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Abstract: Graph theoretic techniques have been widely applied to model many types of links in
social systems. Also, algebraic hypercompositional structure theory has demonstrated its systematic
application in some problems. Influenced by these mathematical notions, a novel semihypergroup-
based graph (SBG) of G = 〈H, E〉 is constructed through the fundamental relation γn on H, where
semihypergroup H is appointed as the set of vertices and E is addressed as the set of edges on
SBG. Indeed, two arbitrary vertices x and y are adjacent if xγny. The connectivity of graph G is
characterized by xγ∗y, whereby the connected components SBG of G would be exactly the elements
of the fundamental group H/γ∗. Based on SBG, some fundamental characteristics of the graph
such as complete, regular, Eulerian, isomorphism, and Cartesian products are discussed along with
illustrative examples to clarify the relevance between semihypergroup H and its corresponding
graph. Furthermore, the notions of geometric space, block, polygonal, and connected components are
introduced in terms of the developed SBG. To formulate the links among individuals/countries in
the wake of the COVID (coronavirus disease) pandemic, a theoretical SBG methodology is presented
to analyze and simplify such social systems. Finally, the developed SBG is used to model the trend
diffusion of the viral disease COVID-n in social systems (i.e., countries and individuals).

Keywords: graph theory; hypergroup; fundamental relation; social systems; geometric space

MSC: 05C25; 20N20

1. Introduction

Graph theory with its systematic structure is applied to different complicated problems
such as physical, biological, and social systems. By employing graph theory, social network
structures can be modeled and analyzed to provide simplified knowledge of such systems,
where nodes (vertices) are users and lines (edges) are the links among users. Graph theory
was first proposed by Euler to solve Konigsberg’s seven-bridge problem [1]. After that,
he established a novel graph structure called an Eulerian graph [2]. The concepts of a
complete graph [3] and a bipartite graph was defined along with tree structure and coloring
problems [4]. With the integration of graph theory and fuzzy set theory, the notion of fuzzy
graph theory was proposed by Kaufmann. Then, this theory was developed by Rosenfeld,
where fuzzy relations on fuzzy sets were introduced to improve graph-theoretic concepts
(e.g., bridges and trees) [5]. To eliminate new problems in science, especially combinatorics,
hypergraph theory was initiated and formulated by Berge [6] as the generalization of graph
theory, where the edges are arbitrary subsets of the vertices to effectively analyze and
simplify complex relations in various spectra for real-world problems [7].
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Algebraic hypercompositional structure theory, with its dynamic multi-valued sys-
tems, is enumerated as the extension of a classical algebraic structure. Marty introduced a
hyperoperation (hypercomposition) on a nonvoid set H, which is a map from H × H to the
power set P(H) of H, such that with associative property and reproductivity, H would be
hypergroup [8]. Then, the hypercompositional structure theory was improved in terms of
theory and applications by Corsini et al. [9]. Freni determined a novel characterization of
the derived hypergroup via strongly regular equivalence relation γ on a hypergroup H,
and a binary operation on the quotient set H/γ∗ so that H/γ∗ is a group with relation γ∗

as a fundamental relation (γ∗ is the transitive closure of γ and H/γ∗ is the fundamental
group) [10,11]. Indeed, a fundamental relation is a powerful gadget for the derivation of
universal algebra (group, ring, module, etc.) on algebraic hypercompositional structures as
well as fuzzy algebraic hypercompositional structures. The present authors studied and
formulated the fundamental relations on the fuzzy hypergroup, fuzzy hyperring, and fuzzy
hypermodule, where their fundamental relations have the smallest equivalence relation
resulting in their quotients being a group, ring, and module, respectively, [12–14]. In other
studies, they appointed the fundamental functor between the category of fuzzy hyperrings
(hypermodules) and the category of rings (modules) [15,16].

The relevance between graphs/hypergraphs and hypergroups has been investigated
by many scholars such as Corsini [17] and Leoreanu [18]. Farshi et al. studied hypergroups
associated with hypergraphs and established a ρ-hypergroup with a given hypergraph by
describing a relation ρ which resulted in the fundamental relation of an ρ-hypergroup [19].
Kalampakas et al. surveyed path hypergroupoids, especially commutativity and graph
connectivity, along with the directed graph isomorphism classes of C-hypergroupoids [20].
Nikkhah et al. developed hypergroups constructed from hypergraphs using a hyperopera-
tion upon the set of vertice degrees of a hypergraph, where the established hypergroupoid
is Hv-group [21]. Recently, the present authors proposed a Caley graph related to a semi-
hypergroup (hypergroup) with some important features including the category of Cayley
graphs and a functor with an application in social networks [22].

