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Abstract: In the present study, the interaction of variable fluid properties with electrokinetically
regulated peristaltic transportation of a reactive nanofluid embedded in a porous space is studied.
The nanofluid saturates the porous space/medium with inhomogeneous porosity, which changes
with distance from the channel boundary. It is assumed that nanofluids are accompanied by variable
thermal conductivity and viscosity. The impacts of magnetic field, Brownian motion, electric field,
viscous dissipation, chemical reaction, mixed convection, and thermophoresis are incorporated.
Moreover, the contribution of zero mass flux boundary condition is executed. The complexity of
the equations describing the flow of a nanofluid is reduced by applying the lubrication theory. The
fully non-linear equations are solved by utilizing a numerical technique. Particular attention is paid
to the analysis of entropy optimization, since its minimization is the best measure to enhance the
efficiency of thermal systems. These results demonstrate that a positively oriented external electric
field contributes to an increase in nanofluid velocity. Temperature of nanofluid increases more rapidly
due to an augmentation in Joule heating parameter. It is noticed that the temperature of water
is comparatively lower than that of kerosene. The system’s energy loss can be reduced when the
thermal conductivity parameter enhance. The magnitude of Bejan number is enhanced by increasing
electroosmotic parameter. Further, a substantial decrement in concentration profile is perceived when
the Schmidt number is augmented.

Keywords: variable fluid properties; variable porosity; electrokinetic forces; zero mass flux; heat transfer
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1. Introduction

The importance of peristaltic mechanisms in numerous physiological and industrial
processes has rendered this concept convincingly trendy in research. Peristaltic motion
is a type of wave motion that occurs within tubular systems that spread out along their
length. Peristaltic motion is observed in tiny blood vessel vasomotion, bile in the bile duct,
valveless movement of the cardiovascular system, transport of cilia etc. This process has
crucial functions in the health industry involving noxious fluid transfer, heart lung units,
rotary pumps, warm locomotion etc. Engineers used peristaltic activity, which has many
industrial applications. Roller and finger motors, in fact, work according to this mechanism.
Historically, Latham [1] and Shapiro et al. [2] initially conducted the analysis on peristaltic
movement of viscous liquid. They conducted their investigation under creeping flow
phenomena. Srinivas et al. [3] presented a thermal analysis with slip conditions on MHD
peristaltic motion. Khan et al. [4] illustrated the impacts of magnetic field on Walter’s B
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liquid through an inclined channel. Impact of heterogeneous-homogeneous reactions on
peristaltic movement of Bingham fluid via channel is reported by Tanveer et al. [5].

The rapid progress of nanoscience has revolutionized every area of life, i.e., informa-
tion technology, energy, food safety, national security, industry, transportation, medicine,
and environmental discipline. The use of nanotechnology in medicine/drugs has led to
significant improvements through the restructuring of outdated treatments. Nowadays,
operations are performed without involving any cuts and prunes for brain tumors, can-
cer treatment and lithotripsy that were once thought to be incredibly challenging and
menacing. Apart from countless applications of nanofluids in industrial and practical
settings, the primary goal of nanoparticles is to improve heat transfer phenomena. Choi
and Eastman [6,7] were the first who discussed the concept of nanofluids. Shehzad et al. [8]
addressed peristaltic transportation of nanoliquid with MHD effects. The numerical re-
sults were acquired in this study. Peristaltic transport of ionic nanofluids with double
diffusive convection were discussed by Prakash et al. [9]. Recently, analytical results for
peristaltic transportation of non-Newtonian Bingham blood liquid via divergent channels
were highlighted by Eldabe et al. [10]. Additional research can be seen in references [11–13]
on improving heat transmission.

