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Abstract: In this paper, we follow a chronological development of gradient descent methods and its
accelerated variants later on. We specifically emphasise some contemporary approaches within this
research field. Accordingly, a constructive overview over the class of hybrid accelerated models de-
rived from the three-term hybridization process proposed by Khan is presented. Extensive numerical
test results illustrate the performance profiles of hybrid and non-hybrid versions of chosen accelerated
gradient models regarding the number of iterations, CPU time, and number of function evaluation
metrics. Favorable outcomes justify this hybrid approach as an accepted method in developing new
efficient optimization schemes.
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1. Class of Accelerated Gradient Descent Methods and Its Benefits

Many contemporary scientific, engineering, medical and problems from various other
research areas, are closely related to mathematical optimization theory. Among all others,
the unconstrained optimization problems are the most frequently considered [1–8]. Owing
to the duality principle, an optimization problem may be viewed as a minimization problem.
Unconstrained minimization problems can simply be stated as finding

min f (x), x ∈ Rn,

where f : Rn → R is an objective function, that is solved by the general iteration:

xk+1 = xk + tkdk. (1)

In (1), xk presents the current iterative point, xk+1 is the next one; the positive iterative step
length value is denoted by tk while dk stands for the k-th search direction vector. As can be
observed, two main elements that measure the efficiency and robustness of the iterative
rule (1) are the adequately calculated iterative step size tk and the properly chosen iterative
search direction dk. Since we are dealing with minimization problems, it is a natural choice
to define the search direction so that it fulfils the descent condition, i.e.,

gT
k dk < 0, (2)

where gk is the gradient of f at the point xk. Apart from that, we use standard notations for
the gradient and the Hessian of the objective function f :

Mathematics 2022, 10, 4411. https://doi.org/10.3390/math10234411 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10234411
https://doi.org/10.3390/math10234411
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-5073-143X
https://doi.org/10.3390/math10234411
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10234411?type=check_update&version=1


Mathematics 2022, 10, 4411 2 of 13

g(x) = 5 f (x), G(x) = 52 f (x), gk = 5 f (xk), Gk = 52 f (xk). (3)

Following condition (2), it is easy to conclude that the d≡ − gk produces the most certain
descent direction, known as the gradient descent direction. Iteration (1) that includes the
gradient descent direction is known as the gradient descent method (or GD method)

xk+1 = xk − tkgk. (4)

Step length parameter tk in iterations (1) and (4), is determined either by the exact or by
some of the inexact line search procedures. Using the exact line search technique, iterative
step length value tk is computed by solving the following minimization task:

f (xk + tkdk) = min f (xk + tdk), t > 0. (5)

It is clear that solving the previous minimization problem in each iterative value presents a
time- and resource-consuming task regarding CPU time requirements and the number of
required objective function evaluations. For this reason, most contemporary optimization
methods use the inexact line search algorithms to calculate iterative step size instead of
the exact line search procedure. The convergence properties of line search methods for
unconstrained optimization are specifically examined in [9]. Some of the frequently used
inexact line search algorithms are weak and strong Wolfe’s algorithms [10], Backtracking
algorithm proposed in [11] with Armijo’s rule [12], etc.:

Weak Wolfe’s line search:
f (xk + tkdk) ≤ f (xk) + δtkgT

k dk

g(xk + tkdk)
Tdk ≥ σgT

k tdk;

Strong Wolfe’s line search:

f (xk + tkdk) ≤ f (xk) + δtkgT
k dk

|g(xk + tkdk)
Tdk| ≥ −σgT

k tdk;

Backtracking algorithm:

1. Objective function f (x), the direction dk of the search at the point xk and numbers
0 < σ < 0.5 and β ∈ (0, 1) are required;

2. t = 1;
3. f (xk + tdk) > f (xk) + σtgT

k dk, take t := tβ;
4. Return tk = t.

