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Abstract: In this paper we consider general continuous propositional logics and prove some basic
properties about them. First, we characterize full systems of continuous connectives of the form
t , ´, f uwhere f is a unary connective. We also show that, in contrast to the classical propositional
logic, a full system of continuous propositional logic cannot contain only one continuous connective.
We then construct a closed full system of continuous connectives without any constants. Such a
system does not have any tautologies. For the rest of the paper we consider the standard continuous
propositional logic as defined by Yaacov, I.B and Usvyatsov, A. We show that Strong Compactness and
Craig Interpolation fail for this logic, but approximated versions of Strong Compactness and Craig
Interpolation hold true. In the last part of the paper, we introduce various notions of satisfiability,
falsifiability, tautology, and fallacy, and show that they are either NP-complete or co-NP-complete.
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1. Introduction

In [1] Ben Yaacov and Usvyatsov developed continuous first-order logic as a variant
of the logic studied by Chang and Keisler [2]. This logic turns out to be very useful in the
study of metric structures. For instance, Ben Yaacov [3] proved that the linear isometry
group of the Gurarij space is universal among all Polish groups by viewing Banach spaces
as continuous first-order structures. Another example is the metric Scott analysis developed
in [4] where the infinitary continuous first-order logic is used.

In this paper we study continuous propositional logic in the framework of continuous
first-order logic of [1], because some basic questions about continuous propositional logic
have not been addressed in previous research. For example, in [1] the notion of full
connective systems was defined, it was shown that the system t^, ´, x

2 u is full, and this
system had then been adopted as the standard connective system for the rest of the study.
Here we give a more complete analysis of full connective systems. In particular, we give a
characterization of the unary connectives f where t^, ´, f u forms a full system. Another
curious issue is the existence of a full system of connectives with only one connective. In the
case of classical propositional logic, such systems exist; an example is t|uwhere | denotes
the Sheffer stroke (also known as the nand operation), which is a binary connective. We
will show that the situation is quite different in continuous propositional logic, that no such
singleton system can be full, regardless of the arity of the connective. We will also construct
a closed full system of connectives which contains no constants. This is curious because in
the corresponding continuous propositional logic there are no tautologies.

In [5] Ben Yaacov and Pedersen introduced a deductive system and showed that the
Completeness theorem holds for continuous first-order logic. It follows that the Compact-
ness theorem holds, which states that a set of formulas in continuous first-order logic is
satisfiable iff every finite subset of it is satisfiable. The axioms they used for continuous
propositional logic is a natural extension of the axioms of Łukasiewicz logic (cf. e.g., [6]).
In fact Ben Yaacov in [7] gave a more explicit treatment of continuous propositional logic
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and verified directly its Completeness. Here we consider Strong Compactness, which
is the possible equivalence between Σ |ù p and Σ1 |ù p for a finite subset Σ1 of Σ. We
will see that this Strong Compactness fails, and instead we establish an Approximated
Compactness theorem in a style similar to an Approximated Completeness theorem proved
by Ben Yaacov [7]. Similarly, we give examples where the Craig Interpolation theorem fails,
but prove an Approximated Interpolation theorem for continuous propositional logic.

In the last part of the paper we consider the complexity of decidability problems
for continuous propositional logic. In analogy with the classical propositional logic, we
show that the satisfiability problem for continuous propositional logic is NP-complete and
the tautology problem for continuous propositional logic is co-NP-complete, except that
the satisfiability problem and the tautology problem for continuous propositional logic
take more than one form according to a set threshold. Formally, in Section 4 we define,
for rationals α P p0, 1s and β P r0, 1q the notions of ăα-satisfiability, ăα-tautologies, α-
falsifiability, α-fallacies, β-satisfiability, β-tautologies, ąβ-falsifiability, and ąβ-fallacies.
We define a particular full system of connectives P , which is a natural extension of the
standard system t , ´, x

2 u. We completely characterize the complexity for these notions
as follows.

Theorem 1. Let F be a finite subset of P . Suppose F contains , ´. Then for all rational α P p0, 1s
and β P r0, 1q:

• the following sets of formulas in F are NP-complete:

1. ăα-satisfiable formulas;
2. α-falsifiable formulas;
3. β-satisfiable formulas;
4. ąβ-falsifiable formulas;

• the following sets of formulas in F are co-NP-complete:

5. ăα-tautologies;
6. α-fallacies;
7. β-tautologies;
8. ąβ-fallacies.

Mundici [8] had shown that for F “ t , ´u, the set of all <1-satisfiable formulas in F
is NP-complete. Our result is a generalization.

The rest of the paper is organized as follows. In Section 2 we study fullness of con-
nective systems. In Section 3 we discuss the Strong Compactness and Craig Interpolation
theorems. In Sections 4 and 5 we investigate the decidability problems considered in
Theorem 1 and determine their complexity.

2. Fullness of Connective Systems

Our presentation of the continuous propositional logic will (almost) follow [1], with only
two exceptions, which we will explain soon below.

For n ě 0, an n-ary continuous connective is a continuous function from r0, 1sn to r0, 1s.
The set of all 0-ary continuous connectives consists of all constant functions Ca ” a for

a P r0, 1s. They serve as continuous truth values. They generalize traditional discrete truth
values J “ T “ 0 and K “ F “ 1. Note that, following [1], truth corresponds to 0 and
fallacy corresponds to 1, for good technical reasons.

The set of all unary continuous connectives consists of all continuous functions from
r0, 1s to r0, 1s. In classical propositional logic there is only one unary connective (negation).
Here we define

 x “ 1´ x

for x P r0, 1s. Obviously  x “ 0 iff x “ 1, and  x “ 1 iff x “ 0; thus the definition is
consistent with the traditional definition of  .
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In classical propositional logic, ^ (conjunction), _ (disjunction) are standard binary
connectives. In continuous propositional logic, we define them as follows:

x^ y “ maxtx, yu,
x_ y “ mintx, yu.