Fluid movement across porous material has been of enormous concern over the last
few years owing to its multiple uses in medicine and industry. Flow through porous
material takes place in human lungs, rye bread, bile ducts and movement of underground
water etc. Fluid flow via porous material has an effective role in the field of food industries,
petroleum engineering, biological systems, and hydrology. Such uses can be found in
production of oil, fossil fuels, bio films, heat pipes, pebble-type heat exchanger, catalytic
reactors, thin glass bead packs etc. The preliminary analysis on porous media was executed
by Darcy [14]. An investigation of variants in porous space motion models is presented by
Alazmi et al. [15]. A detailed study of fluctuating porosity, local thermal non equilibrium
and thermal dispersion on free surface flow in porous space were checked by Alazmi
et al. [16]. Pal et al. [17] explored the aspects of radiation and porous space having variable
porosity over a vertical plate. Flows of the boundary layer saturated by nanoliquid in a
porous space were debated by Kuznetsov et al. [18]. Asghar et al. [19] illustrated both
numerical and analytical results for peristaltic transport of mixed convective flows of
viscoelastic liquid.

The main requirements of microfluidic systems are efficient pumping, accurate mixing,
and flow command. Electroosmotic pumps (EOPs), built on the principle of electroosmosis,
are more ordinary micropumps and are controlled by an external electric field adjacent
to the liquid-solid interface. Within the charged layer, an electric double layer (EDL) is
developed and linked to the outside diffuse layer. The molecules in the scattered area of
the EDL migrate when an external force field is applied, leading to mass dislocation of
the fluid caused by the density effect, also referred as electroosmotic flow (EOF). This phe-
nomenon informs implementation in medical diagnostic plans, as well as the development
of microchips for transporting small volumes and accurately mixing chemicals. Due to
the improved electroosmotic layout, instantaneous yield, and large financial advantages,
simulation of electroosmotic nanofluid flows has sparked a great deal of interest. Numerous
mathematical models consider how fluid flow behaves in diverse geometries [20–25].

The study of entropy generation is extremely important for evaluating the performance
of various industrial and engineering systems. The term entropy comes from the Greek
letter Entropia, meaning change or transition to it. Entropy computes the quantity of
energy in any system that cannot generate any output. The amount of energy produced
in any irreversible phase is called entropy generation. The entropy of reversible processes
remains unchanged. For irreversible processes, entropy always increases. Entropy is
used to improve system performance. Higher entropy production in a system increases
irreversibility, which reduces the efficiency of the system. Therefore, machines require
a small amount of entropy for better performance. The principle of entropy generation
for thermodynamic systems was originally introduced by Bejan [26]. Rashidi et al. [27]
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presented the irreversibility rate for peristaltically driven nanoliquid with blood as a base
fluid. Recently, Akbar et al. [28] highlighted the aspects of radiative heat flux and Hall
currents in peristaltic transportation of nanoliquid with irreversibility rate. Thereafter, many
researchers discuss the study of entropy generation for nanoliquids (see refs. [29–31]).

The novelty of the present communication is to study the interaction of variable fluid
properties with electrokinetically regulated peristaltic transportation of a reactive nanofluid
through an inhomogeneous porous medium. Aspects of variable thermal conductivity,
mixed convection, electric field, thermophoresis, variable viscosity, chemical reaction, vis-
cous dissipation, magnetic field, and Brownian movement are brought into contemplation.
The mathematical formulation is constructed subject to zero mass flux boundary condition.
Numerical results are computed by using NDSolve in Mathematica. Salient properties of
different integrated parameters on flow quantities are addressed via graphs and tables.

2. Problem Description

Here we considered the 2D peristaltic carriage of an aqueous solution, which varies
through an external electric field along the length of the channel. The combined effects of
peristaltic pumping and applied electric field cause fluid to flow in a symmetric channel.
The process of peristalsis occurs because sinusoidal waves passing along the channel
boundaries with a constant velocity c. The surface of the channel barrier develops a
negative charge as a result of the ions present in the fluid medium, pulling counterions
to it. This produces an EDL, a layer of counterions close to the channel boundary. The
counterions in the EDL migrate towards their respective electrodes when an electrical
source is provided through the channel’s ends, exerting a driving force on the liquid
particles. Further, it is supposed that the electric field Ex has imposed axially, and magnetic
field B0 is transversely of the fluid flow. The geometry of the problem is presented via
Figure 1. Mathematically, the boundaries of the channel walls are described as [8]:

± H(X, t) = ±a1 cos
(

2π

λ
(X− ct)

)
± d1. (1)

Here d1 and λ are respectively the half width of the channel and wavelength. The func-
tion of the electric potential in the electrolyte satisfies the Poisson equation. In accordance
with it, the electric potential Ω is expressed as [20]:

∇2Ω = −ρe

ε
. (2)

where ρe is the net charge density of the mixture at present and is defined as:

ρe = ez(n+ − n−). (3)

The Boltzmann distribution function for local ionic density is given as:

n± = n0e(±
ez

TavKB
Ω). (4)
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Figure 1. Geometric representation of the problem.

Three important aspects are considered here: convection, diffusion, and chemical
reaction. The diffusion-convection reaction illustrates how these three mechanisms affect a
substance’s concentration as it is dispersed throughout a medium. Numerous industrial
applications exist for reactive convective diffusion. The variable viscosity, porosity, and
thermal conductivity (changeable liquid characteristics) of the fluid are considered in the
analysis. Further, the aspects of mixed convection, electric field, thermophoresis, viscous
dissipation, magnetic field, chemical reaction, and Brownian movement are carried out.
Utilizing the Oberbeck-Boussinesq approximation and considering the most suitable practi-
cal case when the concentration of nanoparticles is diluted, and choosing an appropriate
reference pressure, the basic governing equations are specified as [11,22,29,31]:

∂U
∂X

+
∂V
∂Y

= 0, (5)

ρ f

(
∂U
∂t

+ U
∂U
∂X

+ V
∂U
∂Y

)
= − ∂P

∂X
+

∂

∂Y

[
µ f (T)

(
∂U
∂Y

+
∂V
∂X

)]
+ 2

∂

∂X

[
µ f (T)

∂U
∂X

]
−UB0

2σf

+
µ f (T)

k̃1
(
Y
)U + αρ f g(T − T0) + α∗ρ f g(C− C0) + ρeEx,

(6)

ρ f

(
∂V
∂t

+ U
∂V
∂X

+ V
∂V
∂Y

)
= − ∂P

∂Y
+

∂

∂X

[
µ f (T)

(
∂V
∂X

+
∂U
∂Y

)]
+ 2

∂

∂Y

[
µ f (T)

∂V
∂Y

]
+

µ f (T)

k̃1
(
Y
)V + ExB0σf ,

(7)
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(ρC) f

(
U

∂T
∂X

+ V
∂T
∂Y

+
∂T
∂t

)
=

(
∂T
∂Y

+
∂T
∂X

)[
K f (T)

(
∂T
∂X

+
∂T
∂Y

)]
+

µ f (T)

k̃1
(
Y
) (V2

+ U2
)
+ σf B0

2U2

+τ(ρC) f

[
DT
Tm

{(
∂T
∂X

)
+

(
∂T
∂Y

)}2
+ DB

(
∂T
∂X

∂C
∂X

+
∂C
∂Y

∂T
∂Y

)]

+µ f (T)

[(
∂V
∂X

+
∂U
∂Y

)2

+ 2
(

∂U
∂X

)2

+ 2
(

∂V
∂Y

)2]
+ σf (Ex)

2,

(8)

(
∂C
∂t

+ U
∂C
∂X

+ V
∂C
∂Y

)
= DB

(
∂2C

∂Y2 +
∂2C

∂X2

)
+

DT
Tm

(
∂2T

∂X2 +
∂2T

∂Y2

)
−_

γ c(C− C0). (9)

where P
(
X, Y, t

)
, T, ρf and Kf are the pressure, temperature, density, and thermal conduc-

tivity, respectively. Fixed frame to wave frame transformation is described as [22]:

x = X− ct, v(x, y) = V
(
X, t, Y

)
, p(x, y) = P

(
X, t, Y

)
, u(x, y) = U

(
Y, t, X

)
− c. (10)

In wave frame, Equations (5)–(9) become:

∂u
∂x

+
∂v
∂y

= 0, (11)

ρ f

(
(c + u)

∂u
∂x

+ v
∂u
∂y

)
= −∂P

∂x
+

∂

∂y

[
µ f (T)

