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Abstract: In this work, some general forms for forced and damped complex Duffing oscillators
(FDCDOs), including two different models, which are known as the forced and damped complex
Duffing oscillator (I) (FDCDO (I)) and FDCDO (II), are investigated by using some effective analytical
and numerical approaches. For the analytical approximation, the two models of the FDCDOs are
reduced to two decoupled standard forced and damped Duffing oscillators (FDDOs). After that,
both the ansatz method and Krylov–Bogoliubov–Mitropolsky (KBM) approach are applied in order
to derive some accurate analytical approximations in terms of trigonometric functions. For the
numerical approximations, the finite difference method is employed to analyze the two coupled
models without causing them to be decoupled for the original problems. In addition, all obtained
analytical and numerical approximations are compared with the fourth-order Runge–Kutta (RK4)
numerical approximations. Moreover, the maximum residual distance error (MRDE) is estimated in
order to verify the accuracy of all obtained approximations.

Keywords: complex Duffing oscillators; damped complex oscillator; forced and damped complex
oscillator; trigonometric functions; KBM method; ansatz method; finite difference method
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1. Introduction

Nonlinear oscillation is one of the most popular and widely researched fields due
to its diverse applications in automobiles, sensing, fluid and solid interactions, bioengi-
neering, and plasma oscillations [1–8]. There are huge numbers of equations of motion
that can be used to model and describe the mechanisms of motion of various waves and
oscillators [9,10]. For instance, Cveticanin [1,2] used the hybrid elliptic-Krylov–Bogolubov
method (eKBM) with the power-series method (PSM) to analyze a conserved coupled
system of second-order differential equations (DEs) with weak and strong nonlinearity.
In [1], the author used the mentioned method to derive only the first-order approximation
in terms of Jacobi elliptic functions (JEFs). In addition, Cveticanin [2] used the eKBM
to derive some analytical approximations in terms of JEFs for strong nonlinear DEs of
complex Duffing-type oscillators, which describe the dynamical behavior of numerous
realistic models. Grattarola and Torre [4] derived the sufficient and necessary conditions
for synchronization, which can be applied in order to find much information about a
wide range of nonlinear oscillators. Cveticanin [5] presented an approximate technique
based on a method of slowly varying the phase and amplitude in order to solve a set
of two coupled complex ordinary differential equations (ODEs). Mahmoud [6] used an
approximate method based on the Krylov–Bogoliubov averaging approach to analyze
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and solve a set of complex nonlinear physical oscillators. Manasevich et al. [7] studied
complex-valued Liénard systems to obtain the sufficient conditions for periodic solutions
to these issues. Cveticanin [8] used the averaging method to derive an exact solution to
a cubic-nonlinearity complex differential equation in terms of JEFs. Moreover, nonlinear
plasma oscillations were analyzed in the framework of a general form of the Van der Pol
oscillator [9]. The authors of [9] used some effective approximate methods, such as the
ansatz method and the Krylov–Bogoliubov–Mitropolsky (KBM) method, to derive some
analytic approximations. Both the equivalent linearization approach (ELA) and weighted
averaging were employed [11,12] to analyze many different types of strong nonlinear oscil-
lators, including many different Duffing-type oscillators and a cubic Duffing oscillator with
discontinuity. The authors compared their results with those of many other approaches,
such as the min–max approach, the parameter-expansion method, the modified Lindsted–
Poincare method, the homotopy perturbation method, and the fourth-order Runge–Kutta
(RK4) numerical method. Hieu [13] used the ELP with weighted averaging to derive an
approximation to a generalized strong nonlinear oscillator with a fractional term. As a
special case for the obtained results, the author of [13] studied the approximations to some
different types of Duffing oscillators and a nonlinear oscillator with fractional nonlinearity.
In addition, this author compared his results with those of RK4 numerical approximations.

