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Abstract: We propose a boundary-element-based method for crack problems in multilayered elastic
medium that consists of a set of individually homogeneous strata. The method divides the medium
along the slit-like crack surface so that the effects of the elements placed along one crack surface
become distinguishable from those placed along the other surface. As a result, the direct method
that cannot be directly applied for crack problems turns out to be applicable. After that, we derive a
recursive formula that obtains a “stiffness matrix” for each layer by exploiting the chain-like structure
of the system, enabling a sequential computation to solve the displacements on the crack surface in
each layer “consecutively” in a descending order from the very top layer to the very bottom one. In
our method, the final system of equations only contains the unknown displacements on the crack
surface, ensuring the efficiency of the method. The numerical examples demonstrate better accuracy
and broader applicability of our method compared to the displacement discontinuity method and
more-acceptable efficiency of our method compared to the conventional direct method.

Keywords: direct method; boundary element method; crack problems; multilayered elastic media
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1. Introduction

Crack problems in multilayered elastic media have been found to be serve in many
industrial applications, such as numerical stability analysis for safer construction [1–5],
the characterization of fractured porous media for optimal transport efficiency [6–10], and
the simulation of hydraulic fracturing for the economic development of unconventional
reservoirs [11–15]. It is well accepted that the core component to model hydraulic fracturing
is the ability to compute the elastic response of a pressurized crack intersecting a number
of layers, each of which is assumed to be homogeneous and isotropic individually [15–18].

The boundary element method (BEM) is a widely-chosen method among the various
numerical methods developed to calculate the opening displacement of cracks in crack
problems [19]. Compared to methods that require the discretization of the whole domain
of interest, for example, the finite element method (FEM), the BEM only discretizes the
boundaries of a domain, leading to fewer elements in computation and enabling a more
efficient computation consequently [20,21]. In addition, the BEM exploits analytical fun-
damental solutions, ensuring a potentially more-accurate computation [22]. As a result,
determining appropriate analytical fundamental solutions becomes critical to the analysis
of crack problems for ccurate construction of boundary element equations and efficient
subsequent implementation.

The governing equations of multilayered media are a system of partial differential
equations (PDEs) from the theory of elasticity [23]. Thus, it is natural to conceive a method
that determines the analytical fundamental solution by reducing the PDEs to ordinary
differential equations (ODEs) for easier computation [24]. Therefore, Fourier transform

Mathematics 2022, 10, 4403. https://doi.org/10.3390/math10234403 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10234403
https://doi.org/10.3390/math10234403
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-6815-7045
https://orcid.org/0000-0001-7243-1676
https://doi.org/10.3390/math10234403
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10234403?type=check_update&version=3


Mathematics 2022, 10, 4403 2 of 16

(FT) has been implemented in many works to reduce the PDEs of the system, in which
all of the interfaces have to be parallel [16,23–26]. After the solutions of displacement and
stress to the ODEs are determined in the FT field, a subsequent inverse FT on the solutions
yields the analytical fundamental solutions in the spatial field. Improper integrals that
require numerical evaluation, however, are usually contained in the analytical fundamental
solutions due to the inverse FT, deteriorating the accuracy and efficiency of the following
boundary-element implementation [27–29]. In addition, when the interfaces are not parallel,
FT-based methods become inapplicable.

FT-based methods require the introduction of elements along the interfaces, while
the displacement discontinuity method (DDM), a branch of the BEM that utilizes the
physical analog of a slit-like crack and a series distribution of constant displacement
discontinuities, does not need to take care of the interfaces [30], making itself perhaps the
most efficient method to solve crack problems [23]. Unfortunately, the DDM only applies
to homogeneous media or bi-materials (bounded by two half planes) since the analytical
fundamental solutions to the DDM only exist in the two cases [30,31]. Shou et al. [28,29]
attempted to extend the DDM to multilayered media. Their extension, however, turned
out to be a first-order approximation instead of a full solution [32,33]. Apart from that, the
application of DDM requires the loading on the two crack surfaces the same in magnitude
but opposite in direction.

