Buckling Analysis of Functionally Graded Tapered Microbeams via Rayleigh–Ritz Method
Abstract
:1. Introduction
2. Theory and Formulation
3. Buckling of an AFG-Tapered Microcolumn
4. Application of Rayleigh–Ritz Method
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Koizumi, M.; Niino, M. Overview of Fgm Research in Japan. Mrs. Bull. 1995, 20, 19–21. [Google Scholar] [CrossRef]
- Witvrouw, A.; Mehta, A. The use of functionally graded poly-SiGe layers for MEMS applications. Mater. Sci. Forum 2005, 492–493, 255–260. [Google Scholar] [CrossRef]
- Mohammadi-Alasti, B.; Rezazadeh, G.; Borgheei, A.M.; Minaei, S.; Habibifar, R. On the mechanical behavior of a functionally graded micro-beam subjected to a thermal moment and nonlinear electrostatic pressure. Compos. Struct. 2011, 93, 1516–1525. [Google Scholar] [CrossRef]
- Wei, Q.F.; Wang, X.Q.; Gao, W.D. AFM and ESEM characterisation of functionally nanostructured fibres. Appl. Surf. Sci. 2004, 236, 456–460. [Google Scholar] [CrossRef]
- Lam, D.C.C.; Yang, F.; Chong, A.C.M.; Wang, J.; Tong, P. Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 2003, 51, 1477–1508. [Google Scholar] [CrossRef]
- Lei, J.; He, Y.M.; Guo, S.; Li, Z.K.; Liu, D.B. Size-dependent vibration of nickel cantilever microbeams: Experiment and gradient elasticity. Aip. Adv. 2016, 6, 105202. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.Y.; Lei, J.; Guo, S.; Han, S.H.; Ruan, J.; He, Y.M. Size-dependent vibration of multi-scale sandwich micro-beams: An experimental study and theoretical analysis. Thin Wall Struct. 2022, 175, 109115. [Google Scholar] [CrossRef]
- Guo, S.; Xie, Y.Y.; Lei, J.; Han, S.H.; Liu, D.B.; He, Y.M. Coupled effect of specimen size and grain size on the stress relaxation of micron-sized copper wires. J. Mater. Sci. 2022, 57, 18655–18668. [Google Scholar] [CrossRef]
- Yang, H.; Abali, B.E.; Timofeev, D.; Müller, W.H. Determination of metamaterial parameters by means of a homogenization approach based on asymptotic analysis. Continuum Mech. Thermodyn. 2020, 32, 1251–1270. [Google Scholar] [CrossRef] [Green Version]
- Barchiesi, E.; dell’Isola, F.; Hild, F. On the validation of homogenized modeling for bi-pantographic metamaterials via digital image correlation. Int. J. Solids Struct. 2021, 208, 49–62. [Google Scholar] [CrossRef]
- Placidi, L.; Andreaus, U.; Corte, A.D.; Lekszycki, T. Gedanken experiments for the determination of two-dimensional linear second gradient elasticity coefficients. Z. Angew. Math. Phys. 2015, 66, 3699–3725. [Google Scholar] [CrossRef]
- Yang, H.; Timofeev, D.; Abali, B.E.; Li, B.; Müller, W.H. Verification of strain gradient elasticity computation by analytical solutions. Z. Angew. Math. Mech. 2021, 101, e202100023. [Google Scholar] [CrossRef]
- Roudbari, M.A.; Jorshari, T.D.; Lu, C.F.; Ansari, R.; Kouzani, A.Z.; Amabili, M. A review of size-dependent continuum mechanics models for micro- and nano-structures. Thin Wall Struct. 2022, 170, 108562. [Google Scholar] [CrossRef]
- Thai, H.T.; Vo, T.P.; Nguyen, T.K.; Kim, S.E. A review of continuum mechanics models for size-dependent analysis of beams and plates. Compos. Struct. 2017, 177, 196–219. [Google Scholar] [CrossRef]
- Akgoz, B.; Civalek, O. Buckling analysis of functionally graded microbeams based on the strain gradient theory. Acta Mech. 2013, 224, 2185–2201. [Google Scholar] [CrossRef]