The Duffing-type equation/oscillator is one of the most famous and important equa-
tions, as it has succeeded in explaining many different oscillations in different plasma
oscillations [14], engineering problems [15], statistical mechanics, and many other appli-
cations [16–18]. Moreover, there is another form of the Duffing equation with complex
variables, which is known as a complex Duffing oscillator (CDO) [1,2], as mentioned above.
One of these equations was studied in [1] by Cveticanin, who solved the following problem:

ẍ + mx3 − y = εF1(x, ẋ, y, ẏ),
ÿ− px5 − ax = εF2(x, ẋ, y, ẏ),

x(0) = x0 & ẋ(0) = ẋ0,
y(0) = x0 & ẏ(0) = ẏ0.

(1)

Here, F1 ≡ F1(x, ẋ, y, ẏ) and F2 ≡ F2(x, ẋ, y, ẏ) are weakly nonlinear functions, and
(a, m, p) are the parameters of the model under study. In addition, Cveticanin [2] analyzed
and discussed the following complex Duffing-type oscillator:

z̈ + c1z + 3c3z|z|2 − c3z̄3 = εG(z, ż, cc), (2)

where z ≡ z(t), x(t) ≡ x, y(t) ≡ y, z ≡ x + iy is a complex function, and z̄ is the conjugate
of z, whereas x ≡ x(t) and y ≡ y(t) indicate the real and imaginary parts, respectively.
zz̄ = |z|2, G(z, ż, cc) represents a complex defection, “cc” indicates the complex conjugate
function, and i =

√
−1. In [3], the authors investigated a cubic DE and presented the

desired solutions in different forms of functions, such as Jacobi and Weierstrass elliptic
functions. In the present investigation, the following two general forms of the forced
damped CDO are considered:

z̈ + 2εż + αz + βz|z|2 + γz̄3 = z(t), (3)

and
z̈ + 2εż + αz + β̃z|z|2 + γ̃z̄3 + δ̃z3 = z(t), (4)

where z(t) = f1(t) + i f2(t) indicates any periodic force that can be taken as
f1(t) = γ1 cos(ω1t) and f2(t) = γ2 cos(ω2t) or any other time-dependent function.
The coefficients (ε, α, β, γ) of Equation (3) are real values, while for Equation (4), the
coefficients (ε, α, ) are real values, but

(
β̃, γ̃, δ̃

)
have complex values, as follows:
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
β̃ = (β1 + iβ2),
γ̃ = (γ1 + iγ2),
δ̃ = (δ1 + iδ2).

(5)

In this investigation, two different models for the forced damped CDO, including
the FDCDO (I) (3) and the FDCDO (II) (4), will be analyzed and discussed by using
some effective techniques, such as the ansatz method, KBM approach [19], and finite
difference method (FDM). The two mentioned models are analyzed by using both the
ansatz method and the KBM approach in order to find some analytic approximations
in terms of trigonometric functions. To do that, the two aforementioned models will be
reduced to two decoupled systems of standard forced and damped Duffing oscillators
(FDDOs). After that, both the ansatz and KBM methods can be applied in order to find
some analytical approximations to the standard forced and damped Duffing oscillator
(FDDO). However, for the numerical approximations, both the FDM and RK4 methods
will be applied in order to analyze and solve the original complex problems numerically
without causing them to be decoupled from the original problems.

2. FDCDO (I)

Let us consider the following initial value problem (i.v.p.):{
z̈ + 2εż + αz + βz|z|2 + γz̄3 = z(t),

z(0) = z0 & ż(0) = ż0,
(6)

where the coefficients (ε, α, β, γ) are real constants and α > 0. To analyze this system, it
should be reduced to two decoupled forced and damped Duffing oscillators (FDDOs) by
using a suitable linear transformation.