With dynamic and potential applications of graph theory in various fields of science,
i.e., computer science, linguistics, physics, chemistry, social sciences, biology, mathematics,
bioinformatics, etc., many studies have been conducted [23]. For example, Savinkov et al.
analyzed and modeled human lymphatic systems via graph theory [24]. The systematic
converter derivation/modeling and advanced control in an emerging/challenging power
electronics converter was simulated by graph theory as a powerful mathematical struc-
ture [25]. Park et al. indicated important insights from complex travel mobility networks
with graph-based spatiotemporal analytics [26]. In another work, an effective transductive
learning technique was proposed by employing variational nonlocal graph theory for
hyperspectral image classification [27]. Recently, the authors presented a soft hypergraph
as the generalization of graph theory with the pragmatic application for modeling global
interactions in social media networks [28].

The COVID-19 (coronavirus disease 2019) pandemic is considered the most fatal
global health catastrophe to date with its serious negative and destructive impact on
human life, i.e., social, economical, and environmental challenges. After its detection, the
virus extended globally and caused innumerable death. At present, there is no definitive
treatment of clinical antiviral drugs or vaccines against the virus [29]. Almost whole
nations attempted to decline the transition of the disease via examination and treating
patients, quarantining suspected persons through contact tracing, limiting large gatherings,
maintaining complete or partial lockdowns, etc. The impact of COVID-19 on various
societies and useful ways for controlling viral disease were investigated in [30].

The principal objective of this study is to establish a novel framework of a graph called
SBG using a specific relation of algebraic hypercompositional structures in the context
of social systems, i.e., the spread trend of the coronavirus disease among societies and
individuals. After the Introduction and the Preliminary sections, in Section 3, we appoint a
neoteric graph G = 〈H, E〉 by applying a fundamental relation γ∗ on a semihypergroup H.
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The elements of H are vertices and two vertices x and y are adjacent if xγny, that is, they
are considered edges. The connectivity SBG of G is defined as xγ∗y, where the connected
components of G are precisely the elements of the fundamental group H/γ∗. Certain
fundamental properties of graph theory such as complete, regular, Eulerian, isomorphism,
and Cartesian products are proposed. In addition, elucidatory examples are applied to
demonstrate the relationship between semihypergroup (hypergroup) H and its associated
graph. The mathematical notions of geometric space, block, polygonal, and connected
components are discussed. In the end, in Section 4, the developed SBG is utilized to model
the global outbreak of COVID-n in social systems (i.e., individuals as well as countries)
(Figure 1).

 HBG for modelling International Spread of COVID-n

Figure 1. SBG for modeling global spread of COVID-n.

2. Preliminaries

Definition 1. A hypergroupoid (L, �) is a nonvoid set L with a hyperoperation �, which is a map
� : L × L → P∗(L), where P∗(L) implies the family of all nonvoid subsets of L [9]. Denote
c � d as the hyperproduct of c and d for every c, d ∈ L. A hypergroupoid (L, �) is described as a
semihypergroup if L has associative property, i.e., (c � d) � e = c � (d � e) for all c, d, e ∈ L. A
hypergroup is a semihypergroup along with reproductivity axiom, that is e � L = L � e = L for all
e ∈ L. A hypergroupoid (L, �) is called quasihypergroup if the reproductivity property holds. The
hypergroup is commutative if e � f = f � e for all e, f ∈ L. A nonvoid subset M of a hypergroup L
is a subhypergroup of L if z �M = M � z = M for every z ∈ M.

Assume E and F are nonvoid subsets of L, hence E � F =
⋃

e∈E, f∈F e � f . Moreover, l ∈ L
and E ⊆ L, we have l � E =

⋃
e∈E l � e. If associativity holds, then we denote the hyperproduct of

elements x1, . . . , xn of L by ∏n
i=1 xi := x1 � x2 � . . . � xn.

Suppose that (L, �) and (L′, �′) are two hypergroups. A map ψ : L −→ L′ is determined
as a homomorphism if ψ(k � l) = ψ(k) �′ ψ(l) for all k, l ∈ L. Furthermore, ψ is named an
isomorphism if it is one to one and onto homomorphism written by L ∼= L′.

The following Definition 2, Proposition 1, Theorem 1, Proposition 2, and Theorem 2
are taken from [31].

Definition 2. Assume that L is a nonvoid set and σ is a binary relation on L. Consider the following
hypercomposition “◦” on L as:

x ◦ y = {z ∈ L : (x, z) ∈ σ, (z, y) ∈ σ} (1)
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(L, ◦) is a hypergroupoid provided there exists z ∈ L so that (x, z) ∈ σ and (z, y) ∈ σ for
every couple of elements x, y ∈ L.

