Advanced Modulation Scheme of a Dual-Active-Bridge Series Resonant Converter (DABSRC) for Enhanced Performance
Abstract
:1. Introduction
2. Design and Analysis of the 3P-DABSRC
2.1. Mathematical Analysis of the 3P-DABSRC Converter
2.2. ZVS Condition
- If , then the inductor current () lags behind the primary voltage () and leads the secondary voltage (). As a result, the primary and secondary bridge switches will achieve ZVS, as shown in Figure 12a.
- If , then lags behind and becomes in phase with ; the primary bridge switches achieve ZVS and the secondary bridge switches achieve ZVS under the boundary conditions, as shown in Figure 12b.
- If , then lags behind both and . As a result, the primary bridge switches achieve ZVS and hard switching occurs for the secondary bridge switches, as shown in Figure 12c.
- If , then leads and becomes in phase with . As a result, ZVS is achieved under boundary conditions for the switches of the primary bridge and ZVS is achieved for the switches of the secondary bridge, as shown in Figure 12d.
- If , then leads both and . As a result, hard switching occurs for the primary bridge and ZVS is achieved for the secondary bridge, as shown in Figure 12e.
2.3. Minimum Tank Current Requirement
2.4. Power Loss Model
2.5. Simulation Results and Discussion
2.6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Waltrich, G.; Hendrix, M.A.; Duarte, J.L. Three-Phase Bidirectional DC/DC Converter with Six Inverter Legs in Parallel for EV Applications. IEEE Trans. Ind. Electron. 2016, 63, 1372–1384. [Google Scholar] [CrossRef]
- Xue, L.; Shen, Z.; Boroyevich, D.; Mattavelli, P.; Diaz, D. Dual Active Bridge-Based Battery Charger for Plug-in Hybrid Electric Vehicle with Charging Current Containing Low Frequency Ripple. IEEE Trans. Power Electron. 2015, 30, 7299–7307. [Google Scholar] [CrossRef] [Green Version]
- Zhao, B.; Song, Q.; Li, J.; Liu, W. A Modular Multilevel DC-Link Front-to-Front DC Solid-State Transformer Based on High-Frequency Dual Active Phase Shift for HVDC Grid Integration. IEEE Trans. Ind. Electron. 2017, 64, 8919–8927. [Google Scholar] [CrossRef]
- Shi, H.; Wen, H.; Chen, J.; Hu, Y.; Jiang, L.; Chen, G.; Ma, J. Minimum-Backflow-Power Scheme of DAB-Based Solid-State Transformer with Extended-Phase-Shift Control. IEEE Trans. Ind. Appl. 2018, 54, 3483–3496. [Google Scholar] [CrossRef]
- Lu, Y.; Wu, Q.; Wang, Q.; Liu, D.; Xiao, L. Analysis of a Novel Zero-Voltage-Switching Bidirectional DC/DC Converter for Energy Storage System. IEEE Trans. Power Electron. 2018, 33, 3169–3179. [Google Scholar] [CrossRef]
- Xue, F.; Yu, R.; Huang, A.Q. A 98.3% Efficient GaN Isolated Bidirectional DC-DC Converter for DC Microgrid Energy Storage System Applications. IEEE Trans. Ind. Electron. 2017, 64, 9094–9103. [Google Scholar] [CrossRef]
- Lai, J.S.; Nelson, D.J. Energy Management Power Converters in Hybrid Electric and Fuel Cell Vehicles. Proc. IEEE 2007, 95, 766–777. [Google Scholar] [CrossRef]
- Kisacikoglu, M.C.; Kesler, M.; Tolbert, L.M. Single-Phase On-Board Bidirectional PEV Charger for V2G Reactive Power Operation. IEEE Trans. Smart Grid 2015, 6, 767–775. [Google Scholar] [CrossRef]