One can check that they generalize the traditional definitions, that is,

x^ y “ 0 ðñ x “ 0 and y “ 0, x^ y “ 1 ðñ x “ 1 or y “ 1
x_ y “ 0 ðñ x “ 0 or y “ 0, x_ y “ 1 ðñ x “ 1 and y “ 1

The reason we are presenting these obvious computations is that in [1] and all other
recent literature their definitions were swapped. Of course, our system is isomorphic
to theirs.

It is well known that in classical propositional logic, one can express any connective of
arbitrary arity using either  ,_ or  ,^. This is no longer true in continuous propositional
logic. An important development is to consider the binary continuous connective ´,
defined as

x ´ y “ maxtx´ y, 0u.

In the presence of  , we do not lose expressive power by adopting ´ instead of _ or
^, because

x_ y “ x ´ px ´ yq,
x^ y “  p x_ yq.

Sometimes it is convenient to use the following redundant binary continuous connec-
tive as a dual of ´:

x ` y “  p x ´ yq.

As for continuous connectives of higher arity, we only specify the projections as below.
For n ě 1 and 1 ď i ď n,

Pn
i px1, . . . , xnq “ xi.

It is conventional to consider only connective systems of continuous propositional
logic where all the Pn

i are present.

Definition 1. A system of continuous connectives is a sequence F “ tFn : n ă ωu where
each Fn is a collection of continuous functions from r0, 1sn to r0, 1s. The closure of F , denoted F ,
is the smallest system G “ tGn : n ă ωu of continuous connectives satisfying:

• for all n ă ω, Fn Ď Gn;
• for all n ě 1 and 1 ď i ď n, Pn

i P Gn; and
• if f P Gn and g1, . . . , gn P Gm, then f ˝ pg1, . . . , gnq P Gm.

F is closed if F “ F .

Although it is a slight abuse of notation, we usually present a system F as a single set of
connectives if the arities of the connectives are clear from the context. The above definition
is slightly different from that in [1]; this definition formalizes the above convention that all
projections are considered part of any connective system.

Definition 2 ([1]). A system of continuous connectives F is full if, letting F “ tFn : n ă ωu,
for every 0 ă n ă ω, the set Fn is dense in the space of all continuous functions from r0, 1sn to
r0, 1s, equipped with the compact-open topology (equivalently, uniform convergence topology).

Note that fullness does not require that the closure of the system has constants. Later
in this section we will give an example of a closed full system without any constants.

The basic tool to study full connective systems in continuous propositional logic is the
following lattice version of the Stone–Weierstrass theorem.
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Theorem 2 (Stone–Weierstrass Theorem, lattice version [1]). Let X be a compact Hausdorff
space containing at least two points. Equip CpX, r0, 1sq with the uniform convergence topology. Let
S Ď CpX, r0, 1sq be a sub-lattice (i.e., for g, h P S we have mintg, hu, maxtg, hu P S) such that for
every distinct x, y P X, a, b P r0, 1s, and ε ą 0, there is f P S such that | f pxq ´ a|, | f pyq ´ b| ă ε.
Then S is dense in CpX, r0, 1sq.

The following theorem was proved in [1].

Theorem 3 ([1]). Let X be a compact Hausdorff space. Assume that S Ď CpX, r0, 1sq is closed
under  and ´, separates points in X (i.e., for any two distinct x, y P X, there is f P S such that
f pxq ‰ f pyq), and satisfies either of the following two additional properties:

(i) The set C “ ta P r0, 1s : Ca P Su is dense in r0, 1s.
(ii) S is closed under the function x ÞÑ x

2 .

Then S is dense in CpX, r0, 1sq.

The proof of Theorem 3 gives that the following system of continuous connectives is
full:

tpCaqaPA, C1, ´u

where A Ď r0, 1s is dense.
Theorem 3 also implies that

!

 , ´,
x
2

)

is a full set of continuous connectives. This system has been adopted as the standard
connective system for continuous propositional logic. However, before we focus on this
system, we will prove some basic results about general connective systems.

What follows is a characterization of unary continuous functions f where t , ´, f u
is full.

Definition 3. A set A Ď r0, 1s is a t , ´u-algebra if A contains 0 and is closed under  and ´.
Let S Ď r0, 1s. The t , ´u-algebra generated by S, denoted AS, is the smallest t , ´u-algebra
containing all elements of S. A is finitely generated if A “ AS for some finite set S Ď r0, 1s.

Lemma 1. For any nonempty finitely generated t , ´u-algebra A, exactly one of the follow-
ing holds:

(i) There is an irrational 0 ă α ă 1 such that

ta P r0, 1s : a ” kα mod 1, k ě 1u Ď A.

In particular, A is dense in r0, 1s.
(ii) A is finite, and there is an N ě 1 such that A “ tk{N : 0 ď k ď Nu.

Proof. Note that any t , ´u-algebra contains 0 and 1 and is closed under ´ and `. If A
contains an irrational α P r0, 1s, then ta P r0, 1s : a ” kα mod 1, k ě 1u Ď A and A is
dense. Otherwise, A contains only rational numbers. Since A is closed under ´ and `,
for any a, b P A, gcdpa, bq P A, where gcdpa, bq is the great common divisor of a and b,
i.e., the largest rational c such that a{c and b{c are both integers. It follows that A is finite
if A has only finitely many rational generators. Letting a P A be the smallest nonzero
number in A, then gcdpa, 1q “ a. This means that a “ 1{N for some N ě 1. We have
A “ tk{N : 0 ď k ď Nu.

Definition 4. Let f : r0, 1s Ñ r0, 1s be a continuous function. Define

A0 “ the t , ´u-algebra generated by t f p0q, f p1qu
An`1 “ the t , ´u-algebra generated by An Y f pAnq
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Let A f “
Ť

n An. A f is called the t , ´u-algebra generated by f .

Proposition 1. Let f : r0, 1s Ñ r0, 1s be a continuous function. Then the following are equivalent:

1. t , ´, f u is a full system of continuous connectives.
2. A f is infinite.