Subsequently, the Newton method with line search is given as

xk+1 = xk − tkG−1
k gk. (6)

In (6), G−1
k stands for the inverse of the function Hessian, according to the previously

adopted notation. Step length parameter tk is obtained by applying some chosen inexact
procedure. Instead of calculating the inverse of the function Hessian, which is often a demanding
task, in quasi-Newton methods the adequate approximation of the Hessian (or of its inverse)
is used

xk+1 = xk − tk Hkgk. (7)

Herein, Hk ≡ B−1
k and Bk is derived as a symmetric positive definite Hessian’s approximation.

Updating of {Bi}, i ∈ N is conducted using the quasi-Newton property of secant equation

Bk+1sk = yk,
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where parameters sk and yk are the differences in two successive iterative points and itera-
tive gradients, respectively, i.e., sk = xk+1 − xk, yk = gk+1 − gk. In [13], the classification
of methods for updating the matrix Bk is presented. Therein, the three updating methods
are extricated:

1. matrix Bk is defined as a scalar matrix, i.e., Bk = γk I, γk > 0;
2. matrix Bk is defined as a diagonal matrix, i.e., Bk = diag(λ1, · · · , λn), λi > 0, i = 1, n;
3. matrix Bk is defined as a full matrix.

Taking the simplest updating approach, the first one, i.e., Bk = γk I v Gk, γk > 0,
the quasi-Newton method (7) is transformed to

xk+1 = xk − tkγ−1
k gk. (8)

In [14], the authors named the iterative methods (8) as a class of accelerated gradient methods.
They named it so for their good convergence and performance metrics. Previously in [15],
Andrei defined this accelerated iteration by calculating parameter θk(= γ−1

k ) as follows:
Algorithm for generating scalar θk from [15]:

1. Objective function f (x), the direction dk of the search at the point xk and numbers
0 < σ < 0.5 and β ∈ (0, 1) are required;

2. Apply Backtracking algorithm to calculate tk ∈ (0, 1];
3. Compute z = xk − tkgk, gz = ∇ f (z), yk = gz − gk;
4. Compute ak = tkgT

k gk, bk = −tkyT
k gk

5. Return θk =
ak
bk

.

Stanimirović and Miladinović in [14] determined the parameter γ−1
k from (8) on the ba-

sis of the second-order Taylor’s expansion, and denoted it as SM method. Results obtained
by several researchers on this topic confirmed that this way of deriving the accelerated
parameter (as named in [16]), is justifiable regarding the convergence and numerical per-
formance aspects [17,18]. Several forms of this important variable in chosen accelerated
gradient schemes are listed as expressions (5)–(9) in [19] and some other approaches are
presented in [20–22].

Among the various accelerated gradient iterations, for this research we specifically
chose three among which Khan’s hybridization three-term process was later applied. The
first of the three is the already mentioned SM method, defined by relation (8) and presented
in [14]. The second one is the ADD method (i.e., accelerated double direction method) from [16],
with the iterative representation

xk+1 = xk + α2
kdk − αkγk

−1gk. (9)

In (9), αk > 0 is the iterative step length value, while dk is the second search vector calculated
under the assumption ‖dk‖ = 1, k = 1, 2, . . ., by the next procedure:

dk(t) =
{

d∗k , k ≤ m− 1
∑m

i=2 ti−1d∗k−i+1 k ≥ m
(10)

and d∗k is the solution of the problem minx∈R Φk(d),

Φk(d) = 5 f (xk)
Td +

1
2

γk+1 I = g(xk)
Td +

1
2

γk+1 I. (11)

The iterative value of the accelerated parameter γk, obtained through Taylor’s series of
(9), is

γADD
k+1 = 2

f (xk+1)− f (xk)− αkgT
k

(
αkdk − γ−1

k gk

)
(

αkdk − γ−1
k gk

)T(
tkdk − γ−1

k gk

) . (12)
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The positive step length value αk of the ADD scheme is derived using the Backtracking
algorithm, starting with initial t = 1. Taking the following substitutions in (9)

α2
k → βk,

where βk is calculated by a different Backtracking procedure, and

dk → −gk,

lead to the ADSS (accelerated double step size) method [17]:

xk+1 = xk − αkγk
−1gk − βkgk = xk −

(
αkγ−1

k + βk

)
gk. (13)