- Madawala, U.K.; Thrimawithana, D.J. A Bidirectional Inductive Power Interface for Electric Vehicles in V2G Systems. IEEE Trans. Ind. Electron. 2011, 58, 4789–4796. [Google Scholar] [CrossRef]
- Abosnina, A.A.; Moschopoulos, G. A novel three-phase bidirectional DC-DC converter for UPS applications. In Proceedings of the 2018 IEEE Applied Power Electronics Conference and Exposition (APEC), San Antonio, TX, USA, 4–8 March 2018; pp. 1506–1513. [Google Scholar] [CrossRef]
- Wilson, J.R.; Burgh, G. Energizing Our Future; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2007; pp. 373–390. [Google Scholar] [CrossRef] [Green Version]
- Zia, A. A comprehensive overview on the architecture of Hybrid Electric Vehicles (HEV). In Proceedings of the 2016 19th International Multi-Topic Conference (INMIC 2016), Islamabad, Pakistan, 5–6 December 2016. [Google Scholar] [CrossRef]
- Ipakchi, A.; Albuyeh, F. Grid of the future. IEEE Power Energy Mag. 2009, 7, 52–62. [Google Scholar] [CrossRef]
- Heydt, G.T. Future renewable electrical energy delivery and management systems: Energy reliability assessment of FREEDM systems. In Proceedings of the IEEE PES General Meeting, Minneapolis, MN, USA, 25–29 July 2010; pp. 1–4. [Google Scholar] [CrossRef]
- Zhao, B.; Song, Q.; Liu, W.; Sun, Y. Overview of dual-active-bridge isolated bidirectional DC-DC converter for high-frequency-link power-conversion system. IEEE Trans. Power Electron. 2014, 29, 4091–4106. [Google Scholar] [CrossRef]
- De Doncker, R.W.; Divan, D.M.; Kheraluwala, M.H. A Three-Phase Soft-Switched High-Power-Density DC/DC Converter for High-Power Applications. IEEE Trans. Ind. Appl. 1991, 27, 63–73. [Google Scholar] [CrossRef]
- Khan, A.Z.; Loo, K.H. A Three-Phase Dual-Active-Bridge DC-DC Converter with Reconfigurable Resonant Network for Efficient Wide Voltage Range Operation. IEEE Trans. Power Electron. 2019, 35, 1322–1339. [Google Scholar] [CrossRef]
- Su, G.J.; Tang, L. A three-phase bidirectional DC-DC converter for automotive applications. In Proceedings of the Conference Record—IAS Annual Meeting (IEEE Industry Applications Society), Edmonton, AB, Canada, 5–9 October 2008; pp. 1–7. [Google Scholar] [CrossRef]
- Baars, N.; Everts, J.; Wijnands, C.; Lomonova, E. Performance Evaluation of a Three-Phase Dual Active Bridge DC-DC Converter with Different Transformer Winding Configurations. IEEE Trans. Power Electron. 2015, 31, 6814–6823. [Google Scholar] [CrossRef]
- Jacobs, J.; Thommes, M.; De Doncker, R. A transformer comparison for three-phase single active bridges. In Proceedings of the 2005 European Conference on Power Electronics and Applications, Dresden, Germany, 11–14 September 2005. [Google Scholar] [CrossRef]
- Wang, Z.; Li, H. A soft switching three-phase current-fed bidirectional DC-DC converter with high efficiency over a wide input voltage range. IEEE Trans. Power Electron. 2012, 27, 669–684. [Google Scholar] [CrossRef]
- Khan, A.Z.; Loo, K.H.; Lai, Y.M. Design, Analysis, and Performance Characterization of Dual-Active-Bridge DC-DC Converter Utilizing Three-Phase Resonant Immittance Network. IEEE Trans. Power Electron. 2019, 34, 1159–1180. [Google Scholar] [CrossRef]