Proof. Since ` can be expressed from  and ´, when A f is infinite the set of all constants
in the closure of t , ´, f u is dense in r0, 1s. By Theorem 3, t , ´, f u is full. Conversely,
suppose A f is finite. It is easy to see by induction that for any n-ary function g of the closure
of t , ´, f u, n ě 1, if x P A f then gpx, . . . , xq P A f . Thus the set of n-ary functions of the
closure of t , ´, f u is not dense in Cpr0, 1sn, r0, 1sq.

Some examples of f that give fullness include

1. any continuous f that is strictly increasing and satisfies f p0q ą 0 or f p1q ă 1;
2. any continuous f that is strictly decreasing and satisfies f p0q ă 1 or f p1q ą 0;
3. any continuous f with f p1q irrational.

Next we turn to some examples of non-full systems.
It follows from Proposition 1 that t , ´u is not full. Since the closure of t , ´u contains

0, 1, ,^,_ it follows that t0, 1, ,^,_u is also not full.

Lemma 2. Suppose F contains only functions that are 1-Lipschitz in each variable. Then F is
not full.

Proof. The set of 1-Lipschitz unary functions is not dense in Cpr0, 1s, r0, 1sq.

Example 1. The system t0, 1, ,^,_, x
2 u is not full. By induction one can verify that every

function in the closure of the system is 1-Lipschitz in every variable.

In classical propositional logic the system t | u is full, where | is the Sheffer stroke (or
nand), defined as

x | y “  px^ yq.

The following result shows that in continuous propositional logic there is not a single
function f such that t f u is full.

Proposition 2. For every continuous function f : r0, 1sn Ñ r0, 1s, t f u is not a full system of
continuous connectives.

Proof. Define gpxq “ f px, . . . , xq. Then g : r0, 1s Ñ r0, 1s and has a fixed point x0. Now we
claim that for all h in the closure of t f u, hpx0, . . . , x0q “ x0. This is proved by induction.
When h “ f or h is a projection, this is obvious. For compositions, it is true by induc-
tion. Now t f u is not full since the unary functions in the closure of t f u is not dense in
Cpr0, 1s, r0, 1sq.

We do not know if there is a unary function f such that t0, ,^, f u is full.

Definition 5. A tautology in continuous propositional logic is a formula f px1, . . . , xnq such that
f px1, . . . , xnq ” 0 for all x1, . . . , xn P r0, 1s. A formula f px1, . . . , xnq is satisfiable if there are
x1, . . . , xn P r0, 1s such that f px1, . . . , xnq “ 0.

Note that the projection functions are always satisfiable, so the set of satisfiable
formulas is always nonempty.

Proposition 3. There exists a closed full system of continuous connectives without any constants.
In particular, there are no tautologies in this system.
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Proof. Let F1 consist of all piecewise linear functions f on r0, 1s (i.e., there is a finite
sequence x0 “ 0 ă x1 ă ¨ ¨ ¨ ă xm “ 1 such that @0 ď i ď m´ 1, f is linear on rxi, xi`1s)
such that f is not constant on any interval. Consider the system F “ tFn : n ă ωuwhere
F1 is defined as above, F2 “ t^,_u, and Fn “ ∅ for n ‰ 1, 2. Then F is a closed system, F
separates points, and the set of all n-ary functions of F , for any n ě 1, is a sub-lattice in
Cpr0, 1sn, r0, 1sq. Theorem 2 implies that F is full.

We verify that F does not contain constant functions. First, note that F1 is closed under
composition, ^, and _, and it does not contain constant functions. Next, we claim that for
any n-ary g of F , n ě 1, f pxq “ gpx, . . . , xq P F1. This can be seen by noting that it is true
for Pn

i for all n ě 1 and 1 ď i ď n, and is preserved under composition, ^, and _. Thus g is
not a constant function.

We will use the following observation in the next section.

Lemma 3. The constant formulas in the closure of the system t , ´, x
2 u takes values only in dyadic

rationals.

Proof. By induction one can verify that the linear functions used to express any formula
in the closure of t , ´, x

2 u has dyadic rationals as coefficients. Now if f px1, . . . , xnq is a
constant function in the closure of t , ´, x

2 u then the constant value is f p0, . . . , 0q, which is
a dyadic rational.

3. Strong Compactness and Craig Interpolation

Throughout this section we fix the full system t , ´, x
2 u for continuous proposi-

tional logic.
The deduction system for continuous propositional logic is an adaptation of the

Łukasiewicz axioms studied in many-valued logics, particularly fuzzy logic. The reader
can refer to [9,10] for more background information about fuzzy logic, many-valued logic,
and their basic model theory.

The Łukasiewicz axioms are:

(A1) pp ´ qq´ p
(A2) ppr ´ pq´ pr ´ qqq´ pq ´ pq
(A3) pp ´ pp ´ qqq´ pq ´ pq ´ pqq
(A4) pp ´ qq´ p q ´ pq

The Modus Ponens rule specifies the procedure to make deductions:

p, q ´ p
q

This deduction system consistitutes the Łukasiewicz logic, denoted as Ł, which is a
many-valued logic originally proposed by Łukasiewicz.

Following [5,7] we consider two more axioms in continuous propositional logic:

(A5) 1
2 p ´ pp ´ 1

2 pq

(A6) pp ´ 1
2 pq´ 1

2 p

Denote the deduction system as CŁ. We write Σ $CŁ p if p is deducible from the
formulas in Σ, together with axioms (A1)–(A6), by repeatedly applying the Modus Ponens
rule in CŁ. Similarly, we also write Σ (CŁp if all truth value assignments that evaluate all
formulas in Σ to be 0 also evaluate p to be 0. If the context is clear we omit the superscripts
for notational simplicity.
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Satisfiability and consistency of a set of formulas are defined in the most natural
way. The soundness of the continuous propositional logic is obvious. The following
Completeness theorem was proved in [7].

Theorem 4 ([7]). Let Σ be a set of formulas in continuous propositional logic. Then Σ is consistent
iff Σ is satisfiable.

The following weak Compactness theorem is a corollary of the above theorem.

Theorem 5. Let Σ be a set of formulas in continuous propositional logic. Then Σ is satisfiable iff
any finite subset Σ1 of Σ is satisfiable.