Finally, under assumption
αk + βk = 1,

ADSS iteration is transformed to TADSS scheme [18], our third chosen accelerated gradient
descent model:

xk+1 = xk − [αk(γk
−1 − 1) + 1]gk. (14)

As in (9), the iterative step length value αk in (14) is calculated on the basis of Backtracking
algorithm. The accelerated parameter of the TADSS scheme is

γTADSS
k+1 = 2

f (xk+1)− f (xk) + ψk‖gk‖2

ψ2
k‖gk‖2

, ψk = [αkγ−1
k − α2

k) + 1]. (15)

In the following proposition, we prove that (8), (9) and (14) iterations are a gradient
descending process.

Proposition 1. The search directions in iterations defined by (8), (9) and (14) fulfil the descending
condition (2).

Proof. We separately analyze the search directions of all three listed methods.

• According to the general iteration form (1), the search direction in SM method, defined
by relation (8), is dk ≡ −γ−1

k gk. One of the essential properties of the accelerated
parameter γk is its positiveness. If in some iterative step k of the accelerated gradient
algorithms with leading iterative rules (8), (9) and (14) this necessary condition is not
fulfilled, then the k-th accelerated scalar value is set to be γk = 1. Bearing this fact in
mind, we easily conclude that

gT
k dk = gT

k (−γ−1
k gk) = −γ−1

k ‖gk‖2 < 0,

which confirms that the condition (2) in SM method, defined by (8), is fulfilled.
• Accelerated double direction ADD scheme (9) contains two search vectors. The first

one, denoted as dk, is defined by (10). The second one is of the same form as in the SM
iteration, i.e., −γk

−1gk. In the procedure (10), crucial element d∗k in deriving vector
dk is defined as a solution of the minimization problem (11) that depends on the
gradient gk, under the assumption ‖dk‖ = 1. Thus, the defined vector direction is a
relaxed differentiable variant of the procedure for determination of the search vector
dk (rule 2) in [23] and accordingly, the d = 0 is globally optimum of the problem (11).
Subsequently, we consider only the second direction, which is already performed in
the previous item.

• In TADSS scheme, vector direction can be seen as −[αk(γk
−1 − 1) + 1]gk. Checking

the descent condition (2), we get

gT
k ·
(
−[αk(γk

−1 − 1) + 1]gk

)
= −[αk(γk

−1 − 1) + 1]‖gk‖2 < 1,
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since γ−1
k > 1 and αk ∈ (0, 1] according to TADSS algorithm.

Further on, in Section 2, we analyse Khan’s hybridization rule applied on various
gradient methods. Finally, Dolan–Moré representations and parallels among the hybrid
and non-hybrid versions of SM, ADD and TADSS schemes, obtained over large-scale
numerical outcomes, are illustrated in Section 3.

2. Three-Term Khan’s Hybridization Principle over the Accelerated Gradient
Descent Models

For a nonempty convex subset C of a normed space E, let T : C→ C be a mapping
defined on C. Then, for some sequences uk, vk, zk and yk defined on C, the Picard, Mann
and Ishikawa iterative processes [24–26] are, respectively, given as:{

u1 = u ∈ C,
uk+1 = Tuk, k ∈ N,{

v1 = v ∈ C,
vk+1 = (1− αk)vk + αkTvk, k ∈ N,
z1 = z ∈ C,
zk+1 = (1− αk)zk + αkTyk,
yk = (1− βk)zk + βkTzk. k ∈ N

In the listed relations, parameters {αk}, {βk} ∈ (0, 1) are the sequences of positive numbers,
which in the Ishikawa process [26] fulfil the following assumptions

• 0 ≤ αk ≤ βk ≤ 1, k ≥ 0,
• limk→∞ βk = 0,
• ∑∞

k=1 αkβk = ∞.

In [27], Khan proposed a new three-term iterative process as follows
x1 = x ∈ R,
xk+1 = Tyk,
yk = (1− αk)xk + αkTxk, k ∈ N

(16)

with the sequence of positive numbers {αk} ∈ (0, 1), which is considered as a set of constant
values, i.e., (α = αk ∈ (0, 1) ∀k ∈ N, ) in practical numerical tests, as proposed in [27].
Khan confirmed in [27] that the process (16) converges faster than the processes of Picard,
Mann and Ishikawa.