Unlike the DDM with its strict limitations, the conventional BEM, also known as
the direct method (DM), is versatile for multilayered elastic media. The DM constructs
the boundary-element equations for each layer using Kelvin’s solution and the reciprocal
theorem as analytical fundamental solutions [34]. Then, it assembles all of the equations
into a large system of algebraic equations by using the interface continuity. After that,
all of the unknowns are solved simultaneously. It is obvious that the system of the final
equations is going to grow to be tremendously huge with an increase in the number of
layers, undermining the efficiency significantly [19,35]. As a result, Maier and Novati [36]
proposed a transfer-matrix method that decomposes the large system of equations into
smaller ones by exploiting the chain-like property of the multilayered system. The method,
however, resulted in ill-conditioned matrices when dealing with thick layers. Therefore,
the authors [37] developed a successive stiffness matrix method to remedy the issue.
Unfortunately, neither of the two methods directly apply to elastic media containing a
slit-like crack in which one crack surface coincides with the other effectively because the
effects of elements placed along one crack surface become indistinguishable from those
placed along the other surface [34]. Although some authors [22,34] have suggested that
division of the media along the slit-like crack surface facilitates the application of the
DM, no explicit procedure has been found in the literature, particularly when the DM is
implemented with the chain-like structure of the multilayered media for better efficiency.

As a result, we propose a boundary-element-based method for crack problems in the
multilayered elastic media. The method divides the media along the slit-like crack surface
so that the effects of the elements placed along one crack surface become distinguishable
from those placed along the other surface. Thus, the direct method that cannot be directly
applied for crack problems turns out to be applicable. After that, we derive a recursive
formula that obtains a “stiffness matrix” for each layer by utilizing the chain-like property
of the system, enabling a sequential computation to solve the displacements on the crack
surface in each layer “consecutively” in a descending order from the very top layer to
the very bottom. Furthermore, the final system of equations in our method only contains
the unknown displacements on the crack surfaces, ensuring a satisfying efficiency of
the method. Therefore, our proposed method becomes decent in accuracy, acceptable in
efficiency, and broad in applicability.

The remaining parts of the paper are presented as follows: Section 2 provides the
statement of the crack problem; Section 3 derives the formulation of the consecutive stiffness
method; Section 4 demonstrates the accuracy, efficiency, and applicability of the method
under the plane-strain condition; and Section 5 summarizes the paper with conclusions.
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2. Statement of Problem

The geometry and labeling of the crack problem in our work follows the conventions
of the previous work (Figure 1) [37]. A multilayered elastic media consists of a number
of layers, each of which is assumed to be homogeneous as well as isotropic and charac-
terized by Young’s modulus E and the Poisson ratio v. A pressurized crack subjected to
known pressure pc passes through the layers. We need to determine the crack opening
displacement Dc.
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Figure 1. Schematic view of the crack problem [37].

In Figure 1, the index (i) denotes the ith layer, ranging from 1 (the bottom layer) to N
(the top layer). The superscript i indicates the material properties and quantities of interest
(traction and displacement) pertaining to the ith layer. The long dashed line represents the
initial status of the crack as a slit-like crack with two surfaces, one of which coincides with
the other effectively. The two short dashed lines along the two sides are the fictitious side
boundaries, the distance of which h is assumed to be infinite. As a result, they are assumed
to be “undisturbed” and characterized by zero displacements.

The quantities associated with the lower (bottom), upper (top), side boundaries, and
crack surfaces of each layer will be labeled by the subscripts b, t, s, and c, respectively.
Matrices and column vectors are denoted by bold symbols. Vectors of the nodal traction
and displacement in the problem are indicated by p and u, respectively.

The bottom surface of the system often represents an underlying stiff rock formation,
characterized by zero displacement, beneath the bottom of the multilayered medium [16],
while the very top surface can be subjected to any prescribed boundary conditions, usually
known traction [16,37]. Therefore, the boundary conditions of the system are assumed to
be traction-free on the top surface for the sake of simplicity:

ub
1 = 0, pt

N = 0 (1)

where 0 is the null matrix or vector.
The boundary condition on the side boundaries is then:

us
i = 0 (1 ≤ i ≤ N) (2)

Therefore, the equations pertaining to the side boundaries can be split from those associated
with other boundaries [37].

We have adopted the local coordinates defined in [34], resulting in the following
interface continuity conditions (see Appendix A for details):

ut
i = −ub

i+1, pt
i = pb

i+1 (3)
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3. Formulation of the Method

We present Figure 2a by rotating Figure 1 by 90 degrees clockwise and by removing
the symbols of quantities for visual simplicity. The initial slit-like upper and lower crack
surfaces, one of which coincides with the other effectively, are marked in blue and red,
respectively, for visual distinguishment. We then divide the media by cutting it along the
initial slit-like crack surfaces in order to distinguish the effects of the elements placed along
one crack surface from those placed along the other in subsequent numerical implementa-
tion, leading to the resultant medium shown in Figure 2b.
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Figure 2. (a) Division of the media containing a slit-like crack; (b) results of the division.