The following Approximated Strong Completeness for continuous propositional logic
is also a corollary of the Completeness theorem.

Theorem 6 ([7]). Let Σ be set of formulas and p be a formula in continuous propositional logic.
Then Σ ( p iff Σ $ p ´ 2´n for all n ă ω.

This is the best one can do; the Strong Completeness for continuous propositional
logic fails. To see this, consider Σ “ tp ´ 2´n : n ě 1u, where p is an atomic formula. Then
Σ ( p but Σ & p.

This same example also shows that the Strong Compactness for continuous proposi-
tional logic fails, since we have Σ ( p but there is no finite Σ1 Ď Σ with Σ1 ( p.

We do, however, have an approximated version of the Strong Compactness theorem
as a corollary of the Approximated Strong Completeness theorem.

Theorem 7 (Approximated Strong Compactness). Let Σ be set of formulas and p be a formula
in continuous propositional logic. If Σ ( p and n ă ω then there is a finite Σ1 Ď Σ such that
Σ1 ( p ´ 2´n.

Proof. Suppose Σ ( p and n ă ω. By Theorem 6 Σ $ p ´ 2´n. Thus there is a finite Σ1 Ď Σ
such that Σ1 $ p ´ 2´n. By Theorem 4 we have Σ1 ( p ´ 2´n.

Next we note that the Craig Interpolation theorem for continuous propositional logic
fails. Let x, y, z be atomic propositions and consider

ppx, yq “ p1 ´ px ´ yqq´ px ´ yq
qpx, yq “ ppx, yq _ ppy, xq
rpx, yq “ |x´ y| “ px ´ yq` py ´ xq “ px ´ yq _ py ´ xq
ϕpx, yq “ qpx, yq ^ rpx, yq
ψpy, zq “ p1 ´ ϕpy, zqq´ ϕpy, zq

Observe that for all x, y, z P r0, 1swe have

ϕpx, yq ě
1
3
ě ψpy, zq.

Thus ( ψ ´ ϕ. Assume θpyq is any formula satisfying ( ψ ´ θ and ( θ ´ ϕ. Observe
further that for any y P r0, 1s,

inf
x

ϕpx, yq “
1
3
“ sup

z
ψpy, zq.

We conclude that θpyq ” 1
3 , that is, it is a constant unary function that takes value 1

3 ,
contradicting Lemma 3.

The following is an Approximated Craig Interpolation theorem for continuous propo-
sitional logic.
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Theorem 8 (Approximated Craig Interpolation). Let ϕp~x,~yq and ψp~y,~zq be formulas in con-
tinuous propositional logic. Suppose ( ϕ ´ ψ. Then for any n ă ω there is a formula θp~yq such
that ( ϕ ´ θ and ( pθ ´ ψq´ 2´n. Similarly, for any n ă ω there is a formula θ1p~yq such that
( pϕ ´ θ1q´ 2´n and ( θ1 ´ ψ.

Proof. From ( ϕ ´ ψ we conclude that for any ~y,

sup
~x

ϕp~x,~yq ď inf
~z

ψp~y,~zq.

Let f p~yq “ inf~z ψp~y,~zq. Then f is continuous. By the fullness of continuous proposi-
tional logic, there is a formula θ0p~yq such that

sup
~y
|θ0p~yq ´ f p~yq{2´ 2´n´2| ď 2´n´2.

Let θ “ θ0 ` θ0. Then for any ~y,

θp~yq “ θ0p~yq` θ0p~yq ě f p~yq{2 ` f p~yq{2 “ f p~yq ě sup
~x

ϕp~x,~yq ě ϕp~x,~yq

and thus ( ϕ ´ θ. On the other hand,

θp~yq ´ ψp~x,~yq ´ 2´n ď 2pθ0p~yq ´ f p~yq{2´ 2´n´2q ´ 2´n´1 ď 0.

Thus ( pθ ´ ψq´ 2´n.

4. Complexity of Decidability Problems, Part I

In this and the next sections we prove Theorem 1. First we define the relevant concepts.
Recall that we have defined the notion of tautology and satisfiability. Here we expand to
some other notions.

Definition 6. A formula f px1, . . . , xnq of continuous propositional logic is

• a fallacy if  f is a tautology, i.e., for all x1, . . . , xn P r0, 1s,

f px1, . . . , xnq “ 1;

• falsifiable if there are x1, . . . , xn P r0, 1s such that f px1, . . . , xnq “ 1.

Definition 7. Fix α P r0, 1s. A formula f px1, . . . , xnq of continuous propositional logic is

• an α-tautology if for all x1, . . . , xn P r0, 1s, f px1, . . . , xnq ď α;
• an α-fallacy if for all x1, . . . , xn P r0, 1s, f px1, . . . , xnq ě α;
• α-satisfiable if there are x1, . . . , xn P r0, 1s such that f px1, . . . , xnq ď α;
• α-falsifiable if there are x1, . . . , xn P r0, 1s such that f px1, . . . , xnq ě α.

One can similarly define the notion of ăα-tautology and ăα-satisfiability for α P p0, 1s and that of
ąα-fallacy and ąα-falsifiability for α P r0, 1q.

Note that
tautology “ 0-tautology
fallacy “ 1-fallacy
satisfiable “ 0-satisfiable
falsifiable “ 1-falsifiable

In this section we investigate the computational complexity of these sets of formulas
in continuous propositional logic. The following lemma is easy to prove; it provides P-time
reductions between various sets.
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Lemma 4. Suppose F contains  . Let p P F . Then for any α P p0, 1s and β P r0, 1q, the follow-
ing hold:

• p is ă α-satisfiable iff p is not an α-fallacy iff  p is ąp1 ´ αq-falsifiable iff  p is not a
p1´ αq-tautology;

• p is β-satisfiable iff p is not an ąβ-fallacy iff  p is p1´ βq-falsifiable iff  p is not a ăp1´ βq-
tautology.

Our objective is to show that satisfiability in continuous propositional logic is in NP.
To do this we first construct a particular full system P of continuous connectives as follows.