Khan developed this iterative process (16) as a hybrid variant of previously men-
tioned, well-known iterations and with that managed to improve these types of methods.
Further, some authors used auspicious aspects of this hybrid rule and applied it to some
accelerated gradient optimization methods. The hybridization principle consists of tak-
ing the objective accelerated iteration as a guiding operator in (16). As a result, several
accelerated-hybridization processes arose [28–32]. We list them below, together with their
accelerated parameters.

1. Hybrid accelerated gradient descent method (HSM) [28]

xk+1 = xk − (αk + 1)tkγ−1
k gk, (17)

γHSM
k+1 = 2γk

γk[ f (xk+1)− f (xk)] + (αk + 1)tk‖gk‖2

(αk + 1)2t2
k‖gk‖2

. (18)

2. Hybrid accelerated double direction method (HADD) [29]

xk+1 = xk − αtkγ−1
k gk + αt2

kdk, α ∈ (1, 2), (19)
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γk+1 = 2
f (xk+1)− f (xk)− αgT

k

(
t2
kdk − tkγ−1

k gk

)
α2t2

k

(
tkdk − γ−1

k gk

)T(
tkdk − γ−1

k gk

) . (20)

3. Hybrid accelerated double step size method (HADSS) [30]

xk+1 = xk − gkα(tkγ−1
k + pk), α ≡ αk + 1 ∈ (1, 2) ∀k, (21)

γHADSS
k+1 = 2

f (xk+1)− f (xk) + α
(

tkγ−1
k + pk

)
‖gk‖2

α2
(

tkγ−1
k + pk

)2
‖gk‖2

. (22)

4. Hybrid transformed double step size method (HTADSS) [31]

xk+1 = xk − α(tk(γ
−1
k − 1) + 1)gk, α ∈ (1, 2), (23)

γHTADSS
k+1 = 2

f (xk+1)− f (xk) + αϕk‖gk‖2

α2 ϕ2
k‖gk‖2

, (24)

where
ϕk = tk(γ

−1
k − 1) + 1. (25)

5. Hybrid gradient descent method (HGD) [32]

xk+1 = xk − (αk + 1)tkgk, αk ∈ (0, 1) ∀k. (26)

6. Hybrid accelerated gradient descent method (HAGD) [32]

xk+1 = xk − (αk + 1)θktkgk, α ∈ (0, 1) ∀k, θk =
γk

tkγk+1
. (27)

7. Hybrid modified accelerated gradient descent method (HMAGD) [32]

xk+1 = xk − (αk + 1)θk(tk + t2
k − t3

k)gk, α ∈ (0, 1) ∀k, θk =
γk

tkγk+1
. (28)

8. Hybrid modified improved gradient descent method (HMIGD) [32]

xk+1 = xk − (αk + 1)γ−1
k (tk + t2

k − t3
k)gk, α ∈ (0, 1) ∀k. (29)

As shown above, from Khan’s hybridization rule at least eight hybrid models have
appeared. Convergence properties as well as performance efficiency of these iterative
schemes are presented and illustrated in the literature. The leading model of all listed
((17), (19), (21), (23), (26), (27), (28), (29)), and therewith the first one that was developed
on the basis of the Khan’s process, is certainly the HSM method from [28]. In paper [28],
the authors examined the performance of the defined method for various values of the
so-called correction parameter αk ∈ (0, 1), i.e., α = αk + 1 ∈ (1, 2), which is a necessary
factor of all hybrid methods generated through Khan’s hybridization. They experimentally
concluded that the HSM method achieves best performance characteristics when the
correction parameter is taken closely to its left limit. Later in [33], the authors improved the
HSM model by reducing the initial step length parameter in the Backtracking procedure.