Denote the hypercompositional structure in Equation (1) by Lσ. The reproductivity property
in Lσ is satisfied if and only if (x, y) ∈ σ for all x, y ∈ Lσ.

Proposition 1.

• Lσ is a quasihypergroup if and only if (x, y) ∈ σ for all x, y ∈ Lσ.
• Lσ is a semihypergroup if and only if (x, y) ∈ σ for all x, y ∈ Lσ.

Theorem 1. Let σ be a binary relation on the nonvoid set L. Then, the hypercomposition x ◦ y
satisfies the reproductivity or associativity only when Lσ is total (i.e., x ◦ y = Lσ).

Each relation σ on finite set L = {a1, a2, . . . , an} can be represented through a Boolean
matrix Mσ with n× n elements. The Boolean matrix Mσ = (mij) is defined as follows:

mij =

{
1, i f (ai, aj) ∈ σ

0, otherwise

In Boolean algebra, we have

0 + 1 = 1 + 0 = 1 + 1 = 1, 0 + 0 = 0

0.0 = 0.1 = 1.0 = 0, 1.1 = 1

Lσ is hypergroupoid if and only if M2
σ = S, where S = (sij) with sij = 1 for all i, j.

Proposition 2.

• Lσ is a quasihypergroup if and only if Mσ = S.
• Lσ is a semihypergroup if and only if Mσ = S.

Theorem 2. The only relation σ which results in a quasihypergroup or semihypergroup is the one
with Mσ = S. Additionally, Lσ is the total hypergroup.

It was revealed that with a few lines of the Mathematica program, the results were
constructed for the enumeration of the hypergroupoid associated with binary relations of
orders 2, 3, 4, and 5 by a significantly simpler procedure [31].

Definition 3. A graph G is a pair G = (V, E), where V is a set of elements described as vertices
and E is a set of edges [32]. The two vertices associated with an edge are called endpoints. If x = y,
then the edge is considered as a loop. A vertex is isolated if it is incident with no edges. The graph
G is simple if it has no loops and no two distinct edges have the same pair of ends. The graph
G is called null graph when its edges set is empty. Graph H is named a subgraph of graph G if
V(H) ⊆ V(G), E(H) ⊆ E(G), and the ends of an edge e ∈ E(H) are the same as its ends in G.
Denote d(x) as the degree of vertex x as well as the number of edges incident with x.

A path in graph G consists of a sequence x1, e1, x2, e2, . . . , ek, xk that the edges ei are distinct.
Furthermore, if x1 = xk then, we call the path a cycle. Consider that d(x, y) is the length of the
shortest path between two vertices x and y. Note that diam(G) = sup{d(a, b)} for all a and b that
are vertices of G, which is called the diameter of graph G. The graph G is connected if there exists
a path from vertex x to vertex y, or graph G includes several connected components. A tree is a
connected graph that includes no simple cyclic path. Denote kn as a complete graph, where every
pair of vertices is adjacent. An Eulerian circuit is a closed path through a graph applying each edge
once and an Eulerian graph is a graph that has this property. Furthermore, graph G is called a
Hamiltonian graph if it has a cycle that passes each vertex exactly once. If every vertex has the same
degree, the graph is regular, or k-regular if ∀x ∈ V, d(x) = k.



Mathematics 2022, 10, 4405 5 of 14

Theorem 3. A finite graph G without isolated vertices is Eulerian if and only if G is connected
and each vertex has an even degree [32].

Definition 4. The Cartesian product of two graphs G1 = 〈V1, E1〉 and G2 = 〈V2, E2〉 is denoted
by G1�G2, that is a graph with vertices set V1 ×V2, where vertices (t1, t2), (w1, w2) are adjacent
if and only if t1 = w1, (t2, w2) ∈ E2 or t2 = w2, (t1, w1) ∈ E1 for t1, w1 ∈ V1, t2, w2 ∈ V2 [33].

3. Semihypergroup-Based Graph (SBG) Based on Relation γ

Consider an SBG of G = 〈H; E = (γn)n∈N〉, where (H, ◦) is a semihypergroup and γn
is the relation on H. The order of G is o(G) =|H| . The elements of H are represented as
vertices and the relations γn are appointed as edges. We assign x and y to be adjacent, if
xγny. Clearly, for n = 1 and xγ1x, the edge is a loop.