We indicate the upper and lower parts of each layer after the cutting by the superscripts
’ and ‘’, respectively (Figure 3). The dividing also results in the horizontal interfaces, denoted
by I, in the bottom and top layers, as shown in Figure 3a,c.
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(1) For the bottom layer (i = 1):
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We define α to represent the boundaries other than the interface I, i.e., the bottom, top,
and crack boundaries. After that, we can formulate the boundary element equations based
on the direct method for the two parts of the bottom layer:

K1′u1′ = p1′ , and K1′′u1′′ = p1′′ (4)

where K1′ and K1′′ are the coefficient matrices of the upper and lower parts, respectively.
They are determined by the configuration of the layer only. Their explicit forms can be
found in the work of Crouch and Starfield [34].

We can rewrite Equations (4) to (5) by discretizing with boundary elements and
partitioning them according to the categorization of the boundaries:[

K1
α′α′ K1

α′ I′
K1

I′α′ K1
I′ I′

]{
u1

α′

u1
I′

}
=

{
p1

α′

p1
I′

}
, and

[
K1

α′′ α′′ K1
α′′ I′′

K1
I′′ α′′ K1

I′′ I′′

]{
u1

α′′

u1
I′′

}
=

{
p1

α′′

p1
I′′

}
(5)

Note that the continuity conditions defined by the local coordinates apply to interfaces I′

and I′′:
uI ′ = −uI′′ , pI ′ = pI′′ (6)

The substitution of Equation (6) into Equation (5) with subsequent algebraic arrange-
ment leads to: [

H1
α′α′ H1

α′α′′

H1
α′′ α′ H1

α′′ α′′

]{
u1

α′

u1
α′′

}
=

{
p1

α′

p1
α′′

}
(7)

where


H1

α′α′ = K1
α′α′ −K1

α′ I′
(
K1

I′ I′ + K1
I′′ I′′

)−1K1
I′α′

H1
α′α′′ = K1

α′ I′
(
K1

I′ I′ + K1
I′′ I′′

)−1K1
I′′ α′′

H1
α′′ α′ = K1

α′′ I′′
(
K1

I′ I′ + K1
I′′ I′′

)−1K1
I′α′

H1
α′′ α′′ = K1

α′′ α′′ −K1
α′′ I′
(
K1

I′ I′ + K1
I′′ I′′

)−1K1
I′′ α′′

,

and we define a new coefficient matrix H1 ≡
[

H1
α′α′ H1

α′α′′

H1
α′′ α′ H1

α′′ α′′

]
.

As indicated in the statement of the problem ub
1 = 0, the rows and columns pertaining

to the bottom boundary can be extracted out of H1, leading to a submatrix Ĥ1 that contains
only the quantities on the top and crack boundaries:[

Htt
1 Htc

1

Hct
1 Hcc

1

]{
ut

1

uc
1

}
=

{
pt

1

pc
1

}
(8)

In Equation (8), the submatrices with the subscript without prime relate to the boundary
elements on the corresponding boundaries of the two parts. For example, Htc

1 is the
submatrix representing the effects of the elements on the top boundaries of the two parts
(both t′ and t′′) on the elements on the crack surfaces of the two parts (both c′ and c′′).

Equation (8) is in our preferable form, containing only the displacement of the crack
surface, which is our target, and the quantities of the top boundary that links to the bottom
boundary of upper layers via the continuity condition of Equation (3), enabling a recursive
procedure to solve the displacement of the crack surfaces in each layer.

From Equation (8), we have:

uc
1 = (Hcc

1)−1(pc
1 − Hct

1ut
1) (9)

The substitution of Equation (9) and the continuity condition Equation (3) into (8) leads to:

pt
1 =

[(
Htt

1)−1 −Htc
1(Hcc

1)−1Hct
1
]
ut

1 + Htc
1(Hcc

1)−1pc
1

= K̂tt
1ut

1 + p̂t
1

= −K̂tt
1ub

2 + p̂1
t = p̂b

2

(10)
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The stiffness matrix of the bottom layer K̂tt
1 = (Htt

1)−1 – Htc
1(Hcc

1)−1Hct
1,

and p̂t
1 = Htc

1 (Hcc
1)−1 pc

1. Equation (10) links the quantities of the bottom layer to those
of the second layer.

(2) For the second layer (I = 2):
As shown in Figure 3b, the cutting results in two separate parts, each of which requires

a system of linear algebraic equations:

K2′u2′ = p2′ , and K2′′u2′′ = p2′′ (11)

or in a more-explicit form: K2
b′b′ K2

b′c′ K2
b′t′

K2
c′b′ K2

c′c′ K2
c′t′

K2
t′b′ K2

t′c′ K2
t′t′


u2

b′
u2

c′
u2

t′

 =


p2

b′
p2

c′
p2

t′

, and

 K2
b′′ b′′ K2

b′′ c′′ K2
b′′ t′′

K2
c′′ b′′ K2

c′′ c′′ K2
c′′ t′′

K2
t′′ b′′ K2

t′′ c′′ K2
t′′ t′′


u2

b′′
u2

c′′
u2

t′′

 =


p2

b′′
p2

c′′
p2

t′′

 (12)

The explicit forms of the coefficient matrices K2′ and K2” are also found in the work of
Crouch and Starfield [34].

Since the two parts are separate, we can simply “patch” the two equations into one:[
K2′ 0
0 K2′′

]{
u2′

u2′′

}
=

{
p2′

p2′′

}
(13)

We define the new coefficient matrix for the second layer H2≡
[

K2′ 0
0 K2′′

]
, which is

then partitioned according to the categorization of the boundaries along the whole second
layer, e.g., both t2′ and t2” are categorized as t2: Hbb

2 Hbc
2 Hbt

2

Hcb
2 Hcc

2 Hct
2

Htb
2 Htc

2 Htt
2


ub

2

uc
2

ut
2

 =


pb

2

pc
2

pt
2

 (14)

From the third row, we obtain:

uc
2 = (Hcc

2)−1(pc
2 − Hct

2ut
2 − Hcb

2ub
2) (15)

The substitution of Equations (15) and (10) into the second row of Equation (14) leads to:

pb
2 = Hbt

2ut
2 + Hbb

2ub
2 + Hbc

2uc
2

= −K̂tt
1ub

2 + p̂t
1

= pt
1

(16)

Then, we can obtain:

ub
2 = −(A2 − K̂tt

1)
−1

B2ut
2 + (A2 − K̂tt

1)
−1

[Hbc
2
(

Hcc
2
)−1

pc
2 − p̂t

1] (17)

where A2 = Hbc
2(Hcc

2)−1 Hcb
2 − Hbb

2, and B2 = Hbc
2(Hcc

2)−1 Hct
2 –Hbt

2.
The substitution of Equation (17) into (15) results in:

uc
2 = −

(
Hcc

2)−1
[Hct

2 −Hcb
2(A2 − K̂tt

1)
−1

B2]ut
2

+
(
Hcc

2)−1
{
[I −Hcb

2(A2 − K̂tt
1)
−1

Hbc
2(Hcc

2)−1
]pc

2 + Hcb
2(A2 − K̂tt

1)
−1

p̂t
1
} (18)

where I is the identity matrix.
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The substitution of Equations (17) and (18) into the first row of (14) leads to the stiffness
matrix equation of the second layer:

pt
2 = K̂tt

2ut
2 + C2pc

2 + D21p̂t
1

= K̂tt
2ut

2 + p̂t
2

= −K̂tt
2ub

3 + p̂t
2 = pb

3
(19)

where



C2 = Htc
2(Hcc

2)−1
[

I−Hcb
2
(

A2 − K̂tt
1
)−1

Hbc
2(Hcc

2)−1
]
+ Htb

2
(

A2 − K̂tt
1
)−1

Hbc
2(Hcc

2)−1

D21 = Htc
2(Hcc

2)−1Hcb
2
(

A2 − K̂tt
1
)−1
−Htb

2
(

A2 − K̂tt
1
)−1

p̂t
2 = C2pc

2 + D21p̂t
1

K̂tt
2 = Htt

2 −Htb
2
(

A2 − K̂tt
1
)−1

B2 −Htc
2(Hcc

2)−1
[

Hct
2 −Hcb

2
(

A2 − K̂tt
1
)−1

B2
]

Having obtained Equation (19), we can treat the remaining inner layers (i runs from
2 to N–1) in the same manner as we did for the second layer. Thus, we can obtain the
recursive stiffness equation for the ith layer simply by replacing superscripts 1 and 2 in
Equation (19) with i–1 and i, respectively.

pt
i = K̂tt

iut
i + p̂t

i (20)