{
∂v
∂x

+
∂u
∂y

}]
+ 2

∂

∂x

[
µ f (T)

∂u
∂x

]
− (u + c)B0

2σf

+
µ f (T)

k̃1(y)
U + g(T − T0)αρ f ++ρ f α∗g(C− C0) + ρeEx,

(12)

ρ f

(
(u + c)

∂v
∂x

+ v
∂v
∂y

)
= −∂P

∂y
+

∂

∂x

[
µ f (T)

{
∂v
∂x

+
∂u
∂y

}]
+ 2

∂

∂y

[
µ f (T)

∂v
∂y

]
+

µ f (T)

k̃1(y)
v + ExB0σf ,

(13)

(ρC) f

(
(u + c)

∂T
∂x

+ v
∂T
∂y

)
=

(
∂T
∂y

+
∂T
∂x

)[
K f (T)

(
∂T
∂y

+
∂T
∂x

)]
+

µ f (T)

k̃1(y)

(
(u + c)2 + v2

)
+ σf B0

2U2

+τ(ρC) f

[
DT
Tm

{(
∂T
∂x

)
+

(
∂T
∂y

)}2
+ DB

(
∂C
∂x

∂T
∂x

+
∂C
∂y

∂T
∂y

)]

+µ f (T)

[(
∂v
∂x

+
∂u
∂y

)2
+ 2
(

∂u
∂x

)2
+ 2
(

∂v
∂y

)2
]
+ σf (Ex)

2,

(14)

(
v

∂C
∂y

+ (u + c)
∂C
∂x

)
= DB

(
∂2C
∂y2 +

∂2C
∂x2

)
+

DT
Tm

(
∂2T
∂x2 +

∂2T
∂y2

)
−_

γ c(C− C0). (15)

Reynold’s model of viscosity was intimated as a [29]:

µ f (T) = µ0e−α0(T−T0), for α0 � 1, (16)

which, after performing Maclaurin’s series, can be recorded as:

µ f (T) = µ0(1− α0(T − T0)), for α0 � 1, (17)

where α0 is the dimensional viscosity parameter. Further, the temperature-depending
thermal conductivity [31] is classified as:

K f (T) = K0(1 + ξ0(T − T0)), (18)

where ξ0 is the dimensional thermal conductivity parameter.
Equations (3) and (4) in (2) and the Debye-Hückel estimation [21]:
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d2Ω
dy2 = ω2Ω. (19)

Equation (19) is subject to the assumption that the potential is fixed at the wall surface
and that the potential distribution is symmetrical about the center line.

Ω(y) = 1, at y = h,
Ω′(y) = 0, at y = 0.

(20)

where the electroosmotic parameter is represented by ω. It is given as:

ω =
d

λD
, (21)

where,

λD =
1
ez

(
εKBTav

2n0

) 1
2
. (22)

The potential function is calculated from Equation (19) subject to boundary conditions
(20) in the following manner:

Ω(y) =
cosh(ωy)
cosh(ωh)

. (23)

In view of “low Reynolds and long wavelength approximations”, Equations (12)–(15)
become:

0 = −∂p
∂x

+
∂

∂y

(
(1− αθ)

∂2ψ

∂y2

)
+ Gtθ + Gcφ−M2

(
1 +

∂ψ

∂y

)
+

1
k(y)

(
∂ψ

∂y
+ 1
)
+ UhsΩ′′ (y), (24)

0 =
∂p
∂y

, (25)

0 =
∂

∂y

[
(1 + ξθ)

∂θ

∂y

]
+ Br(1− αθ)

(
∂2ψ

∂y2

)2

+ BrM2
(

1 +
∂ψ

∂y

)2
+ S + PrNb

(
∂θ

∂y
∂φ

∂y

)
+

Br(1− αθ)

k(y)

(
∂ψ

∂y
+ 1
)2

+ PrNt

(
∂θ

∂y

)2
,

(26)

0 =
∂2φ

∂y2 +
Nt

Nb

(
∂2θ

∂y2

)
− Scγcφ. (27)