- Alonso, A.R.; Sebastian, J.; Lamar, D.G.; Hernando, M.M.; Vazquez, A. An overall study of a Dual Active Bridge for bidirectional DC/DC conversion. In Proceedings of the 2010 IEEE Energy Conversion Congress and Exposition (ECCE 2010), Atlanta, GA, USA, 12–16 September 2010; pp. 1129–1135. [Google Scholar] [CrossRef]
- Hu, J.; Soltau, N.; De Doncker, R.W. Asymmetrical duty-cycle control of three-phase dual-active bridge converter for soft-switching range extension. In Proceedings of the ECCE 2016—IEEE Energy Conversion Congress and Exposition, Milwaukee, WI, USA, 18–22 September 2016. [Google Scholar] [CrossRef]
- de Oliveira Filho, H.M.; de Souza Oliveira, D.; Praca, P.P. Steady-State Analysis of a ZVS Bidirectional Isolated Three-Phase DC–DC Converter Using Dual Phase-Shift Control with Variable Duty Cycle. IEEE Trans. Power Electron. 2016, 31, 1863–1872. [Google Scholar] [CrossRef]
- Zhao, B.; Yu, Q.; Sun, W. Extended-Phase-Shift Control of Isolated Bidirectional DC–DC Converter for Power Distribution in Microgrid. IEEE Trans. Power Electron. 2012, 27, 4667–4680. [Google Scholar] [CrossRef]
- Xu, G.; Sha, D.; Xu, Y.; Liao, X. Dual-Transformer-Based DAB Converter with Wide ZVS Range for Wide Voltage Conversion Gain Application. IEEE Trans. Ind. Electron. 2018, 65, 3306–3316. [Google Scholar] [CrossRef]
- Wu, J.; Li, Y.; Sun, X.; Liu, F. A New Dual-Bridge Series Resonant DC–DC Converter with Dual Tank. IEEE Trans. Power Electron. 2018, 33, 3884–3897. [Google Scholar] [CrossRef]
- Malan, W.; Vilathgamuwa, D.M.; Walker, G. Modeling and Control of a Resonant Dual Active Bridge with a Tuned CLLC Network. IEEE Trans. Power Electron. 2015, 31, 7297–7310. [Google Scholar] [CrossRef]
- Everts, J.; Krismer, F.; Van den Keybus, J.; Driesen, J.; Kolar, J.W. Optimal ZVS Modulation of Single-Phase Single-Stage Bidirectional DAB AC–DC Converters. IEEE Trans. Power Electron. 2014, 29, 3954–3970. [Google Scholar] [CrossRef]
- Everts, J. Closed-Form Solution for Efficient ZVS Modulation of DAB Converters. IEEE Trans. Power Electron. 2017, 32, 7561–7576. [Google Scholar] [CrossRef]
- Muthuraj, S.S.; Kanakesh, V.K.; Das, P.; Panda, S.K. Triple Phase Shift Control of an LLL Tank Based Bidirectional Dual Active Bridge Converter. IEEE Trans. Power Electron. 2017, 32, 8035–8053. [Google Scholar] [CrossRef]
- Hiltunen, J.; Vaisanen, V.; Juntunen, R.; Silventoinen, P. Variable-Frequency Phase Shift Modulation of a Dual Active Bridge Converter. IEEE Trans. Power Electron. 2015, 30, 7138–7148. [Google Scholar] [CrossRef]
- Zahid, Z.U.; Dalala, Z.M.; Chen, R.; Chen, B.; Lai, J.S. Design of Bidirectional DC–DC Resonant Converter for Vehicle-to-Grid (V2G) Applications. IEEE Trans. Transp. Electrif. 2015, 1, 232–244. [Google Scholar] [CrossRef]
- Chen, W.; Rong, P.; Lu, Z. Snubberless Bidirectional DC–DC Converter With New CLLC Resonant Tank Featuring Minimized Switching Loss. IEEE Trans. Ind. Electron. 2010, 57, 3075–3086. [Google Scholar] [CrossRef]
- Jung, J.H.; Kim, H.S.; Ryu, M.H.; Baek, J.W. Design Methodology of Bidirectional CLLC Resonant Converter for High-Frequency Isolation of DC Distribution Systems. IEEE Trans. Power Electron. 2013, 28, 1741–1755. [Google Scholar] [CrossRef]
- Kim, H.S.; Ryu, M.H.; Baek, J.W.; Jung, J.H. High-Efficiency Isolated Bidirectional AC–DC Converter for a DC Distribution System. IEEE Trans. Power Electron. 2013, 28, 1642–1654. [Google Scholar] [CrossRef]