(3) For the top layer (i = N):
The cutting of the top layer results in an interface that is shared by the two resultant

upper and lower parts, the same as the bottom layer. Thus, we chose an analogous way
that is used from Equations (5) to (10) to treat the top layer, leading to the new coefficient
matrix of the top layer:

HN ≡
[

HN
α′α′ HN

α′α′′

HN
α′′ α′ HN

α′′ α′′

]
(21)

where


HN

α′α′ = KN
α′α′ −KN

α′ I′
(
KN

I′ I′ + KN
I′′ I′′

)−1KN
I′α′

HN
α′α′′ = KN

α′ I′
(
KN

I′ I′ + KN
I′′ I′′

)−1KN
I′′ α′′

HN
α′′ α′ = KN

α′′ I′′
(
KN

I′ I′ + KN
I′′ I′′

)−1KN
I′α′

HN
α′′ α′′ = KN

α′′ α′′ −KN
α′′ I′
(
KN

I′ I′ + KN
I′′ I′′

)−1KN
I′′ α′′

Unfortunately, the displacements of the bottom boundary of the top layer remain
unknown. Thus, we cannot extract the equations associated with them out of the coefficient
matrix, as we did for the bottom layer. As a result, we treated the coefficient matrix
in the same manner as we did for the second layer to obtain explicit expressions of the
displacement of the boundaries of the top layer. The results share the same forms of
Equations (17)–(19) by replacing superscripts 1 and 2 with N − 1 and N, respectively, for
the top layer:

ub
N = −(AN − K̂tt

N−1
)
−1

BNut
N + (AN − K̂tt

N−1
)
−1

[Hbc
N
(

Hcc
N
)−1

pc
N − p̂t

N−1
] (22)

uc
N = −

(
Hcc

N)−1
[Hct

N −Hcb
N(AN − K̂tt

1)
−1

BN ]ut
N

+
(
Hcc

N)−1
{
[I −Hcb

N(AN − K̂tt
N−1

)
−1

Hbc
N(Hcc

N)−1
]pc

N + Hcb
N(AN − K̂tt

N−1
)
−1

p̂t
N−1

}
(23)

pt
N = K̂tt

Nut
N + CNpc

N + D(N)(N−1)p̂t
N−1

(24)

where



AN = Hbc
N
(
Hcc

N
)−1Hcb

N −Hbb
N

BN = Hbc
N
(
Hcc

N
)−1Hct

N −Hbt
N

CN = Htc
N
(
Hcc

N
)−1
[

I−Hcb
N
(

AN − K̂tt
N−1

)−1
Hbc

N
(
Hcc

N
)−1
]
+ Htb

N
(

AN − K̂tt
N−1

)−1
Hbc

N
(
Hcc

N
)−1

D(N)(N−1) = Htc
N
(
Hcc

N
)−1Hcb

N
(

AN − K̂tt
N−1

)−1
−Htb

N
(

AN − K̂tt
N−1

)−1

p̂N
t = CNpc

N + D(N)(N−1)p̂t
N−1

K̂tt
N = Htt

N −Htb
N
(

AN − K̂tt
N−1

)−1
BN −Htc

N
(
Hcc

N
)−1
[

Hct
N −Hcb

N
(

AN − K̂tt
N−1

)−1
BN
]
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It is obvious from the stiffness matrix equation, Equation (24), that we can obtain ut
N

easily when pt
N is prescribed as a boundary condition of the whole multilayered media

since all of the other quantities on the right-hand side of Equation (24) are known:

ut
N = (K̂tt

N)
−1

pt
N −CNpc

N −D(N)(N−1)p̂t
N−1

(25)

The substitution of the calculated ut
N into Equations (22) and (23) solves ub

N and uc
N,

respectively, since all of the other quantities on the right-hand sides of the two equations
are known. Then, we can obtain ut

N−1 via the interface continuity condition ut
N−1 =−ub

N.
After that, we can obtain ub

N−1 and uc
N−1 in the same manner as we calculated ub

N and
uc

N, enabling a sequential computation that solves the displacements on the top boundary,
crack surface, and bottom boundary of each layer in descending order from the very top
layer to the very bottom one. It is worth noting that if ut

N is given as a boundary condition
of the whole system, then we can start the sequential computation directly without Equation
(25). Therefore, our method is applicable for any prescribed boundary condition at the very
top surface and are not limited to the traction-given boundary condition.