The non-dimensional quantities used in the aforementioned calculations are:

x =
x
λ

, t =
ct
λ

, h =
H1

d1
, a =

a1

d1
, p =

d2
1 p

cλµ0
, υ =

µ0

ρ f
, y =

y
d1

, v =
v
cδ

, δ =
d1

λ
, ξ = ξ0T0,

K(θ) =
K(T)

K0
, M2 =

σf

µ0
B2

0d1
2, u =

u
c

, Re =
ρ f cd1

µ0
, Pr =

µ0C f

K0
, Ec =

c2

C f T0
, α = α0T0

φ =
C− C0

C0
, θ =

T − T0

T0
, Br = Pr.Ec, Nt =

τDTT0

νTm
, Nb =

τDBC0

ν
, S =

d1
2σf E2

x

K0T0
, v = −ψx,

Sc =
µ0

ρ f DB
, Gt =

ρ f gαd1
2T0

µ0c
, Gc =

ρ f gα∗d1
2C0

µ0c
, u = ψy, Uhs = −

εEx

µ0c
, γc =

_
γ cd2

1
ν

,

k(y) =
k̃1(y)

d2
1

.

(28)

Also, the continuity Equation (11) is identically satisfied. In given equations, Re, Ec,
θ, Pr, M, Gc, Uhs, S, γc, Nt, Sc, Gt and Nb are the dimensionless Reynolds number, Eckert
number, temperature, Prandtl number, Hartman number, concentration Grashoff number,
Helmholtz–Smoluchowski velocity, Joule heating parameter, chemical reaction parameter,
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thermophoresis parameter, Schmidt number, thermal Grashoff number and Brownian
motion parameter, respectively.

The relation between porosity and permeability is given as [11]:

k(y) =
dp

2ς2

150(1− ς)2 . (29)

where dp is the diameter of the pore. Alazmi and Wafai [15,16] showed that porosity
depends on the normal distance from the boundary, given as:

ς = C0

(
1 + C1 exp

(
−C2y

dp

))
. (30)

The values of C1, C2, and C0 are respectively chosen to be 1, 2 and 0.37 [11]. The mean
flows η and F in laboratory and wave frames are defined as:

η = F + 1. (31)

Kuznetsov and Nield [18] suggested that it is more appropriate to take thermophoresis
at the boundaries instead of assessing constant nanomaterials concentration at the walls.
Mathematically it is defined as:

DB
∂C
∂Y

+
DT
Tm

∂T
∂Y

= 0, at Y = ±H. (32)

The dimensionless boundary conditions in moving frame are:

ψ = 0,
∂2ψ

∂y2 = 0,
∂θ

∂y
= 0,

∂φ

∂y
= 0 at y = 0,

ψ = F,
∂ψ

∂y
= −1, θ = 0, Nb

∂φ

∂y
+ Nt

∂θ

∂y
= 0 at y = h.

(33)

3. Entropy Generation

It is well known from thermodynamics that the loss of energy in a system contributes
to thermodynamic irreversibility, and this produces entropy. Entropy generation is a degree
of chaos in a thermodynamic system. In the present study, entropy production comes
from various sources such as viscous dissipation, variable porosity, diffusion and EMHD
irreversibility. The strength of entropy production (NS) is defined as:

NS = (1 + ξθ)

(
∂θ

∂y

)2
+ Br(1− αθ)

(
∂2ψ

∂y2

)2

+ BrM2
(

1 +
∂ψ

∂y

)2
+ S + PrNb

(
∂θ

∂y
∂φ

∂y

)
+

Br(1− αθ)

k(y)

(
1 +

∂ψ

∂y

)2
+ PrNt

(
∂θ

∂y

)2
.