Reducing the I.V.P. (6) to Two Decoupled FDDOs

Using the relation z = x + iy in the i.v.p. (6), the x− y system is obtained as follows:
Q1 ≡ ẍ + 2εẋ + αx + (β + γ)x3 + (β− 3γ)y2x− f1(t) = 0,
Q2 ≡ ÿ + 2εẏ + αy + (β + γ)y3 + (β− 3γ)x2y− f2(t) = 0,

x(0) = x0 & y(0) = y0,
ẋ(0) = ẋ0 & ẏ(0) = ẏ0.

(7)

Note that Q1,2 are linearly decoupled, and the following linear transformation can be
used to reduce the coupled Equation (7) to two decoupled FDDOs:{

x = u + v,
y = u− v,

(8)

where u ≡ u(t) and v ≡ v(t) obey the following FDDOs:{
ü + 2δ1u̇ + P1u + Q1u3 = F1(t),
v̈ + 2δ2v̇ + P2v + Q2v3 = F2(t).

(9)

Inserting Equations (8) and (9) into the i.v.p. (7), after several calculations, the following
values of the coefficients δ1,2, P1,2, Q1,2, and F1,2(t) are obtained:

δ1,2 = ε, P1,2 = α,
Q1,2 = 2(β− γ),

F1(t) = 1
2 ( f1(t) + f2(t)),

F2(t) = 1
2 ( f1(t)− f2(t)),

(10)

whereas the the initial conditions (ICs) read:
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{
u(0) = x0+y0

2 & v(0) = x0−y0
2 ,

u̇(0) = ẋ0+ẏ0
2 & v̇(0) = ẋ0−ẏ0

2 .
(11)

Accordingly, the residual errors read:{
Q1 = 2(β + 3γ)uv(u + v),
Q2 = −2(β + 3γ)uv(u− v).

(12)

Thus, the i.v.p. (6) is reduced to two decoupled FDDOs (9) with the ICs in (11).

3. FDCDO (II)

Here, a new form of a forced and damped CDO with complex coefficients is considered:{
z̈ + 2εż + αz + β̃z|z|2 + γ̃z̄3 + δ̃z3 = z(t),

z(0) = z0 & ż(0) = ż0,
(13)

where α is a real and positive constant and ε has a real value, while the coefficients(
β̃, γ̃, δ̃

)
have complex values. To analyze the i.v.p. (13), in order to obtain high-accuracy

approximations, it should be reduced to two decoupled FDDOs by using a suitable
linear transformation.

Reducing the I.V.P. (13) to Two Decoupled FDDOs

The i.v.p. (13) can be written in an (x, y)-system as follows:{
ẍ + 2εẋ + ω2

0x + C3,0x3 + C1,2xy2 + C2,1x2y + C0,3y3 − f1(t) = 0,
ÿ + 2εẏ + ω2

0y + D3,0x3 + D1,2xy2 + D2,1x2y + D0,3y3 − f2(t) = 0,
(14)

with the same ICs as those given in (7), and the above coefficients are given by

C3,0 = β1 + γ1 + δ1,
C0,3 = −(β2 + γ2 − δ2),

C2,1 = −(β2 − 3γ2 + 3δ2),
C1,2 = β1 − 3(γ1 + δ1),

D3,0 = β2 + γ2 + δ2,
D0,3 = β1 + γ1 − δ1,

D2,1 = β1 − 3γ1 + 3δ1,
D1,2 = β2 − 3(γ2 + δ2).

Now, suppose that only the equilibrium point is considered: (x, y, ẋ, ẏ) = (0, 0, 0, 0).
Now, to reduce the i.v.p. (14) to two decoupled FDDOs, the linear transformations in (8)
are used for this purpose; both (u, v) obey the FDDOs given in the system (9){

ü + 2εu̇ + P1u + Q1u3 = H1(t),
v̈ + 2εv̇ + P2v + Q2v3 = H2(t).