Because we are particularly interested in the displacement of the crack surface uc
i, it is

more efficient that the displacement ub
i and ut

i both be expressed in terms of uc
i so that

only uc
i is involved in the computation. Equations (17) and (18) give the expressions of ub

i

and uc
i by replacing superscripts 1 and 2 with i–1 and i, respectively, for the inner layer:

ub
i = −(Ai − K̂tt

i−1
)
−1

Biut
i + (Ai − K̂tt

i−1
)
−1

[Hbc
i
(

Hcc
i
)−1

pc
i − p̂t

i−1
] (26)

uc
i = −

(
Hcc

i)−1
[Hct

i −Hcb
i(Ai − K̂tt

i−1
)
−1

Bi ]ut
i

+
(
Hcc

i)−1
{
[I −Hcb

i(Ai − K̂tt
i−1)

−1
Hbc

i(Hcc
i)−1

]pc
i + Hcb

i(Ai − K̂tt
i−1)

−1
p̂t

i−1
} (27)

From Equation (27), we have:

ut
i = Ĥtt

iHtc
iHcc

iuc
i − Ĥtt

iHtc
i ~
pc

i (28)

The substitution of Equation (27) into (25) leads to:

ub
i = Ĥbc

iuc
i + ûb

i (29)

where



Ĥtt
i = −

{
Htc

i
[

Hct
i −Hcb

i
(

Ai − K̂tt
i−1
)−1

Bi
]}−1

~
pc

i =

[
I−Hcb

i
(

Ai − K̂tt
i−1
)−1

Hbc
i
(

Hcc
i
)−1

]
pc

i + Hcb
i
(

Ai − K̂tt
i−1
)−1

p̂t
i−1

Ĥi
bc = −

(
Ai − K̂tt

i−1
)−1

BiĤtt
iHtc

iHcc
i

ûb
i =

(
Ai − K̂tt

i−1
)−1

[
BiĤtt

iHtc
i ~
pc

i + Hbc
i
(

Hcc
i
)−1

pc
i − p̂t

i−1
]

The combination of Equation (28) and the interface continuity condition−ut
i−1 = ub

i gives:

uc
i−1 = −

(
Hct

iĤtt
i−1Htc

i−1Hcc
i−1
)−1

Hct
i−1
[
Ĥbc

iuc
i + ûb

i + Ĥtt
i−1Htc

i−1p̃i−1
c

}
(30)

Equation (30) is valid for the inner layers; thus, i ranges from 3 to N for Equation (30).
For the bottom layer, the combination of Equation (29) with i = 2 and Equation (9)

leads to:
uc

1 =
(

Hcc
1
)−1

[pc
1 + Hct

1ut
1(Ĥbc

2uc
2 + ûb

i)] (31)

Once ut
N is determined from Equation (25) or given directly as a prescribed boundary

condition, we can solve uc
N with Equation (23), enabling a sequential computation to solve

the displacements on the crack surfaces consecutively in each layer in a descending order
from the very top layer to the very bottom one with Equations (30) and (31). The solved
crack surface displacement in all of the layers uc contains two parts: the displacement on
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the upper crack surfaces, denoted by uc
+, and that on the lower crack surfaces, denoted by

uc
−. According to the local coordinate defined in [34], the crack opening displacement Dc

is (see Appendix A for details):
Dc = uc

− + uc
+ (32)

4. Results and Discussion

We shall demonstrate the results of three numerical examples to validate the accuracy
and efficiency of the consecutive stiffness method (CSM) that is proposed in the previous
section. A slit-like crack subjected to known normal traction perpendicularly intersects the
interfaces, if any, which are assumed to be parallel, so that other methods can be used as
benchmarks. The contrasts in Young’s modulus and the thickness of the layer maintain an
order of magnitude, which falls within the range of practical fracturing treatment [15,38,39].

We defined the percentage error of a method as follows:

Err% =
D1 − D0

D0
× 100% (33)

where D1 is the crack opening obtained by the method to be tested, and D0 represents the
crack opening determined by the benchmark method.