(34)

Bejan number is assigned as the proportion of entropy produced by thermal irre-
versibility to total entropy:

Be =

(1 + ξθ)

(
∂θ

∂y

)2

 (1 + ξθ)

(
∂θ

∂y

)2
+ Br(1− αθ)

(
∂2ψ

∂y2

)2

+ BrM2
(

1 +
∂ψ

∂y

)2
+ S

+PrNb

(
∂θ

∂y
∂φ

∂y

)
+

Br(1− αθ)

k(y)

(
1 +

∂ψ

∂y

)2
+ PrNt

(
∂θ

∂y

)2


. (35)

The Bejan number (Be) is a parameter that reflects the significance of thermal irre-
versibility in the domain.
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The analytical solution of the Equations (24)–(27) in these settings is not an easy job.
Findings are graphically interpreted in the next segment. Therefore, the set of differen-
tial Equations (24)–(27) subject to boundary conditions (33) are numerically resolved by
utilizing NDSolve in Mathematica 13.1. This approach is very effective and beneficial
for boundary value problems. Additionally, a step size of 0.01 allows for consistent ad-
justments of both x and y. The accuracy of this methodology is remarkable and is stable
unconditionally.

4. Results and Discussion

Numerical findings are discussed in this section. Graphs for heat transfer, irreversibil-
ity rate, Bejan number, concentration and velocity profiles are gained and evaluated. Nu-
merical values of HMT rate at the boundary are displayed via tables.

4.1. Temperature Profile

Figure 2a–f are devoted to estimate the alteration in temperature profile subject to
variation in S, ω, Nt, Nb, ξ and M. Figure 2a reports that temperature profile becomes
higher by enhancing S. An electrolyte solution’s resistance to the flow of an electric current
is measured by the Joule heating parameter. When S is high, heat production increases
as a result of the extraordinarily high drag forces. From Figure 2b, temperature is larger
and more progressive on increasing the electroosmotic parameter. Figure 2b reflects that
the strongerω raises the nanofluid temperature. This behavior is expected because higher
values of ω cause a thin EDL, so the mass of the liquid proceeds toward the central part
of the pump, which raises the temperature of the nanofluid due to significant convection.
Figure 2c displays that temperature increases by enhancing the values of Nt. Similarly, an
expansion in nanoliquid temperature is seen by expanding the values of Nb (see Figure 2d).
This is mainly because an improvement in Brownian motion parameter enhances the kinetic
energy that converts into internal energy and thereby improves the temperature. A similar
inclination was uncovered by Shehzad et al. [8]. Figure 2e shows that the temperature
declines by increasing the thermal conductivity parameter. However, a maximum tempera-
ture is obtained for constant thermal conductivity. The reason for this is that the liquid’s
capability to retain or radiate heat to its vicinity can be regulated by a fluid’s thermal
conductivity. When ξ increases, the thermal conductivity of the system is also growing.
Therefore, the temperature profile declines. Figure 2f portrays that a stronger magnetic
field significantly raises the temperature of nanofluid. This is due to the Joule heating
effects. Figure 2g is outlined to assess and measure the temperature of different basic fluids
(water and kerosene). It is noticed that the temperature of water is comparatively lower
than that of kerosene.
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4.2. Heat Transfer Rate at the Wall

Bar charts in Figure 3a–d are prepared to examine the behavior of rate of heat transfer
at the wall −θ′(h) versus various flow parameters. Bar chart in Figure 3a reflects that
addition in S develops the θ′(h). S is related to a square of solidity of the electric field,
so an expansion in S is physically correlated with an intense electric field, which in turn
accelerates fluids faster and improves convective heat transmission. Therefore, there is a
notable increase in the rate of heat transfer. ω with it rising values raises the heat transfer
rate (see bar chart in Figure 3b). Since the electroosmotic parameter is inversely proportional
to the Debye length, an augmentation in electroosmotic factor reduces the characteristic
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Debye length, which results in a growth of −θ′(h). A similar effect was documented in the
research of Hussain et al. [25]. However, the situation is reversed for ξ. From bar chart in
Figure 3c, a reduction in −θ′(h) is witnessed by increasing ξ. Bar chart in Figure 3d exhibits
that heat transfer rate significantly improves for higher M. Figure 3e is acquired to measure
−θ′(h) for two different base liquids (kerosene and water). It is assessed that an excessive
value of −θ′(h) is achieved by kerosene as compared to water.
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4.3. Entropy Analysis