For n ě 1, an element x “ pa1, . . . , anq P r0, 1sn is a rational point if a1, . . . , an are all
rational numbers. Let Vn be the set of all vertices of r0, 1sn, i.e., x “ pa1, . . . , anq P Vn iff each
ai P t0, 1u for 1 ď i ď n. Given finitely many points x1, . . . , xk P r0, 1sn, a polyhedronization of
r0, 1sn with extreme points x1, . . . , xk is a decomposition of r0, 1sn as a complex that consists
of convex polyhedra with extreme points that are among x1, . . . , xk and the elements of
Vn. For each n ě 1, let Fn be the set of all continuous functions f from r0, 1sn to r0, 1s
such that there is a polyhedronization of r0, 1sn with finitely many rational extreme points
such that f is a linear function with rational coefficients on each of the polyhedron in the
polyhedronization. Let P “ tFn : n ă ωu.

Lemma 5. P is full.

Proof. When n “ 1 F1 is a dense subset of the set of unary functions considered in the
previous proof. Obviously F1 separates points. Now it is easy to check that ^,_ P F2. Thus
the n-ary functions of P , for any n ě 1, form a sub-lattice of Cpr0, 1sn, r0, 1sq. By Theorem 2,
P is full.

Lemma 6.
Ť

P is closed under composition.

Proof. Suppose g1, . . . , gm are n-ary functions of P , f is an m-ary function of P , and h “
f ˝ pg1, . . . , gmq. Each gi, i “ 1, . . . , m, is piecewise linear with a polyhedronization Pi of
r0, 1sn (i.e., f is linear on every convex polyhedron and agrees on their boundaries) . Let P
be the largest common refinement of all P1, . . . , Pm. Then the extreme points of P are among

• the extreme points of P1, . . . , Pm,
• elements of Vn, and
• extreme points of the intersections of polyhedra in P1, . . . , Pm.

For the last kind, note that the intersection of any number of polyhedra is still con-
vex, and therefore is itself a polyhedron. Their extreme points are solutions of linear
equations with rational coefficients, and therefore are also rational points. Let P1 be a poly-
hedronization of r0, 1sm such that f is linear on each polyhedron in P1. Consider a particular
polyhedron in P, and denote it as S. Note that each g1, . . . , gm is a linear function on S. Let
γ1, . . . , γm be these linear functions corresponding respectively to g1, . . . , gm. They have
rational coefficients. Let S1 be a polyhedron in P1. Now S1 is given by a number of linear
inequalities in m variables. Denote these inequalities as, for instance, ϕipy1, . . . , ymq ď ci,
for i “ 1, . . . , k. The coefficients of these inequalities are all rational. Consider the subset of
r0, 1sn that satisfies

ϕipγ1px1, . . . , xnq, . . . , γmpx1, . . . , xnqq ď ci

for all i “ 1, . . . , k. This is again a system of linear inequalities with rational coefficients.
Note that the solution set is convex, and thus its intersection with S, if nonempty, is also
convex, and therefore is a polyhedron. Traversing all S1 in T1 would give a complete poly-
hedronization of S into polyhedra with rational extreme points, and on each polyhedron
the function h “ f ˝ pg1, . . . , gmq is linear. This shows that h is an n-ary function of P .

Thus P is a full, closed system of continuous connectives. It is easy to check that
the standard connective system t , ´, x

2 u is a subsystem of P . Hence the satisfiability
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problem for the standard continuous propositional logic is a subproblem of that for P . Also,
since each function of P is determined by a polyhedronization with finitely many rational
extreme points and linear functions with rational coefficients, we can code all functions of
P by natural numbers.

Now consider an arbitrary finite subset F of the system P . For any rational α P p0, 1s
and β P r0, 1q, we show that the sets of ăα-satisfiable formulas and β-satisfiable formulas in
F are in NP.

Recall that each n-ary function f P F Ď P is determined by a polyhedronization ∆
of r0, 1sn with rational extreme points and a linear function with rational coefficients on
each polyhedron in ∆. Furthermore, each polyhedron in ∆ is given by a number of linear
inequalities of the form

c1x1 ` ¨ ¨ ¨ ` cnxn ` d ě 0

or
c1x1 ` ¨ ¨ ¨ ` cnxn ` d ď 0

where the coefficients c1, . . . , cn, d are rational numbers. We refer to the linear functions
appearing on the left hand sides of the inequalities used in the polyhedronization of r0, 1sn

as type I linear forms and the linear functions in the definition of f as type II linear forms.
For each linear form λ of either type, we define its standard form to be the form

a1

d
x1 ` ¨ ¨ ¨ `

an

d
xn `

b
d

where a1, . . . , an, b and d ą 0 are integers such that

gcdpa1, . . . , an, b, dq “ 1.

Also define

Mλ “ max
"

d,
|a1|

d
, . . . ,

|an|

d
,
|b|
d

*

.

Similarly, for a tuple of rational numbers r “ pr1, . . . , rnq we also define its standard
form to be the form

´ a1

d
, . . . ,

an

d

¯

where a1, . . . , an and d ą 0 are integers and gcdpa1, . . . , an, dq “ 1, and let

Mr “ max
"

d,
|a1|

d
, . . . ,

|an|

d

*

when r ‰ p0, . . . , 0q, and Mr “ 0 when r “ p0, . . . , 0q.

Lemma 7. Let λ1, . . . , λn be linear forms with variables x1, . . . , xn such that the system

λ1 “ 0, . . . , λn “ 0

has a unique solution r “ pr1, . . . , rnq. Then Mr ď n!M2
λ1
¨ ¨ ¨M2

λn
.

Proof. This is a direct consequence of Cramer’s rule. Let A be the matrix consisting of the
coefficients of x1, . . . , xn in λ1, . . . , λn, and for each j “ 1, . . . , n let Aj be the matrix obtained
from A by replacing its j-th column by the constant terms of λ1, . . . , λn. Then

rj “ detpAjq{detpAq.