- Akgoz, B.; Civalek, O. A size-dependent shear deformation beam model based on the strain gradient elasticity theory. Int. J. Eng. Sci. 2013, 70, 1–14. [Google Scholar] [CrossRef]
- Akgoz, B.; Civalek, O. Thermo-mechanical buckling behavior of functionally graded microbeams embedded in elastic medium. Int. J. Eng. Sci. 2014, 85, 90–104. [Google Scholar] [CrossRef]
- Akgoz, B.; Civalek, O. Longitudinal vibration analysis for microbars based on strain gradient elasticity theory. J. Vib. Control 2014, 20, 606–616. [Google Scholar] [CrossRef]
- Akgoz, B.; Civalek, O. A novel microstructure-dependent shear deformable beam model. Int. J. Mech. Sci. 2015, 99, 10–20. [Google Scholar] [CrossRef]
- Akgoz, B.; Civalek, O. Bending analysis of embedded carbon nanotubes resting on an elastic foundation using strain gradient theory. Acta Astronaut. 2016, 119, 1–12. [Google Scholar] [CrossRef]
- Barretta, R.; Fabbrocino, F.; Luciano, R.; de Sciarra, F.M.; Ruta, G. Buckling loads of nano-beams in stress-driven nonlocal elasticity. Mech. Adv. Mater. Struct. 2020, 27, 869–875. [Google Scholar] [CrossRef]
- Barretta, R.; Faghidian, S.A.; Luciano, R.; Medaglia, C.M.; Penna, R. Free vibrations of FG elastic Timoshenko nano-beams by strain gradient and stress-driven nonlocal models. Compos. Part B-Eng. 2018, 154, 20–32. [Google Scholar] [CrossRef]
- Barretta, R.; Feo, L.; Luciano, R.; de Sciarra, F.M.; Penna, R. Functionally graded Timoshenko nanobeams: A novel nonlocal gradient formulation. Compos. Part B-Eng. 2016, 100, 208–219. [Google Scholar] [CrossRef]
- Ghandourah, E.E.; Daikh, A.A.; Alhawsawi, A.M.; Fallatah, O.A.; Eltaher, M.A. Bending and Buckling of FG-GRNC Lamineted Plates via Quasi-3D Nonlocal Strain Gradient Theory. Mathematics 2022, 10, 1321. [Google Scholar] [CrossRef]
- Ma, H.M.; Gao, X.L.; Reddy, J.N. A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. J. Mech. Phys. Solids 2008, 56, 3379–3391. [Google Scholar] [CrossRef]
- Numanoglu, H.M.; Ersoy, H.; Akgoz, B.; Civalek, O. A new eigenvalue problem solver for thermo-mechanical vibration of Timoshenko nanobeams by an innovative nonlocal finite element method. Math. Method Appl. Sci. 2022, 45, 2592–2614. [Google Scholar] [CrossRef]
- Pinnola, F.P.; Barretta, R.; de Sciarra, F.M.; Pirrotta, A. Analytical Solutions of Viscoelastic Nonlocal Timoshenko Beams. Mathematics 2022, 10, 477. [Google Scholar] [CrossRef]
- Reddy, J.N. Nonlocal theories for bending, buckling and vibration of beams. Int. J. Eng. Sci. 2007, 45, 288–307. [Google Scholar] [CrossRef]
- Reddy, J.N. Microstructure-dependent couple stress theories of functionally graded beams. J. Mech. Phys. Solids 2011, 59, 2382–2399. [Google Scholar] [CrossRef]
- Zenkour, A.M.; Hafed, Z.S.; Radwan, A.F. Bending Analysis of Functionally Graded Nanoscale Plates by Using Nonlocal Mixed Variational Formula. Mathematics 2020, 8, 1162. [Google Scholar] [CrossRef]
- Rajasekaran, S. Differential transformation and differential quadrature methods for centrifugally stiffened axially functionally graded tapered beams. Int. J. Mech. Sci. 2013, 74, 15–31. [Google Scholar] [CrossRef]
- Rajasekaran, S. Buckling and vibration of axially functionally graded nonuniform beams using differential transformation based dynamic stiffness approach. Meccanica 2013, 48, 1053–1070. [Google Scholar] [CrossRef]