The physical impacts of S, ω, ξ and Gt on entropy generation number (Ns) are shown
through Figure 4a–d. Notably, the entropy generation curves exhibit a parabolic tendency
with the lowest value close to the channel’s center. The involvement of a Joule heating
parameter further amplified the irreversibility process (see Figure 4a). Nanofluid tempera-
ture is high due to Joule heating parameter, and then the entropy also increases. This is
consistent with the results of Akbar and Alotaibi [22]. It can be perceived from a Figure 4b
that an augmentation in the electroosmotic parameter causes a notable increase in entropy
generation. Figure 4c elucidates that entropy generation suppresses for higher ξ. Since a
larger amount of ξ led to a reduction in temperature and, consequently, less disturbance.
From this analysis, we conclude that for thermal management of biomedical instruments,
the variable thermal conductivity must be taken into consideration. However, a reverse
fashion is detected for larger Gt (see Figure 4d). The process of irreversibility is even more
intensified in the presence of mixed convection.
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4.4. Bejan Number

Figure 5a–c gives the effects of S, ω and ξ on Bejan number (Be). In all plots, Bejan
number has a supreme value at the wall of the channel (y = h). The interval of Be lies
between 0 and 1. In certain cases, if Be → 1, in physical terms it indicates that the entropy
generation due to heat conduction (HE) is much greater than total entropy generation
(TE). While, Be → 0, this represents that HE is much less than TE. Figure 5a reflects that
the strength of Bejan number is intensified by highlighting S. An increase in S reduces
the overall irreversibility, which leads to an increase in the Bejan number. Analogous
behavior is also encountered for greater ω. Figure 5c expresses that by mounting the
thermal conductivity parameter, Bejan number is weakening.
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4.5. Nanoparticles Concentration

Impacts of Sc, γ, Nt and Nb on nanoparticles concentration are examined through
Figure 6a–d. The resulting sketches manifest that the concentration profile near the walls
of the channel is influenced by the parameters contained in the transition. This is pri-
marily due to zero mass flux conditions for the concentration being regarded. Figure 6a
portrays that nanoparticles concentration suppresses for larger Sc. Since Sc is inversely
proportional to mass diffusion, therefore higher Sc causes a decrease in the mass diffusion
rate, which ultimately reduces the concentration of nanoparticles. Figure 6b articulates
that nanoparticles concentration is reduced for larger γ. Physical support is provided by
the fact that the interfacial mass transfer rate is consolidated as a result of γ, which lowers
the concentration profile. Figure 6c describes that a substantial decrease in concentration
profile is perceived when Nt is being augmented. Figure 6d indicates that the concentration
rises through improved values of Nb. However, the situation is reversed near the channel
wall. The progression of Nb enhances the random motion of nanomaterials, which leads to
an elevated concentration of nanomaterials.
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4.6. Rate of Mass Transfer at the Boundary

Table 1 is arranged to see the behavior of various parameters on mass transfer rate at
boundary φ′(h). This table signifies that φ′(h) rises by expanding the values of Sc, γ and Nt
whereas it shows decreasing behavior by increasing Nb.

Table 1. Mass transfer rate at the channel wall against different flow parameters.

Sc γc Nb Nt φ’(h)