Indeed, γn was determined in [10] as follows:

xγny⇐⇒ ∃(a1, . . . , an) ∈ Hn, ∃σ ∈ Sn : x ∈
n

∏
i=1

ai, y ∈
n

∏
i=1

aσ(i) (2)

Consider γ1 = {(a, a) |a ∈ H}. Clearly, the relations γn have symmetric property and
relation γ has a reflexive and symmetric property for every n ∈ N, where γ =

⋃
n≥1 γn. Let

γ∗ be the transitive closure of γ. The class of H/γ∗ was addressed as γ∗(z) = {w |zγ∗w},
for z, w ∈ H. It was proven that for hypergroup H, the relation γ is transitive and γ∗ has
the smallest strongly regular equivalence property that results H/γ∗ is an Abelian group
(fundamental group).

Theorem 4. Assume that H is a hypergroup. Then, for an SBG of G = 〈H; E = (γn)n∈N〉, the
following statements hold:

(i) A path exists between two vertices x and y of G if and only if xγ∗y.
(ii) The SBG of G is connected if and only if the fundamental group H/γ∗ is a singleton, that is

|H/γ∗|= 1.

Proof. Proof of (i): Consider a path from vertex x to vertex y. Then, there exists a sequence
(a1, . . . , ak) ∈ Hk so that x = a1γ1a2 . . . γkak = y, that is equal to xγ∗y. Conversely, if xγ∗y,
then ∃(a1, . . . , ak) ∈ Hk such that x = a1γ1a2 . . . γkak = y. Therefore, there exists a path
from vertex x to vertex y.

Proof of (ii): By applying (i), for x, y ∈ H, a path exists from vertex x to vertex y if and
only if xγ∗y. Therefore, the SBG of G is a connected graph if and only if γ∗ = H × H (i.e.,
clearly, γ∗ ⊆ H × H. Furthermore, for all x, y ∈ H, since (x, y) ∈ γ∗, then H × H ⊆ γ∗).
Since xγ∗y, we have γ∗(x) = γ∗(y) which means that the fundamental group H/γ∗ =
{γ∗(x)|x ∈ H} is a singleton, i.e., |H/γ∗|= 1.

Theorem 5. The connected components SBG of G are precisely the elements of the fundamental
group H/γ∗.

Proof. Let x, y be two vertices SBG of G. By employing Theorem 4, vertex x is connected to
vertex y if and only if xγ∗y. Then, for all a ∈ H, every element of γ∗(a) is connected. With
the equivalence relation of γ∗, the elements of H/γ∗ would be the connected components
SBG of G.

Theorem 6. Let H be a semihypergroup. If the SBG of G = 〈H, E〉 is complete, then the relation
γ is transitive.

Proof. Let xγy and yγz. For some n1, n2 ∈ N, we have xγn1 y and yγn2 z. Since the SBG of
G is complete, therefore, for some n ∈ N, we have xγnz that yields xγz.
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Remark 1. Note that a loop is not considered an edge. If xγx, then for every ai ∈ H, ∃σ ∈ Sn we
have x ∈ ∏n

i=1 ai and x ∈ ∏n
i=1 aσ(i). Hence, ∏n

i=1 ai = ∏n
i=1 aσ(i).

Definition 5. Let H be a nonvoid set and let γ∗ be the defined relation in Equation (2). Consider
the hypercomposition “�” on H as follows:

x� y = {w ∈ H : (x, w) ∈ γ∗, (w, y) ∈ γ∗} (3)

We denote the hypercompositional structure (H,�) by Hγ∗ . The Hγ∗ is a hypergroupoid if
∃w ∈ H so that (x, w) ∈ γ∗ and (w, y) ∈ γ∗ for every x, y ∈ H. Since γ∗ is transitive, we have
(x, y) ∈ γ∗ for all x, y ∈ Hγ∗ , then the reproductivity property holds. In fact, for the arbitrary
element x ∈ Hγ∗ , the reproductivity axiom y ∈ x� Hγ∗ holds for all y ∈ Hγ∗ , as per the transitive
property of γ∗.

Proposition 3.

(i) Hγ∗ is a semihypergroup if and only if (x, y) ∈ γ∗ for all x, y ∈ Hγ∗ .
(ii) Hγ∗ is a quasihypergroup if and only if (x, y) ∈ γ∗ for all x, y ∈ Hγ∗ .
(iii) The SBG of G =

〈
Hγ∗ , E

〉
is a connected graph if and only if (x, y) ∈ γ∗ for all x, y ∈ Hγ∗ .

(iv) The SBG of G =
〈

Hγ∗ , E
〉

is a complete graph if and only if Hγ∗ is total, i.e., x� y = Hγ∗

for all x, y ∈ Hγ∗ .