(15)

By substituting Equation (15) into the system (14), after several calculations, the values
of the coefficients P1,2, Q1,2, and F1,2(t) are obtained as follows:

P1,2 = α = ω2
0,

Q1 = C0,3 + C3,0 + C2,1 + C1,2,
Q2 = D0,3 − D3,0 + D2,1 − D1,2,

H1(t) = 1
2 ( f1(t) + f2(t)),

H2(t) = 1
2 ( f1(t)− f2(t)),

(16)

and the ICs become



Mathematics 2022, 10, 4475 5 of 13

{
u(0) = 1

2 (x0 + y0), v(0) = 1
2 (x0 − y0),

u̇(0) = 1
2 (ẋ0 + ẏ0), v̇(0) = 1

2 (ẋ0 − ẏ0).
(17)

Thus, the i.v.p. (13) is reduced to two decoupled FDDO (15) with the ICs in (17).

4. Mathematical Methods for Analyzing the FDDO

Now, two different approaches to analyzing and solving the system of the two coupled
Equations in (9)–(11), as well as (15)–(17), are introduced, as illustrated in the following
section.

4.1. First Approach to Analyzing the FDDO

As shown in Equations (9)–(11) and (15)–(17), both the first model (6) and the second
model (13) are reduced to two decoupled system of FDDOs. Accordingly, the general form
of the FDDO that should be solved reads:{

N1 ≡ Ψ̈ + 2εΨ̇ + αΨ + δΨ3 − f (t) = 0,
Ψ(0) = Ψ0 & Ψ̇(0) = Ψ̇0,

(18)

with
f (t) = f0 cos(ωt). (19)

Here, the following ansatz is introduced in order to find an approximation to the i.v.p. (18):

Ψ = e−εt[c1 cos(ψ) + c2 sin(ψ)] + d cos(ωt), (20)

whereas ψ ≡ ψ(t) can be determined from the following equation:

ψ̇ = h0 + h1e−2εt + h2e−4εt + h3e−6εt. (21)

Here, the coefficients c1,2, d, and h0,1,2,3 should be determined.
Putting Equations (19)–(21) into N1 = 0, yields

N1 = S1 cos(ψ) + S2 sin(ψ) + S3 cos(ωt) + h.o.t, (22)

with

S1 =
1
4

e−3εt

[
c1

(
3c2

2δ− 2e2εt
(
−2α− 3δd2 + 2ε2 + 2(ψ′)2

))
+3c3

1δ + 4c2e2εtψ′′

]
,

S2 =
1
4

e−3εt

[
c2

(
3c2

1δ− 2e2εt
(
−2α− 3δd2 + 2ε2 + 2(ψ′)2

))
+3c3

2δ− 4c1e2εtψ′′

]
,

S3 =

[
3
2

(
c2

1 + c2
2

)
δde−2εt +

3δd3

4
+ (α−ω2)d− f0

]
,

where the abbreviation h.o.t indicates higher-order terms.
By solving the following equation, the value of d can be obtained:

3δ

4
d3 + (α−ω2)d− f0 = 0. (23)

For S1 = S2 = 0, by eliminating ψ′′(t) from the resulting system, the following
equation is obtained:

2
(
−2α− 3δd2 + 2ε2 + 2ψ′(t)2

)
− 3
(

c2
1 + c2

2

)
δe−2εt = 0. (24)
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Inserting the value of ψ′ given in Equation (21) into Equation (24), the following
equation is obtained:

M0 + M1e−2tε + M2e−4tε + M3e−6tε + · · · = 0,

with

M0 =
(

4h2
0 − 4α− 6d2δ + 4ε2

)
,

M1 =
(

8h0h1 − 3δ
(

c2
1 + c2

2

))
M2 = 4

(
h2

1 + 2h0h2

)
,

M3 = 8(h1h2 + h0h3).