0.1 1.0 0.03 0.5 3.6417
0.2 4.1224
0.3 4.7646
0.2 0.0 3.2667

0.5 3.6417
1.0 4.1224

0.1 21.3819
0.2 9.8702
0.3 6.6527

0.1 0.7094
0.2 1.4692
0.3 2.2861

4.7. Velocity Profile

Figure 7a–e are sketched to investigate the behavior of Helmholtz Smoluchowski
velocity/electroosmotic velocity (Uhs), electroosmotic parameter (ω), variable viscosity
parameter (α), Hartman number (M) and concentration Grashof number (Gc) on velocity
profile. According to Figure 7a, a higher Uhs causes a decline in velocity in the middle
of channel, while the reverse trend is observed at the boundaries. A positively oriented
external electric field can be obtained when Uhs is negative. The reverse axial electric
field can be archived when Uhs is positive, and there is no electric field when Uhs = 0. For
negative Uhs, the electroosmotic velocity adds to the peristaltic motion’s velocity, increasing
the final axial velocity. The only source of fluid acceleration when Uhs = 0 is peristalsis,
so the velocity is significantly lower than it would be for negative values. However, at
positive values, the electroosmotic velocity opposes peristaltic pumping; as a result, the
least acceleration of the liquid is observed in this situation. As a result, the direction
inside the channel and the electric field’s direction plays a crucial role in determining
the characteristics of the velocity distribution. Figure 7b shows that the nanofluid flow
increases with increasing electroosmotic parameter. A higher value of the electroosmotic
parameter indicates the presence of a higher concentration of ions (in the base fluid),
which is responsible for the formation of a thinner EDL layer, thereby creating a lower
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velocity resistance force, and hence the fluid flow is increased. It is necessary to state that
the magnetohydrodynamic body force is inferior to the electrokinetic effect in terms of
hydrodynamic control, and this is crucial for the precise design of micropumps. From
Figure 7c, an increment in α yields to an increase in nanofluid velocity. This means that
the nanofluid has a higher velocity near the middle of the channel than a nanoliquid with
a constant viscosity (α = 0) depending on the temperature. Strengthening the viscosity
parameter α lowers the viscosity of the nanofluid and therefore resistance to flow, which
enhances the nanofluid velocity. A stronger magnetic field results in a lower velocity (see
Figure 7d). This is due to the emergence of Lorentz forces. Such trends have been reported
in Abbasi et al. [11]. Figure 7e elucidates that velocity retards by increasing the values of
Gc. This is primarily because with an increase in Gc the viscosity of nanoliquid increases
which lessens the movement of nanoliquid.
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5. Conclusions

The present study examines the interaction of variable fluid properties with electroki-
netically regulated peristaltic transportation of a reactive nanofluid embedded in a porous
space. The ensuing key facts have been produced from the above investigation:

• More energy is contributed to the nanofluid system in response of the Joule heating
parameter.

• An inclining change in heat transfer rate at the wall associated with the larger Elec-
troosmotic parameter is exhibited.

• It is noticed that the temperature of water is comparatively lower than that of kerosene.
• Entropy generation suppresses for higher variable thermal conductivity parameter.
• The process of irreversibility is even more intensified in the presence of mixed convec-

tion.
• The magnitude of Bejan number is enhanced by increasing electroosmotic parameter.
• A substantial decrease in nanoparticles concentration is perceived when chemical

reaction parameter is being augmented.
• A significant increase in mass transfer rate at the wall is found at a higher Schmidt

number.
• A positively oriented external electric field contributes to the velocity of nanofluid.
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Nomenclature

(
⇀
x ,

⇀
y ): Coordinates in wave frame

(
⇀
U,

⇀
V): Velocity components in lab frame

(
⇀
u ,

⇀
v ): Velocity components in wave frame

n0: Concentration of ions at the bulk
e: Electronic charge
c: Speed of peristaltic wave
→
J : Current density
→
B : Applied magnetic field
KB: Boltzmann constant
→
E : Applied electric field
Cf: Specific heat of fluid
µf: Viscosity of fluid
T: Dimensional temperature
δ: Wave number
z: Charge balance
σf : Electric conductivity of fluid
g: Acceleration due to gravity

(
⇀
X,

⇀
Y ): Coordinates in lab frame

P: Dimensional pressure
Tw: Temperature at channel wall
p: Dimensionless pressure
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T0: Temperature of wall
F: Dimensionless flow rate in wave frame
θ: Dimensionless temperature
ψ: Stream function
η: Dimensionless flow rate in laboratory frame
Pr: Prandtl number
Kf: Thermal conductivity of fluid
Re: Reynolds number
Br: Brinkman number
Tav: Average temperature of the electrolytic solution
Ec: Eckert number
ρf: Density of fluid
Gt: Temperature Grashoff number
M: Hartman number
λ: Wavelength
d1: Half width of the channel
n+ and n−: Number of densities of cations and anions
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