Proof. Proof of (i): It is derived by applying Proposition 1.
Proof of (ii): With the validity of the reproductivity property, the statement is proven.
Proof of (iii): Since Hγ∗ is a quasihypergroup and considering part (i), we have Hγ∗ as

a hypergroup. By Theorem 4, we have xγ∗y for all x, y ∈ Hγ∗ if and only if the SBG of G is
connected.

Proof of (iv): The statement is attained from Equation (3).

Example 1. Consider (H, ◦) as a semihypergroup that is given in Table 1.

Table 1. Semihypergroup (H, ◦)

◦ 0 1 2

0 0 1 2

1 1 {0,2} 1

2 2 1 {0,2}

It is seen that 1 ∈ 1 ◦ 2, 1 ∈ 2 ◦ 1, then 1γ1. Furthermore, we have 0γ0, 2γ2 and 0γ2. The
corresponding SBG of G is depicted in Figure 2. Moreover, H/γ∗ = {{0, 2}, 1} and |H/γ∗|6= 1.

1

0 2

Figure 2. SBG of G.

γ is transitive and the SBG of G is not connected, because vertices 0 and 1 are not adjacent.
The SBG of G is not complete, which results in the invalidity of the reverse Theorem 6.

Corollary 1. Let G = 〈H, E〉 be an SBG, and let H be a semihypergroup. If the SBG of G is
complete, then H/γ∗ is a singleton, and diam(G) = 1.
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Proof. By applying Theorems 4 and 6, the relation γ is transitive and H/γ∗ is a singleton.
Since the SBG of G is complete, then every path from vertex x to vertex y has a maximum
length of 1, which means diam(G) = 1.

Proposition 4. Suppose that H is a hypergroup on the SBG of G = 〈H, E〉. Then, the degree of
vertex x in SBG of G is equal to |γ∗(x)|.

Proof. Let H be a hypergroup. By employing Theorem 4 and γ∗(x) as an equivalence
class of x, the results show that the number of edges incident with vertex x is equal to
|γ∗(x)|.

Corollary 2. Let G = 〈H, E〉 be an SBG, and let H be a hypergroup. Assume that |γ∗(x)|= k for
all x ∈ H. Then, the SBG of G is a k-regular graph.

Theorem 7. Let H1 be a hypergroup on SBG of G1 = 〈H1, E1〉. Let H2 be a subhypergroup of H1
on SBG of G2 = 〈H2, E2〉. Then, the SBG of G2 is a sub-SBG of G1.

Proof. Assume that H2 is a subhypergroup of H1, then H2 ⊂ H1. Therefore, the vertices
SBG of G2 is contained in the vertices SBG of G1 and the edges G2 is included in the edges
of G1. Then, the SBG of G2 is a sub-SBG of G1.

Theorem 8. Let H be a hypergroup. The SBG of G = 〈H, E〉 is Eulerian if and only if |γ∗(z)|= 2k
for all z ∈ H, k ∈ N.

Proof. Let H be a hypergroup. Then, the relation γ is transitive [9]. By applying Theorem 4,
the SBG of G is a connected graph. Additionally, with Proposition 4, d(z) = |γ∗(z)|, for all
z ∈ H and by Theorem 3, the proof is completed.

Example 2. Let (H, ◦) be a hypergroup in [34] (Example 28 (3)).
The corresponding SBG of G is shown in Figure 3, which is a connected and complete graph.

Moreover, H/γ∗ = {{a, b, c}} and |H/γ∗|= 1. Additionally, |γ∗(a)|= |γ∗(b)|= |γ∗(c)|= 2,
that means d(a) = d(b) = d(c) = 2. Furthermore, diam(G) = 1 and the SBG of G is a 2-regular
and Eulerian graph.

a

b c

Figure 3. SBG of G.

Definition 6. The SBG of G is isomorphic to the SBG of G′, if there exists a bijection φ from the
set vertices of G to the set vertices of G′, such that xγGy⇐⇒ φ(x)γG′φ(y), written by G ∼= G′.

Theorem 9. Let (H1, ◦1) and (H2, ◦2) be two isomorphic hypergroups and let G1 and G2 be
two SBGs associated with H1 and H2, respectively. Then, the SBG of G1 and the SBG of G2 are
isomorphisms.

Proof. Assume H1 and H2 are isomorphisms. Then, |H1|= |H2| and we have |G1|= |G2|.
Furthermore, if vertex x is connected to vertex y, then xγ∗y and we have ∃(a1, . . . , an) ∈
Hn, ∃σ ∈ Sn; x ∈ ∏n

i=1 ai, y ∈ ∏n
i=1 aσ(i). Let φ : H1 −→ H2 be an isomorphism and let

φ(x) = x′, φ(y) = y′ and φ(ai) = a′i. Furthermore, φ(∏n
i=1 ai) = ∏n

i=1 φ(ai) = ∏n
i=1 a′i,

which yields x′ that is connected to y′. Hence, G1
∼= G2.
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Example 3. To show that the reverse of Theorem 9 is not satisfied, consider two hypergroups (H, ◦)
and (H′, ◦′) in [34] (Example 16 (3)).