- Lee, J.K.; Lee, B.K. Free vibration and buckling of tapered columns made of axially functionally graded materials. Appl. Math. Model. 2019, 75, 73–87. [Google Scholar] [CrossRef]
- Huang, Y.; Yang, L.E.; Luo, Q.Z. Free vibration of axially functionally graded Timoshenko beams with non-uniform cross-section. Compos. Part B-Eng. 2013, 45, 1493–1498. [Google Scholar] [CrossRef]
- Boutahar, Y.; Lebaal, N.; Bassir, D. A Refined Theory for Bending Vibratory Analysis of Thick Functionally Graded Beams. Mathematics 2021, 9, 1422. [Google Scholar] [CrossRef]
- Ge, R.Y.; Liu, F.; Wang, C.; Ma, L.L.; Wang, J.P. Calculation of Critical Load of Axially Functionally Graded and Variable Cross-Section Timoshenko Beams by Using Interpolating Matrix Method. Mathematics 2022, 10, 2350. [Google Scholar] [CrossRef]
- Mahmoud, M.A. Natural frequency of axially functionally graded, tapered cantilever beams with tip masses. Eng. Struct. 2019, 187, 34–42. [Google Scholar] [CrossRef]
- Mirjavadi, S.S.; Matin, A.; Shafiei, N.; Rabby, S.; Afshari, B.M. Thermal buckling behavior of two-dimensional imperfect functionally graded microscale-tapered porous beam. J. Therm. Stresses 2017, 40, 1201–1214. [Google Scholar] [CrossRef]
- Singh, R.; Sharma, P. Vibration analysis of an axially functionally graded material non-prismatic beam under axial thermal variation in humid environment. J. Vib. Control 2022, 28, 3608–3621. [Google Scholar] [CrossRef]
- Akgoz, B.; Civalek, O. Buckling analysis of linearly tapered micro-columns based on strain gradient elasticity. Struct. Eng. Mech. 2013, 48, 195–205. [Google Scholar] [CrossRef]
- Akgoz, B. Static stability analysis of axially functionally graded tapered micro columns with different boundary conditions. Steel Compos. Struct. 2019, 33, 133–142. [Google Scholar]
- Ebrahimi, F.; Barati, M.R. Buckling analysis of nonlocal strain gradient axially functionally graded nanobeams resting on variable elastic medium. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2018, 232, 2067–2078. [Google Scholar] [CrossRef]
- Haddad, S.; Baghani, M.; Zakerzadeh, M.R. Size dependent analysis of tapered FG micro-bridge based on a 3D beam theory. Sci. Iran 2020, 27, 2889–2901. [Google Scholar] [CrossRef] [Green Version]
- Mohammadimehr, M.; Alimirzaei, S. Buckling and free vibration analysis of tapered FG-CNTRC micro Reddy beam under longitudinal magnetic field using FEM. Smart Struct. Syst. 2017, 19, 309–322. [Google Scholar] [CrossRef]
- Mohammadimehr, M.; Monajemi, A.A.; Moradi, M. Vibration analysis of viscoelastic tapered micro-rod based on strain gradient theory resting on visco-pasternak foundation using DQM. J. Mech. Sci. Technol. 2015, 29, 2297–2305. [Google Scholar] [CrossRef]
- Shafiei, N.; Mousavi, A.; Ghadiri, M. On size-dependent nonlinear vibration of porous and imperfect functionally graded tapered microbeams. Int. J. Eng. Sci. 2016, 106, 42–56. [Google Scholar] [CrossRef]
- Shafiei, N.; Kazemi, M. Buckling analysis on the bi-dimensional functionally graded porous tapered nano-/micro-scale beams. Aerosp. Sci. Technol. 2017, 66, 1–11. [Google Scholar] [CrossRef]