4.1. Discretization

Figure 4 illustrates the discretization of the lower part of the top layer in our numerical
examples schematically. We divided the whole initial slit-like crack surface into elements
of a uniform size e, which was chosen carefully so that there would be sufficient space
for at least two elements that are uniform in size e on the resultant horizontal interface
(Figure 4b). After that, we placed adaptive elements on the bottom boundary (interfaces of
the multilayered elastic media) of the top layer. We made sure that ten uniform elements
in the same size e were placed adjacent to the crack surface. Then, we placed a series of
elements, of which an element is 1.2 times larger than its previous one in size. When the
size of an element became more than 5e, we made the elements and all of the following
ones 5e in size exactly, preventing computational issues due to sharp contrasts in element
size. As a result, we acquired an interface of one part in a size that is only slightly larger
than 50l, in which l is half the length of the initial crack surface, as shown in Figure 5a.
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(c) 

Figure 4. Schematic view of (a) discretization of the lower part of the top layer; (b) treatment of
the elements adjacent to the corner when the horizontal interface is short; and (c) treatment of the
elements adjacent to the corner when the horizontal interface is long.
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Then, the percentage errors of the DDM and the DM with respect to the analytical solution 
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Figure 5. Schematic view of (a) crack surface, interfaces, and side boundaries; (b) discretization of
the lower part of an inner layer.

We placed adaptive elements on the horizontal interface in the similar way. If the
interface is too short for 10 uniform elements in size e, we removed the last two elements
and introduced two new uniform elements in size em by dividing the remaining part in
two evenly (Figure 4b). When the interface was longer than 10 uniform elements in size e,
we used the same approach to treat the elements at the corner of the horizontal interface
and the top surface (Figure 4c), preventing sharp contrasts in element size. After finishing
the discretization of the horizontal interface, we chose a similar approach to discretize the
top surface of the multilayered system. We first placed three elements that were uniform in
size em with subsequent adaptive elements of which the maximum size does not exceed 5e.
When the discretization became close to the corner of the top surface and the side boundary,
we used the treatment shown in Figure 4b,c to determine the size of the last two elements
on the top surface. Having completed the discretization of the lower part, we discretized
the upper part using symmetry with respect to the crack surface. As a result, the distance
of the two side boundaries h becomes about 100l, as shown in Figure 5a, approximating the
condition of remote side boundaries (h→∞).

The approach to discretize the top layer also applies to the bottom layer. As for the
inner layers, if any, discretization becomes simpler since there is no horizontal interface
due to the division. We can discretize the two vertical interfaces in the same manner that
we discretized the bottom boundary of the top layer, as illustrated in Figure 5b.

4.2. Homogeneous Medium

The first example is the calculation of the opening displacement of a crack under
a known constant normal loading p1 in an infinite homogeneous and isotropic plane
(Figure 6).
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The analytical solution to crack opening in the homogeneous medium is [31]:

D0 = −4(1− v2)

E
p1

√
l2 − x2 (34)

Then, the percentage errors of the DDM and the DM with respect to the analytical solution
with different numbers of crack elements are illustrated in Figure 7, in which only the
left-half part of the crack has been presented due to symmetry. The abscissa is normalized
by x/l so that the coordinate −1 represents the crack tip. Figure 7b involves 100 crack
elements, while only 11 elements are shown for visual simplicity.
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Figure 7. Percentage errors of the DDM and the DM with (a) 5 crack elements and (b) 100 crack elements.

Figure 7 clearly demonstrates that more-refined discretization leads to better accuracy
along the whole crack surface, except at the crack tip, where the DDM yields an error that
is almost twice that of the DM. The DM shows more satisfying accuracy than the DDM,
particularly at the tip, since the integrals involved in the implementation of the DM can be
evaluated analytically under the plane-strain condition and because the singularity at the
tip of the DDM is stronger than that of the DM [28,29,34].

4.3. Two Bonded Half Planes

The second numerical example is the computation of the opening displacement of a
crack that passes through two bonded half planes under known normal loading (Figure 8),
in which the abscissa is normalized by

ξ =

{
2x−b1

b1
, x < 0

2x−b2
b2

, x ≥ 0
(35)
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We assume that the loading satisfies an additional continuity condition (Equation (36))
so that a semi-analytical solution can be used as a benchmark [40], although neither the
DDM nor the DM requires such an extra condition for implementation.

1− v2
1

E1
p1 =

1− v2
2

E2
p2 (36)

In addition, the two half planes are characterized by E1, v1 and E2, v2, respectively. We
set E1 = 3.07(GPa), v1 = 0.35; E2 = 68.95(Gpa), and v2 = 0.3 and present the percentage errors
of the DDM and the consecutive stiffness method (CSM) with respect to the semi-analytical
solution in Figure 9 with different b1/b2 values. The thickness of layer d is set to be equal to
100 times that of the larger one of b1 and b2, approximating the condition of infinite d. We
placed 10 uniform elements on the shorter segment of the crack surface.
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Figure 9 illustrates that both methods match the benchmark along the crack surface
well, except at the tip, where the CSM yields errors that are lower than 20%, which is
acceptable for practical engineering applications. Furthermore, the CSM leads to generally
satisfactory results when the ratio of crack segments falls in a practical range. The first
and second numerical examples demonstrated the more-satisfactory accuracy of our CSM
compared to the DDM.