Let f : H −→ H′ with f (a) = 1, f (b) = 1, f (c) = 2. Since f (a ◦ b) = f (H) = {1, 2}
and f (a) ◦′ f (b) = 1 ◦ 1 = 1, means that f is not an isomorphism (i.e., f (a ◦ b) 6= f (a) ◦′ f (b)).
The two SBGs are isomorphisms, as depicted in Figure 4.

a

b c

0

1 2

Figure 4. SBGs of G and G′ associated with H and H′.

Definition 7. Let G = 〈H, E〉 and G′ = 〈H′, E′〉 be two SBGs, where H and H′ are two
hypergroups and E = {E1, . . . , Em} and E′ = {E′1, . . . , E′n}. Define the Cartesian product G > G′

with the vertices set H × H′ and edges set El × E′k for 1 ≤ l ≤ m, 1 ≤ k ≤ n.

Example 4. Consider two SBGs in Example 3. By considering G = 〈H, E〉 and G′ = 〈H′, E′〉,
the Cartesian product of two SBGs G and G′ is depicted in Figure 5. The vertices of G > G′ are
H × H′ = {(a, 0), (a, 1), (a, 2), (b, 0), (b, 1), (b, 2), (c, 0), (c, 1), (c, 2)} and the corresponding
edges are E× E′ = {[(a, 0), (b, 0)], [(a, 0), (a, 1)], . . . , [(a, 2), (c, 2)]}.

a

b c

0

1 2

(a,0)

(b,0)

(c,0)

(a,1)

(a,2)

(b,1)

(b,2)
(c,1)

(c,2)

Figure 5. Cartesian product of SBGs G and G′.

Proposition 5. Let G = 〈H, E〉 and G′ = 〈H′, E′〉 be two SBGs and let (a1, b1), (a2, b2) ∈
H × H′. Then,

(a1, b1)γG×G′(a2, b2)⇐⇒ a1γGa2, b1γG′b2.

Geometric Concept of SBG

A geometric space is a couple (S, V) where S is a nonvoid set and V is the family of
a nonvoid subset of S. The elements of S are considered points and the elements of V
are represented as blocks. If V covers S, then a polygonal of (S, V) is an n-tuple of blocks
(V1, V2, . . . , Vn) so that Vi ∩Vi+1 6= ∅, for every i ∈ {1, 2, . . . , n− 1}. Introduce the relation
≈ on S as follows:

x ≈ y⇐⇒ ∃(V1, V2, . . . , Vn); x ∈ V1, y ∈ Vn.
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If V covers S, then the relation is an equivalence relation. The equivalence class [x] is
determined as a connected component of x in S [10,11].

According to the SBG of G, we consider a pair 〈H, E〉 as a geometric space of SBG,
where H is a semihypergroup (set of vertices) and E is the set of relations γn (set of edges)
for n ∈ N on H. For every x, y ∈ H, we have xEiy ⇐⇒ xγny with the given relation γn
as follows:

xγny⇐⇒ ∃(a1, . . . , an) ∈ Hn, ∃σ ∈ Sn : x ∈
n

∏
i=1

ai, y ∈
n

∏
i=1

aσ(i)

Take a polygonal SBG of G = 〈H, E〉 as (E1, E2, . . . , En), so that Ei ∩ Ei+1 6= ∅ (i.e.,
(x, x′) ∈ Ei, (x′, x′′) ∈ Ei+1) for 1 ≤ i ≤ n− 1. By applying the polygonal concept of SBG,
the relation ≈ is defined as follows:

x ≈ y⇐⇒ ∃Ei, 1 ≤ i ≤ n; (x, z) ∈ E1, (z, y) ∈ En

The relation ≈ is an equivalence relation. The SBG of G is connected and the equiva-
lence class [x] = {y |xγ∗y} =|γ∗(x) |, where [x] is a connected component by Theorem 4.
Indeed, the connected components SBG of G = 〈H, E〉 are equivalence classes modulo γ∗.
The geometric space G = 〈H, E〉 is connected if it includes only one connected component,
i.e., H = [x], for x ∈ H. Clearly, the relation ≈ is the transitive closure of the relation
γ =

⋃
n∈N

γn. The blocks of the geometric space SBG of G = 〈H, E〉 using relation γn are the

constructed sets with permuting finite hyperproducts of distinct finite points (vertices).