Let d1, . . . , dn be the common denominators appearing in the forms λ1, . . . , λn, respectively.
We can write

rj “
detpAjqd1 . . . dn

detpAqd1 . . . dn
,
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noting that both the numerator and the denominator are integers. We have

|detpAqd1 ¨ ¨ ¨ dn| ď n!M2
λ1
¨ ¨ ¨M2

λn
.

Similarly
|detpAjqd1 ¨ ¨ ¨ dn| ď n!M2

λ1
¨ ¨ ¨M2

λn
.

The conclusion of the lemma follows.

We will not need the following lemma but it is a converse as well as a consequence of
Lemma 7.

Lemma 8. Let λ be a linear form in variables x1, . . . , xn with 1 as its constant term and let s1, . . . , sn
be rational points in r0, 1sn which determine the hyperplane λ “ 0. Then Mλ ď n!M2

s1
¨ ¨ ¨M2

sn .

Proof. Suppose

λ “
a1

d
x1 ` ¨ ¨ ¨ `

an

d
xn ` 1

such that a1, . . . , an, d are integers, d ą 0 and gcdpa1, . . . , an, dq “ 1. For each i “ 1, . . . , n,
say si “ psi,1, . . . , si,nq, also consider the form

µi “ si,1y1 ` ¨ ¨ ¨ ` si,nyn ` 1.

Then
´ a1

d
, . . . ,

an

d

¯

is the unique solution of the system

µ1 “ 0, . . . , µn “ 0.

By Lemma 7,

d,
|a1|

d
, . . . ,

|an|

d
ď n!M2

µ1
¨ ¨ ¨M2

µn ,

which implies that

Mλ “ maxtd, |a1|, ¨ ¨ ¨ , |an|, 1u ď n!M2
s1
¨ ¨ ¨M2

sn .

Lemma 9. Let µ be a linear form in m variables and let λ1, . . . , λm be linear forms in variables
x1, . . . , xn. Let

ν “ µpλ1, . . . , λmq.

Then Mν ď maxtMµ Mλ1 ¨ ¨ ¨Mλm , MµpMλ1 ` ¨ ¨ ¨ `Mλm ` 1qu.

Proof. Write µ, λ1, . . . , λm in standard linear forms. The conclusion of the lemma is by straight-
forward computations. In fact, the common denominator of the form ν is bounded by the prod-
uct of the common denominators of forms µ, λ1, . . . , λm, hence bounded by Mµ Mλ1 ¨ ¨ ¨Mλm .
The coefficients of the form ν for each variable xi is bounded by MµpMλ1 ` ¨ ¨ ¨ ` Mλmq.
The constant term of the form ν is bounded by

MµpMλ1 ` ¨ ¨ ¨ `Mλm ` 1q.

Let M ě 3 be a positive integer that is larger than all of the following:

• the number of functions in F ,
• the arities of the functions in F ,
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• for each n-ary f P F, the number of polyhedra, as well as the number of faces in all
such polyhedra, in the polyhedronization ∆ in the definition of f ,

• Mλ, for each f P F and a standard linear form λ of either type in the definition of f .

Definition 8. Given any system F , a connective tree is a finite labeled, rooted, ordered tree pT, λq
such that

• if t is a terminal node of T, then λptq is a variable or a constant;
• if t is a non-terminal node and t has n-many children for n ě 1, then λptq is an n-ary function

of F .

Here ordered means that for every node t there is a linear ordering of the children of t.

Every connective tree T gives rise to a formula f . Let x1, . . . , xn be all the variables
appearing as a label of a terminal node of T. Inductively, we can define a formula for
each non-terminal node as follows. If a non-terminal node t has label f , which is an m-
ary function of F , and suppose inductively the children of f has been associated with
formulas g1, . . . , gm, listed in the order of the children, then the formula associated with t is
f ˝ pg1, . . . , gmq. Let fT denote the formula given by the tree T. It is easy to see that every
formula f in F admits a connective tree T with fT “ f .

Now we come back to the consideration of formulas in F . As mentioned above each
p P F is associated with a connective tree Tp with either variables (atomic propositions)
and constants (0-ary functions) as labels for terminal nodes and elements of F as labels for
non-terminal nodes. We let |p| denote the size (cardinality) of Tp. Thus |p| represents the
size of the formula p.

By Lemma 6 each n-ary p P F is also associated with a polyhedronization ∆p such
that on each polyhedron in ∆p, p is a linear function with rational coefficients. We similarly
refer to the linear forms appearing in this description of p as type I and type II, respectively.

Lemma 10. Let p P F and let λ be a standard type II linear form for p. Then Mλ ď M2|p|.

Proof. We prove this by induction on |p|. When |p| “ 1 this is obvious. Consider a general
p where |p| ą 1. Suppose

ppx1, . . . , xnq “ f pq1px1, . . . , xnq, . . . , qmpx1, . . . , xnqq

where f P F is m-ary, and |p| “ |q1| ` ¨ ¨ ¨ ` |qm| ` 1. Let λ be a type II linear form for p.
Then

λpx1, . . . , xnq “ µpν1px1, . . . , xnq, νmpx1, . . . , xnqq

where µ is an m-ary linear form of type II for f and ν1, . . . , νm are linear forms of type II for
q1, . . . , qm, respectively. By the inductive hypothesis, Mνi ď M2|qi| for all i “ 1, . . . , m. Then
by Lemma 9,

Mλ ď maxtMµ Mλ1 ¨ ¨ ¨Mλm , MµpMλ1 ` ¨ ¨ ¨ `Mλm ` 1qu

ď Mµ M2|q1| ¨ ¨ ¨M2|qm| `Mµ

ď M ¨M2p|p|´1q `M ď M2|p|´1 `M ď M2|p|.

Lemma 11. Let p P F and let λ be a standard type I linear form for p. Then Mλ ď M|p|2 .
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Proof. We prove this by induction on |p|. When |p| “ 1 this is obvius. Consider a general
p where |p| ą 1. Suppose

ppx1, . . . , xnq “ f pq1px1, . . . , xnq, . . . , qmpx1, . . . , xnqq

where f P F is m-ary, and |p| “ |q1| ` ¨ ¨ ¨ ` |qn| ` 1. Let λ be a type I linear form for p. Then
either λ is a type I linear form of some qi, or there is a type I linear form µ for f and type II
linear forms ν1, . . . , νm for q1, . . . , qm respectively, such that

λ “ µpν1, . . . , νmq.