- Khan, A.Z.; Chan, Y.P.; Yaqoob, M.; Loo, K.H.; Davari, P.; Blaabjerg, F. A Multistructure Multimode Three-Phase Dual-Active-Bridge Converter Targeting Wide-Range High-Efficiency Performance. IEEE Trans. Power Electron. 2021, 36, 3078–3098. [Google Scholar] [CrossRef]
- Choi, W.; Rho, K.M.; Cho, B.H. Fundamental Duty Modulation of Dual-Active-Bridge Converter for Wide-Range Operation. IEEE Trans. Power Electron. 2016, 31, 4048–4064. [Google Scholar] [CrossRef]
- Blake, C.; Bull, C. IGBT or MOSFET: Choose wisely. EngineerIT 2018, 2018, 37–39. [Google Scholar]
- Dung, N.A.; Chiu, H.J.; Lin, J.Y.; Hsieh, Y.C.; Chen, H.T.; Zeng, B.X. Novel Modulation of Isolated Bidirectional DC-DC Converter for Energy Storage Systems. IEEE Trans. Power Electron. 2019, 34, 1266–1275. [Google Scholar] [CrossRef]
- Li, X.; Bhat, A.K. Analysis and design of high-frequency isolated dual-bridge series resonant DC/DC converter. IEEE Trans. Power Electron. 2010, 25, 850–862. [Google Scholar] [CrossRef]
- Abraham, Y.H.; Wen, H.; Xiao, W.; Khadkikar, V. Estimating power losses in Dual Active Bridge DC-DC converter. In Proceedings of the 2011 2nd International Conference on Electric Power and Energy Conversion Systems (EPECS 2011), Sharjah, United Arab Emirates, 15–17 November 2011; pp. 1–5. [Google Scholar] [CrossRef]
- Krismer, F.; Kolar, J.W. Accurate power loss model derivation of a high-current dual active bridge converter for an automotive application. IEEE Trans. Ind. Electron. 2010, 57, 881–891. [Google Scholar] [CrossRef]
- Erickson, R.; Maksimovic, D. Fundamentals of Power Electronics; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
Parameter | Symbol | Value |
---|---|---|
Input voltage | V1 | 300 Vdc |
Output voltage | V2 | 37.5–112.5 Vdc |
Maximum power | Pmax | 1500 W |
Switching frequency | fs | 45–63 kHz |
Resonant frequency | fr | 45 kHz |
Phase-shift range | 0–90 degree | |
Inductor | L | 610.8 H |
Capacitor | C | 20.48 nF |
Transformer (Core ETD 49) | Turns ratio n | 4 |
MOSFET | SPW47N60CFD | 600 V, 46 A |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hameed, A.; Nauman, A.; Quadir, M.; Khan, I.L.; Iqbal, A.; Hussain, R.; Khurshaid, T. Advanced Modulation Scheme of a Dual-Active-Bridge Series Resonant Converter (DABSRC) for Enhanced Performance. Mathematics 2022, 10, 4402. https://doi.org/10.3390/math10234402
Hameed A, Nauman A, Quadir M, Khan IL, Iqbal A, Hussain R, Khurshaid T. Advanced Modulation Scheme of a Dual-Active-Bridge Series Resonant Converter (DABSRC) for Enhanced Performance. Mathematics. 2022; 10(23):4402. https://doi.org/10.3390/math10234402
Chicago/Turabian StyleHameed, Asad, Ali Nauman, Munleef Quadir, Irfan Latif Khan, Adeel Iqbal, Riaz Hussain, and Tahir Khurshaid. 2022. "Advanced Modulation Scheme of a Dual-Active-Bridge Series Resonant Converter (DABSRC) for Enhanced Performance" Mathematics 10, no. 23: 4402. https://doi.org/10.3390/math10234402
APA StyleHameed, A., Nauman, A., Quadir, M., Khan, I. L., Iqbal, A., Hussain, R., & Khurshaid, T. (2022). Advanced Modulation Scheme of a Dual-Active-Bridge Series Resonant Converter (DABSRC) for Enhanced Performance. Mathematics, 10(23), 4402. https://doi.org/10.3390/math10234402