4. SBG for Modeling the Spread Trend of COVID-n

SBG can be utilized to model the spread trend of COVID-n by travelers in different
countries and on a large scale, involved countries. In this pattern, the vertices represent
individuals/countries and edges appoint the relationship among individuals/countries
which are based on a fundamental relation.

4.1. Application 1

Let H be the number of individuals. Consider H = {Michael, Robert, Emma, Olivia}.
Then, the SBG of G = 〈H, E〉 is determined in the following way:

• Each vertex addresses an individual
• An edge addresses the relationship between two vertices

Define a binary relation “◦” on H as follows:

a ◦ b = {x |x get infected to COVID− n by person a or person b}

In Table 2, the pair (H, ◦) is a hypergroup.

Table 2. Hypergroup (H, ◦).

◦ Michael = 1 Robert = 2 Emma = 3 Olivia = 4

Michael = 1 1 2 3 4

Robert = 2 2 {1,2} {3,4} 3

Emma = 3 3 {3,4} H {2,3}

Olivia = 4 4 3 {2,3} {1,4}

The following statements are attained from Table 2:

• Either Robert, Michael, or Emma infected Olivia with COVID.
• Emma is the most infectious the person for the transmission of the coronavirus disease

and all members get infected by Emma (3 ◦ 3 = H).
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Consider the relation γn as edges for two arbitrary vertices x and y as:

xγny⇐⇒ ∃(a1, . . . , an) ∈ Hn, ∃σ ∈ Sn : x ∈
n

∏
i=1

ai, y ∈
n

∏
i=1

aσ(i)

Note that ∏n
i=1 ai is regarded as a hyperproduct of distinct elements ai for i ∈

{1, 2, . . . , n}, that is a1 ◦ a2 ◦ . . . an. We follow the procedure for all components, i.e.,

1γ22⇐⇒ 1 ∈ 2 ◦ 2, 2 ∈ 2 ◦ 2

3γ24⇐⇒ 3 ∈ 2 ◦ 3, 4 ∈ 3 ◦ 2

2γ23⇐⇒ 2 ∈ 3 ◦ 4, 3 ∈ 4 ◦ 3

1γ24⇐⇒ 1 ∈ 4 ◦ 4, 4 ∈ 4 ◦ 4

2γ24⇐⇒ 2 ∈ 3 ◦ 3, 4 ∈ 3 ◦ 3

1γ23⇐⇒ 1 ∈ 3 ◦ 3, 3 ∈ 3 ◦ 3

This means that (1, 2) ∈ e1, (3, 4) ∈ e2, (2, 3) ∈ e3, (1, 4) ∈ e4, (2, 4) ∈ e5, (1, 3) ∈ e6
where, E = {e1, e2, e3, e4, e5, e6} are the edges of SBG. The corresponding SBG of G is
depicted in Figure 6a and Table 3.

Michael

Robert

Emma

Olivia

(a)

e1

e2

e3

e4

e5

e6

Complete graph
3-Regular
Not Eulerian
Hamiltonian

USA

Brazil

India

Russia Mexico

UK

Italy

Complete graph
6-Regular
Eulerian
Hamiltonian

(b)

Figure 6. SBGs of G corresponding to (a) Application 1 and (b) Application 2.

Table 3. SBGs of G.

Michael Robert Emma Olivia

e1 1 1 0 0

e2 0 0 1 1

e3 0 1 1 0

e4 1 0 0 1

e5 0 1 0 1

e6 1 0 1 0

Furthermore, the equivalence class of [x] is considered as the individuals who transmit
viral disease COVID to specific person x, that is [x] = {y |xγ∗y}, where γ∗ is the transitive
closure of γ and γ =

⋃
n≥1

γn. Therefore, the class [Michael] = {Robert, Emma, Olivia}, and

so on. By applying Proposition 4, the degree of Michael is |γ∗(Michael) |= 3 and by
Corollary 2, the SBG is 3-regular.
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4.2. Application 2

Let H be a set of countries with the most reported cases and death in the world.
Consider H = {USA, Brazil, India, Russia, Mexico, UK, Italy}. Thus, the SBG of G = 〈H, E〉
is defined as follows

• Every vertex is appointed to a country.
• An edge is appointed to the relationship between two vertices.

Introduce the hyperoperation “⊕” for all x, y ∈ H, as follows:

x ⊕ y = The country or set of countries that causes disease outbreak from country x to
country y

The couple (H,⊕) is a hypergroupoid, as given in Table 4.

Table 4. Hypergroupoid (H,⊕).

