1-Score

TPS+Rigid 95.0 41.6 76.0 53.8
TPS 95.0 41.4 75.8 53.6
Rigid 93.9 40.3 59.5 48.1
w/o augmentation 93.3 21.5 55.6 31.0

5. Conclusions

In this paper, a novel unsupervised defect detection method based on neural subspace
learning is proposed. The proposed method combines the clear mathematical theory of
traditional subspace learning and the powerful learning ability of DNNs. According to
the basic assumption that defect images can be decomposed into dominant content and
sparse flaw regions, two typical manifold priors, low-rank and sparse representation,
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are incorporated into the deep neural network. In addition, a new data augmentation
method called thin-plate spline deformation is proposed in this paper. Experiments on
two datasets demonstrate that the proposed method achieves competitive performance on
defect detection tasks.
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