- Shafiei, N.; Ghadiri, M.; Mahinzare, M. Flapwise bending vibration analysis of rotary tapered functionally graded nanobeam in thermal environment. Mech. Adv. Mater. Struct. 2019, 26, 139–155. [Google Scholar] [CrossRef]
- Wang, C.M.; Wang, C.Y.; Reddy, J.N. Exact Solutions for Buckling of Structural Members, 1st ed.; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
Taper Ratio, | Present | Exact | ||||
---|---|---|---|---|---|---|
N = 2 | N = 4 | N = 6 | N = 8 | N = 10 | [49] | |
0 | 2.4860 | 2.4674 | 2.4674 | 2.4674 | 2.4674 | 2.467 |
0.1 | 2.4165 | 2.3928 | 2.3928 | 2.3928 | 2.3928 | 2.393 |
0.3 | 2.2702 | 2.2351 | 2.2351 | 2.2351 | 2.2351 | 2.235 |
0.5 | 2.1078 | 2.0621 | 2.0621 | 2.0621 | 2.0621 | 2.062 |
0.7 | 1.9140 | 1.8655 | 1.8653 | 1.8653 | 1.8653 | 1.865 |
0.9 | 1.6462 | 1.6229 | 1.6212 | 1.6211 | 1.6211 | 1.621 |
Taper Ratio, | Present | Exact | ||||
---|---|---|---|---|---|---|
N = 2 | N = 4 | N = 6 | N = 8 | N = 10 | [49] | |
0 | 20.9187 | 20.1943 | 20.1907 | 20.1907 | 20.1907 | 20.1907 |
0.1 | 19.9908 | 19.1736 | 19.1686 | 19.1686 | 19.1686 | 19.17 |
0.3 | 18.0621 | 17.0426 | 17.0354 | 17.0353 | 17.0353 | 17.03 |
0.5 | 15.9584 | 14.7452 | 14.7394 | 14.7394 | 14.7394 | 14.74 |
0.7 | 13.4459 | 12.1775 | 12.1773 | 12.1772 | 12.1772 | 12.18 |
0.9 | 9.7113 | 9.0608 | 9.0307 | 9.0295 | 9.0294 | 9.029 |
Taper Ratio, | BC1 | BC2 | ||
---|---|---|---|---|
Present | [40] | Present | [40] | |
0 | 40.38752 | 40.3875 | 41.52736 | 41.5274 |
0.2 | 35.20555 | 35.2055 | 36.04467 | 36.0447 |
0.4 | 29.81004 | 29.8100 | 30.38676 | 30.3868 |
0.6 | 24.04835 | 24.0483 | 24.40082 | 24.4008 |
0.8 | 17.51253 | 17.5125 | 17.67871 | 17.6787 |
n | Cantilever | Propped Cantilever | ||||
---|---|---|---|---|---|---|
CT | SGT-BC1 | SGT-BC2 | CT | SGT-BC1 | SGT-BC2 | |
0 | 2.2757 | 11.5570 | 11.8369 | 17.5814 | 89.5126 | 91.6124 |
0.5 | 3.2955 | 29.7361 | 30.0206 | 22.8377 | 175.9789 | 178.2837 |
1 | 3.7659 | 43.0086 | 43.5267 | 25.4402 | 232.7055 | 236.3154 |
2 | 4.1851 | 59.4975 | 60.5222 | 28.5113 | 314.3887 | 319.9357 |
10 | 4.5350 | 77.8720 | 79.8187 | 34.3698 | 564.3991 | 577.0945 |
n | Cantilever | Propped Cantilever | ||||
---|---|---|---|---|---|---|
CT | SGT-BC1 | SGT-BC2 | CT | SGT-BC1 | SGT-BC2 | |
0 | 1.8104 | 9.1937 | 9.3599 | 11.4694 | 58.3994 | 59.4905 |
0.5 | 2.5358 | 21.4730 | 21.6085 | 14.5021 | 107.0497 | 108.1194 |
1 | 2.8923 | 30.5769 | 30.8118 | 16.0267 | 138.5213 | 140.1774 |
2 | 3.2404 | 43.0156 | 43.4926 | 17.8791 | 183.6129 | 186.1580 |
10 | 3.5961 | 62.2555 | 62.3944 | 22.0821 | 348.4897 | 354.3562 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akgöz, B.; Civalek, Ö. Buckling Analysis of Functionally Graded Tapered Microbeams via Rayleigh–Ritz Method. Mathematics 2022, 10, 4429. https://doi.org/10.3390/math10234429
Akgöz B, Civalek Ö. Buckling Analysis of Functionally Graded Tapered Microbeams via Rayleigh–Ritz Method. Mathematics. 2022; 10(23):4429. https://doi.org/10.3390/math10234429
Chicago/Turabian StyleAkgöz, Bekir, and Ömer Civalek. 2022. "Buckling Analysis of Functionally Graded Tapered Microbeams via Rayleigh–Ritz Method" Mathematics 10, no. 23: 4429. https://doi.org/10.3390/math10234429
APA StyleAkgöz, B., & Civalek, Ö. (2022). Buckling Analysis of Functionally Graded Tapered Microbeams via Rayleigh–Ritz Method. Mathematics, 10(23), 4429. https://doi.org/10.3390/math10234429