In the former case, by the inductive hypothesis Mλ ď M|qi|
2

for some i “ 1, . . . , m,
and hence Mλ ď M|p|2 . In the latter case, by Lemma 10, Mνi ď M2|qi| for i “ 1, . . . , m. Then
by Lemma 9 we have

Mλ ď maxtMµ Mν1 ¨ ¨ ¨Mνm , MµpMν1 ` ¨ ¨ ¨ `Mνm ` 1qu

ď M ¨M2|q1| ¨ ¨ ¨M2|qm| `M ď M|p|2 .

Lemma 12. Let p P F and r be an extreme point of the polyhedronization for p. Then Mr ď M3|p|3 .

Proof. Suppose p is n-ary. Note that |p| ě n, and that r is the unique solution of a system of
linear equations λ1 “ 0, . . . , λn “ 0 where each λi is a type I linear form for p. By Lemmas 7
and 11, we have

Mr ď n!M2
λ1
¨ ¨ ¨M2

λn

ď 2n2
¨M2n|p|2 ď M|p|2 ¨M2|p|3 ď M3|p|3 .

Theorem 9. Let F be any finite subset of P . For any rational α P p0, 1s and β P r0, 1q, the set of
ăα-satisfiable formulas and the set of β-satisfiable formulas in F are in NP.

Proof. Let p P F . We prove the statement for ă α-satisfiability. The statement for β-
satisfiability is similar. Note that p is ăα-satisfiable iff there is an extreme point r of the
polyhedronization ∆p for p such that pprq ă α. By Lemma 12,

p is ăα-satisfiable ðñ Dr pMr ď M3|p|3 ^ pprq ă αq.

Suppose p is n-ary. Then n ď |p|. Write r “ pr1, . . . , rnq and let }r} be the size of r as an
input to a Turing machine. Then }r} ď 3n|p|3 log M ď 3|p|4 log M. To complete the proof it
suffices to show that the statement pprq ă α can be decided in P-time in terms of |p|.

We prove that it takes P-time to compute pprq. We need the following notation for
our discussion. Let pT “ Tp, λq be the connective tree for p. For each node t, let Tt be the
subtree of T below t, and let pt “ fTt . Our algorithm to compute pprq is by induction on
t P T to compute the value ptprq, and finally pprq “ pt0prq where t0 is the root of T. Note
that for each terminal node t P T, ptprq “ λptqprq, and for each non-terminal node t P T
with children t1, . . . , tn,

ptprq “ λptqppt1prq, . . . , ptnprqq.

The entire algorithm will take exactly |p| steps, corresponding to |p|many nodes of T.
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Before counting the computation time at each step, we claim that Mptprq ď maxtM, Mru
|pt|

2
.

We prove the claim by induction on t P T. If t is a terminal node then Mptprq ď maxtM, Mru “

maxtM, Mru
|pt|

2
. Suppose t is a non-terminal node with children t1, . . . , tn. For 1 ď i ď n

let xi “ ptiprq. By the inductive hypothesis Mxi ď maxtM, Mru
|pti |

2
for 1 ď i ď n. Also note

that |pt| “ |pt1 | ` ¨ ¨ ¨ ` |ptn | ` 1. Since Mλptq ď M, we have that

Mptprq ď Mn`1Mr
|pt1 |

2`¨¨¨`|ptn |
2

ď maxtM, Mru
n`1`|pt1 |

2`¨¨¨`|ptn |
2
ď maxtM, Mru

|pt|
2
.

Now assume Mr ď M3|p|3 . We count the time needed to compute ptprq from
pt1prq, . . . , ptnprq, which consists of n many binary multiplications of rational numbers
and an pn` 1q-ary addition of rational numbers. Each of the binary multiplication takes
time no more than

c1 logpM2 maxtM, Mru
2|pt|

2
q ď c logpM2`6|p|5q “ cp2` 6|p|5q log M

for some constant c1. The pn` 1q-ary addition takes time no more than

c2n2 logpM2 maxtM, Mru
|pt|

2
q ď c|p|2p2` 3|p|5q log M

for some constant c2. Therefore, the computation of ptprq takes time no more than

cp2` 2|p|2 ` 6|p|5 ` 3|p|7q log M.

In summary, the computation of pprq “ Pt0prq takes time no more than

c|p|p2` 2|p|2 ` 6|p|5 ` 3|p|7q log M,

which is a polynomial in |p|.

Corollary 1. Let F be a finite subset of P . Suppose F contains  . Then for all rational α P p0, 1s
and β P r0, 1q:

• the following sets of formulas in F are in NP:

1. ăα-satisfiable formulas;
2. α-falsifiable formulas;
3. β-satisfiable formulas;
4. ąβ-falsifiable formulas;

• the following sets of formulas in F are in co-NP:

5. ăα-tautologies;
6. α-fallacies;
7. β-tautologies;
8. ąβ-fallacies.

Proof. This follows immediately from Theorem 9 and Lemma 4.

5. Complexity of Decidability Problems, Part II

In this section we prove the other direction of Theorem 1, namely that satisfiability for
continuous propositional logic is NP-complete.

Lemma 13. Let F “ t ,^u. Then for every n ě 1 and n-ary function p of F , for all
r “ pr1, . . . , rnq, s “ ps1, . . . , snq P r0, 1sn,

|pprq ´ ppsq| ď max
i
|ri ´ si|.
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Proof. By induction on p. If p “ xi for some variable xi the statement is obvious. The case
p “  q is straightforward. Consider p “ q^ u. Let a “ maxi |ri ´ si|. Then by the inductive
hypothesis, |qprq ´ qpsq|, |uprq ´ upsq| ď a. Without loss of generality we may assume
qprq ě uprq. If qpsq ě upsq then |pprq ´ ppsq| “ |qprq ´ qpsq| ď a and we are done. Suppose
qpsq ď upsq. Then consider two cases.