⊕ USA = 1 Brazil = 2 India = 3 Russia = 4 Mexico = 5 UK = 6 Italy = 7

USA = 1 {1,2} 2 {1,2,3} 4 {1,2,5} {1,6,2} {1,7,2}

Brazil = 2 2 2 2 {2,4} 2 {2,6} {1,2}

India = 3 {1,2} {2,3} 3 {2,3,4} {1,2,3,5} {1,2,3,6} {1,2,3,7}

Russia = 4 {1,4} 2 {3,4} 4 {2,4,5} {2,4,6} {1,2,4,7}

Mexico = 5 {1,2,5} 2 {2,3,5} {1,2,4,5} 5 {1,2,5,6} H

UK = 6 {1,6} 2 {2,3} {2,4} {1,2,5,6} 6 {1,2,4,6,7}

Italy = 7 {1,7} H {2,3} {2,4} {1,2,5,7} {2,6,7} 7

Consider the relation γ given below:

xγny⇐⇒ ∃(a1, . . . , an) ∈ Hn, ∃σ ∈ Sn : x ∈
n

∏
i=1

ai, y ∈
n

∏
i=1

aσ(i)
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we continue the procedure for all elements of H, according to Table 4, that is

1γ22⇐⇒ 1 ∈ 3⊕ 1, 2 ∈ 1⊕ 3

1γ23⇐⇒ 1 ∈ 3⊕ 5, 3 ∈ 5⊕ 3

1γ24⇐⇒ 1 ∈ 4⊕ 1, 4 ∈ 1⊕ 4

1γ25⇐⇒ 1 ∈ 3⊕ 5, 5 ∈ 5⊕ 3

1γ26⇐⇒ 1 ∈ 1⊕ 6, 6 ∈ 6⊕ 1

1γ27⇐⇒ 1 ∈ 1⊕ 7, 7 ∈ 7⊕ 1

2γ23⇐⇒ 2 ∈ 3⊕ 4, 3 ∈ 4⊕ 3

2γ24⇐⇒ 2 ∈ 3⊕ 4, 4 ∈ 4⊕ 3

2γ25⇐⇒ 2 ∈ 4⊕ 5, 5 ∈ 5⊕ 4

2γ26⇐⇒ 2 ∈ 6⊕ 2, 6 ∈ 2⊕ 6

2γ27⇐⇒ 2 ∈ 1⊕ 7, 7 ∈ 7⊕ 1

3γ24⇐⇒ 3 ∈ 3⊕ 4, 4 ∈ 4⊕ 3

3γ25⇐⇒ 3 ∈ 3⊕ 5, 5 ∈ 5⊕ 3

3γ26⇐⇒ 3 ∈ 6⊕ 3, 6 ∈ 3⊕ 6

3γ27⇐⇒ 3 ∈ 7⊕ 3, 7 ∈ 3⊕ 7

4γ25⇐⇒ 4 ∈ 4⊕ 5, 5 ∈ 5⊕ 4

4γ26⇐⇒ 4 ∈ 6⊕ 7, 6 ∈ 7⊕ 6

4γ27⇐⇒ 4 ∈ 6⊕ 7, 7 ∈ 7⊕ 6

5γ26⇐⇒ 5 ∈ 5⊕ 6, 6 ∈ 6⊕ 5

5γ27⇐⇒ 5 ∈ 5⊕ 7, 7 ∈ 7⊕ 5

6γ27⇐⇒ 6 ∈ 6⊕ 7, 7 ∈ 7⊕ 6

Therefore, E = {e1, . . . , e21} and the corresponding SBG of G is demonstrated in
Figure 6b. By applying Proposition 4, the degree of each vertex is |γ∗(z)|= 6, and G is
complete, and 6-regular. It also has an Eulerian circuit because of connectivity and has an
even degree of each vertex; therefore, graph G is Eulerian. The SBG of G is connected and
Hamiltonian and the relation γ is transitive.

5. Conclusions

The neoteric structure of a semihypergroup-based graph (SBG) is established using a
fundamental relation to advance the mathematical concept of an algebraic hypercomposi-
tional structure, namely the hypergroup, in the form of graph theory. Additionally, to model
and analyze the links in social systems, the developed SBG approach is recommended to
intuitively simplify the complicated procedure. Some significant characteristics of SBG are
proposed, including connected, complete, regular, Eulerian, isomorphism, and Cartesian
products along with illustrative examples and graphical attitude. As per the engagement
of all nations and individuals after the global COVID-n pandemic, the resulting SBG is
applied to address the trend of transmission of the coronavirus disease in social systems,
particularly countries and individuals. The next phase can be the development of fuzzy
SBG and intuitionistic fuzzy SBG with further applicable platforms.
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