4.4. General Multilayered Media

The third numerical example computes the opening displacement of a crack intersect-
ing a few layers under constant loading p0 in a general multilayered media in which the
number of layers is equal to or larger than three. The DDM fails in such a case since there is
no analytical fundamental solution for it. Thus, we compared the efficiency of the CSM
and that of the conventional DM, which led to a large system of equations and solved all of
the unknowns simultaneously. We set the crack being distributed uniformly in the system
so that the length of each crack segment was l1, as shown in Figure 10. Ten elements were
placed on each crack segment. The thicknesses of the bottom and top layers were both
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set to 100l1, approximating the condition of their infinite thicknesses. We set E1 = 5(GPa),
v1 = 0.3; E2 = 50(Gpa), and v2 = 0.25.
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The durations required by the CSM and the conventional DM to solve the crack
opening displacement are listed in Table 1. The computation was conducted with MATLAB
2014a on a laptop with an Intel(R) Core(TM) i7-2720QM CPU and 12GB RAM. The table
clearly indicates that our CSM is more efficient than the conventional DM. The contrast
becomes even larger with an increase in the number of layers, which leads to more elements
being involved in the computation.

Table 1. Durations of the CSM and the conventional DM.

Method Duration for 3 Layers (s) Duration for 5 Layers (s)

CSM 58 101
DM 194 406

The three numerical examples clearly demonstrate the better accuracy and broader
applicability of our method compared to the DDM, and more-acceptable efficiency of our
method compared to the conventional DM.

5. Conclusions

We have proposed a numerical method based on the DM for crack problems in a
multilayered elastic media consisting of a set of individually homogeneous strata. The
method distinguishes the effects of elements placed along one crack surface from those
placed along another crack surface by dividing the whole media along the initial slit-like
crack surface. After that, we derived a recursive formula that obtains a “stiffness matrix”
for each layer by exploiting the chain-like feature of the system, enabling a sequential
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computation to solve the displacements on the crack surface in each layer “consecutively”
in a descending order from the very top layer to the very bottom one. In addition, the
final system of equations in our method only contains the unknown displacements on the
crack surfaces, ensuring the efficiency of the method. The numerical examples demonstrate
the better accuracy and broader applicability of our method compared to the DDM and
more-acceptable efficiency compared to the conventional DM, making it a convincing
benchmark to test new methods for crack problems in multilayered elastic media. We are
planning to conduct analysis of crack problems using our method in complex geometry,
which fails the FT-based methods, and under complicated loading, which fails the DDM.
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Appendix A

The local coordinate adopted in our study follows the convention that the normal
direction points outwards from the surface of the domain of interest and that the shear
direction obeys the right-hand rule with respect to the normal one (Figure A1a).

Figure A1a shows the displacement and traction on a pair of interface elements (1) and
(2). We set |u1| = |u2| = u0 and|p1| = |p2| = p0, where u0 and p0 are the magnitudes of
the displacement and traction, respectively. According to the interface continuity, we have
u1 = u2 = u0 and p1 = −p2 = p0 under the global coordinates (x, y). The local coordinates of
Element (1) and (2), denoted by (x1, y1) and (x2, y2), respectively, however, are constructed
as illustrated in Figure A1a based on the convention explained above. As a result, u1 = −u0
and p1 = p0 for Element (1), and u2 = u0 and p2 = p0 for Element (2). Therefore, the interface
continuity under the local coordinates is:

u1 = −u2, p1 = p2 (A1)
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Figure A1. The local coordinates for (a) interface elements and for (b) the calculation of opening
displacement [34].

Figure A1b illustrates the displacements of a pair of crack surface elements, denoted
by u+ and u− for the upper elements and lower elements, respectively, due to the loading
conditions p. The local coordinates of the two elements are constructed based on the
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convention. Thus, u+ = −|u+|, and u− = −|u−|. The opening displacement D is defined
as the relative displacement of the lower element with respect to the upper one [34]. Thus:

D = −|u−| − |u+| = u− + u+ (A2)

Equations (A1) and (A2) correspond to Equations (3) and (32), respectively.
The Appendix A only presents the essence of the local coordinates, the details of which

can be found in the work of Crouch and Starfield [34].
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