3. Dolan–Moré Performance Profiles and Comparisons

In this section, we apply the aspects of Dolan–Moré benchmarking optimization
software from [34] on hybrid and non-hybrid variants of chosen accelerated gradient
minimization models. In conducted numerical tests, we follow performance metrics
regarding the number of iterations, CPU time and number of function evaluations.
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For all obtained numerical outcomes, the following points are valid:

• Codes are written in the visual C++ programming language and run on a Workstation
Intel(R) Core(TM) 2.3 GHz.

• The Backtracking parameters values taken are: σ = 0.0001 and β = 0.8. These are stan-
dard values for the Backtracking parameters applied in various optimization models with
Backtracking algorithm [2,14,15,20–22,28–31]. This set of values means that a small portion
of the decrease predicted by the linear approximation of the current point is accepted.

• The stopping criteria are:

‖gk‖ ≤ 10−6 and
| f (xk+1)− f (xk)|

1 + | f (xk)|
≤ 10−16.

• Chosen test functions are taken from the unconstrained test functions collection
presented in [35]. More precisely, all specific test functions that were used for this
research are listed in Listing 1.

Listing 1. Test functions.

1. Extended Penalty
2. Perturbed Quadratic
3. Raydan-1
4. Diagonal 1
5. Diagonal 3
6. Generalized Tridiagonal-1
7. Diagonal 4
8. Extended Himmelblau
9. Quadr. Diag. Perturbed
10. Quadratic QF1
11. Exten. Quadr. Penalty QP1
12. Exten. Quadr. Penalty QP2
13. Quadratic QF2
14. Extended EP1
15. Arwhead
16. Almost Perturbed Quadratic
17. Engval1
18. Quartc
19. Generalized Quartic
20. LIARWHD
21. Diagonal 6
22. Tridia
23. Indef
24. Diagonal 9
25. DIXON3DQ
26. NONSCOMP
27. BIGGSB1
28. Power (Cute)
29. Hager
30. Raydan 2

Further, by ip,s, tp,s and ep,s we denote the number of iterations, the CPU time and
the number of function evaluations, respectively, needed for solving problem p when the
solver s is applied. The main observation arises from a comparison of performance profiles,
considering analyzed metrics, of hybrid and non-hybrid versions of the same scheme.
For this investigation, we chose the following three accelerated gradient methods: SM
(8), ADD (9) and TADSS (14). Accordingly, we analyzed their hybrid forms HSM (17),
HADD (19) and HTADSS (23), as well. So in these tests, the solver s belongs to the set
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of six elements, s ∈ {SM, HSM, ADD, HADD, TADSS, HTADSS}. We specifically chose
this set of comparative non-hybrid and hybrid pairs among the others mentioned above in
Section 2, since the selected models are the most cited of Khan’s hybrid methods.

According to the benchmark presented in [34] and regarding the comparisons obtained
within this paper, for each pair of comparative hybrid and non-hybrid variants we have
two solvers, i.e., ns = 2, where the comparative pairs are:

{(SM, HSM), (ADD, HADD), (TADSS, HTADSS)}.

The total number of experiments for each pair is minimal np = 210. Precisely, for the
pair (SM, HSM) we have conducted numerical tests for 25 test function and 11 different
numbers of variables, so np = 11 · 25 = 275, the same as for the pair (TADSS, HTADSS).
The pair (ADD, HADD) included 21 test functions with 10 different numbers of variables,
so in this case np = 210. In order to apply Dolan–Moré benchmarking optimization software
with performance profiles over the chosen accelerated and hybrid models, we use the
original outcomes presented in the papers in which these models were generated [28,29,31].
So, since in [28,31] numerical experiments included 25 test functions, while in [29] the
number of tested functions is 21, the total number of tests for all test functions and all three
pairs of models is nSM,HSM

p + nTADSS,HTADSS
p + nADD,HADD

p = 760.
Considering defined parameters, we are now able to expose performance ratios de-

fined for the number of iterations, the CPU time and the number of function evaluations,
respectively:

rp,s =
ip,s

min{ip,s : s ∈ {SM, HSM}}

=
ip,s

min{ip,s : s ∈ {ADD, HADD}} =
ip,s

min{ip,s : s ∈ {TADSS, HTADSS}} ,

rp,s =
tp,s

min{tp,s : s ∈ {SM, HSM}}

=
tp,s

min{tp,s : s ∈ {ADD, HADD}} =
tp,s

min{tp,s : s ∈ {TADSS, HTADSS}} ,

rp,s =
ep,s

min{ep,s : s ∈ {SM, HSM}}

=
ep,s

min{ep,s : s ∈ {ADD, HADD}} =
ep,s

min{ep,s : s ∈ {TADSS, HTADSS}} .