Case 1: qprq ě upsq. In this case, qpsq ď upsq ď qprq. Since qprq ´ qpsq ď a, we have
0 ď qprq ´ upsq ď a.

Case 2: qprq ď upsq. In this case, uprq ď qprq ď upsq. Since upsq ´ uprq ď a, we have
0 ď upsq ´ qprq ď a.

Proposition 4. Let F be a finite subset of P . Suppose F contains  ,^. Then for all rational
α P p0, 1

2 s and β P r0, 1
2 q, the set of allăα-satisfiable formulas and the set of all β-satisfiable formulas

of F are NP-hard.

Proof. Let L be classical propositional logic with only connectives ,^. By our assumption
on F , for each p a formula of L we can associate a p̃ P F by replacing all occurrences of  
and ^ by appropriate formulas in F . The mapping p ÞÑ p̃ is P-time computable.

Let SAT be the set of all satisfiable formulas in L. Then SAT is NP-complete by Cook’s
Theorem. We show that for all rational α P p0, 1

2 s and β P r0, 1
2 q and p P L, p P SAT iff p̃ is

ăα-satisfiable iff p̃ is β-satisfiable.
Suppose first p P SAT. Then there is a truth value assignment r such that

p̃prq “ pprq “ 0. Thus p̃ is ă α-satisfiable for all rational α P p0, 1
2 s and β-satisfiable

for all rational β P r0, 1
2 q.

For the converse, suppose p R SAT. Assume p is n-ary. Then for every truth value
assignment r P t0, 1un, p̃prq “ pprq “ 1. Let s “ ps1, . . . , snq P r0, 1sn. For each i “ 1, . . . , n,
let ti “ 1 if si P p

1
2 , 1s and ti “ 0 if si P r0, 1

2 s. Let t “ pt1, . . . , tnq. Then maxi |si ´ ti| ď
1
2 .

By Lemma 13,

|p̃psq ´ p̃ptq| ď max
i
|si ´ ti| ď

1
2

.

Since t P t0, 1un, p̃ptq “ 1 and p̃psq ě 1
2 . This shows that p̃ is not ăα-satisfiable for all

rational α P p0, 1
2 s and is not β-satisfiable for all rational β P r0, 1

2 q.

Proposition 5. Let F “ t ,^u. Then every formula of F is 1
2 -satisfiable.

Proof. By induction one can verify that p takes value 1
2 at p 1

2 , . . . , 1
2 q for all p P F .

Proposition 6. Let F be a finite subset of P . Suppose F contains  ,^, x
2 . Then for all rational

α P p0, 1q and β P r0, 1q, the set of allăα-satisfiable formulas and the set of all β-satisfiable formulas
of F are NP-hard.

Proof. By Proposition 4, for all rational α P p0, 1
2 s and β P r0, 1

2 q, the set of all ăα-satisfiable
formulas and the set of all β-satisfiable formulas of F are NP-hard. Now consider α P p 1

2 , 1q.
We show that the set of ăα-satisfiable formulas is NP-hard. Since 1´ α P p0, 1

2 q, there is a
unique k ě 1 such that 1´ α P r2´k´1, 2´kq. For any p P F let q “  pp pq{2kq. Then p ÞÑ q
is P-time computable, and, letting η “ 1´ 2kp1´ αq P p0, 1

2 s,

p is ăη-satisfiable ô q is ăα-satisfiable.

Since the set of allăη-satisfiable formulas is NP-hard, so is the set of allăα-satisfiable for-
mulas.
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Next consider β P r 1
2 , 1q. We show that the set of β-satisfiable formulas is NP-hard.

Since 1´ β P p0, 1
2 s, there is a unique k ě 1 such that 1´ β P p2´k´1, 2´ks. Define the map

p ÞÑ q similarly as above, and let γ “ 1´ 2kp1´ βq P r0, 1
2 q, then

p is γ-satisfiable ô q is β-satisfiable.

Since the set of all γ-satisfiable formulas is NP-hard, so is the set of all β-satisfiable
formulas.

Note that in the above proof the case of ă1-satisfiability is not addressed. In fact,
for F “ t ,^, x{2u a subsystem of that defined in Proposition 3, every p P F is <1-
satisfiable. Hence the set of all <1-satisfiable formulas is not NP-hard

Theorem 10. Let F be a finite subset of P . Suppose F contains  , ´. Then for all rational
α P p0, 1s and β P r0, 1q, the set of all ăα-satisfiable formulas and the set of all β-satisfiable formulas
are NP-hard.

Proof. For all p P F let q “ p ` p. Then p ÞÑ q is P-time computable. Moreover, for all
rational α P r0, 1q, we have

p is ăα
2 -satisfiable ðñ q is ăα-satisfiable.

Since α
2 P p0, 1

2 s, by Proposition 4 the set of all ă α
2 -satisfiable formulas is NP-hard.

Hence the set of all ăα-satisfiable formulas is NP-hard. Similarly, for all β P r0, 1q, the set of
all β-satisfiable formulas is NP-hard.

Corollary 2 (Mundici [8]). Let F “ t , ´u. The set of all ă1-satisfiable formulas in F is
NP-complete.

Proof. This immediately follows from Theorems 9 and 10.

Now Theorem 1 immediately follows from Corollary 1 and Theorem 10. In particular
the conclusions hold for the continuous propositional logic with connectives  , ´, x

2 .

6. Conclusions

Through the characterization we gave in Section 1, we conclude that there are many
unary functions f such that the system t , ´, f u is full. On the other hand, no single
connectives can make a full system.

While Strong Compactness and Craig Interpolation fail for continuous propositional
logic, we showed that some versions of Approximated Strong Compactness and Approxi-
mated Craig Interpolation hold.

We also defined and studied different notions of satisfiability, falsifiablity, tautology,
and fallacy, and established the NP-completeness and co-NP-completeness for these notions.

For future research we plan to extend these results to continuous predicate logic.
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