As in [34], we define the performance profile for each solver s with respect to all three
measured metrics

ρs(τ) =
1

np
size{p ∈ P : rp,s ≤ τ}, (30)

which presents the cumulative distribution function. In (30) parameter τ ∈ R, while P is
the set of problems.

In Figures 1–3, we present the performance profiles of SM and HSM regarding the
number of iterations, the CPU time and the number of function evaluations, respectively.
Comparisons between pairs (ADD, HADD) and (TADSS, HTADSS), regarding all three
tested metrics are similarly illustrated in Figures 4–9.

From Figures 1–3, we clearly observe that the HSM algorithm outperforms the non-
hybrid SM model, with respect to the number of iterations and the CPU time metrics,
while regarding the number of evaluations metric, the hybrid and non-hybrid models
perform similarly.
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Figure 1. Performance profiles for the HSM and SM methods regarding the number of iterations metric.

Figure 2. Performance profiles for the HSM and SM methods regarding the CPU time metric.

Figure 3. Performance profiles for the HSM and SM methods regarding the number of function
evaluations metric.
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Figure 4. Performance profiles for the HADD and ADD methods regarding the number of itera-
tions metric.

Figure 5. Performance profiles for the HADD and ADD methods regarding the CPU time metric.

Figure 6. Performance profiles for the HADD and ADD methods regarding the number of function
evaluations metric.
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Figure 7. Performance profiles for the HTADSS and TADSS methods regarding the number of
iterations metrics.

Figure 8. Performance profiles for the HTADSS and TADSS methods regarding the CPU time metric.

Figure 9. Performance profiles for the HTADSS and TADSS methods regarding the number of
function evaluations metric.
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From Figures 5 and 6, we see that the hybrid accelerated double direction model
shows conspicuously better features regarding CPU time and the number of evaluations
metrics. Nevertheless, concerning the number of iterations metric, forerunner ADD is more
efficient, as shown in Figure 4.

Finally, comparisons of the TADSS and the HTADSS methods are displayed in
Figures 7–9. From these three presented graphs, we observe that the hybrid version of the
transformed double step size method convincingly upgrades its counterpart non-hybrid
model. In this case, the dominance of the hybrid variant with respect to all three analyzed
metrics is more than evident.

To obtain Figures 1–9, a total of 4560 numerical outcomes were included. More pre-
cisely, for 6 analyzed methods (SM, ADD, TADSS, HSM, HADD, HTADSS) we followed
3 metrics (number of iterations, CPU time, number of function evaluations) on 25 test
functions for SM, HSM, TADSS and HTADSS solvers and 21 test functions for ADD and
HADD solvers from [35]. For each test function, the tests were conducted for at least
10 different numbers of variables. With that, the execution time for each test is limited by
the time-limiter parameter defined in [16].

4. Conclusions

In this research, we present an overview of two gradient method classes: accelerated
gradient descent models and its hybrid variants derived from Khan’s three-term iterative
rule. This is an important and useful retrospective of one, confirmed efficient approach in
defining the robust accelerated methods for solving unconstrained optimization problems.
The obtained results, achieved on the basis of comprehensive Dolan–Moré performance pro-
files [34], conducted on total 4560 numerical outcomes, confirm that Khan’s hybridization
rule is justified for use as an applicable technique in generating effective minimization pro-
cesses. Accordingly, this research paves the way for new possibilities aimed at generating
similar hybridization rules and their applications to accelerated gradient schemes.
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16. Petrović, M.J.; Stanimirovic, P.S. Accelerated Double Direction Method For Solving Unconstrained Optimization Problems. Math.

Probl. Eng. 2014, 2014, 965104. [CrossRef]
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