By solving the system M0,1,2,3 = 0, the values of the constant h0,1,2,3 are obtained:

h0 =

√
2α + 3δd2 − 2ε2

2
,

h1 =
3
(
c2

1 + c2
2
)
δ

8h0
,

h2 = −
9
(
c2

1 + c2
2
)2δ2

128h3
0

,

h3 =
27
(
c2

1 + c2
2
)3δ3

1024h5
0

. (25)

The constants c1,2 are determined from the ICs Ψ(0) = Ψ0 and Ψ̇(0) = Ψ̇0, leading to

c1 = W0 − d,

c2 =
−dε + εW0 + Ẇ0

w0 + w1 + w2 + w3
. (26)

Based on the above calculations, the expression of the frequency ψ reads:

ψ(t) = h0t +
1

12ε

[
6h1

(
1− e−2εt

)
+ 3h2

(
1− e−4εt

)
+ 2h3

(
1− e−6εt

)]
. (27)

Using the obtained solution, it is easy to find the functions (u, v) for f1(t) = γ1 cos(ω1t)
and f2(t) = γ2 cos(ω2t) when γ1γ2 = 0. However, for γ1γ2 6= 0, the following formula of
the FDDO is considered:{

N2 ≡ Ψ̈ + 2εΨ̇ + αΨ + δΨ3 − (a cos(ω1t) + b cos(ω2t)) = 0,
Ψ(0) = Ψ0 & Ψ̇(0) = Ψ̇0,

(28)

where Ψ ≡ Ψ(t).
It is assumed that the solution of the i.v.p. (28) has the following ansatz form:

Ψ = e−εt(c1 cos(ψ) + c2 sin(ψ)) + d1 cos(ω1t) + d2 cos(ω2t), (29)

with
ψ̇ = r0 + r1e−2εt + r2e−4εt + r3e−6εt, (30)

where the constants c1,2, d1,2, and r0,1,2,3 need to be determined, whereas a, b, and ω1,2 are
free parameters. By following the same procedure that was used to determine the values
of the constants c1,2, d, and h0,1,2,3, the values of c1,2, d1,2, and r0,1,2,3 can be obtained. By
inserting Equations (29) and (30) into N2 = 0 and by vanishing the coefficients of cos(ψ),
sin(ψ), and ψ̈, the following equations are obtained:
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
2
(
2r2

0 − 2α− 3δ
(
d2

1 + d2
2
)
+ 2ε2) = 0,

8r0r1 − 3δ
(
c2

1 + c2
2
)
= 0,

4
(
r2

1 + 2r0r2
)
= 0,

4
(
r2

2 + 2r1r3
)
= 0,

8(r1r2 + r0r3) = 0.

(31)

Solving the system (31) yields
r0 =

√
(α− ε2) + 3

2 δ(d2
1 + d2

2),
r1 = 3δ

8r0

(
c2

1 + c2
2),

r2 = − 9δ2

128r3
0

(
c2

1 + c2
2)2,

r3 = 27δ3

1024r5
0

(
c2

1 + c2
2)3.

(32)

The constants d1,2 are obtained by solving the following algebraic system:{ 3δ
4 d3

1 − a + αd1 +
3
2 δd2

2d1 − d1ω2
1 = 0,

3δ
4 d3

2 − b + αd2 +
3
2 δd2

1d2 − d2ω2
2 = 0.

(33)

By integrating Equation (30), for ψ(0) = 0, the frequency ψ is obtained:

ψ(t) = r0t +
1

12ε

[
6r1

(
1− e−2εt

)
+ 3r2

(
1− e−4εt

)
+ 2r3

(
1− e−6εt

)]
, (34)

where the values of r0,1,2,3 are defined in Equation (32).
The constants c1,2 can be found with the ICs: Ψ(0) = Ψ0 & Ψ̇(0) = Ψ̇0. By inserting

the condition Ψ(0) = Ψ0 into the solution (29) and Equation (34), the value of the constant
c1 is obtained: c1 = Ψ0 − d1 − d2. In addition, by using the condition Ψ̇(0) = Ψ̇0 in
Equations (29) and (34), an algebraic equation of the ninth degree is obtained. By solving
this equation, the value of c2 can be obtained.

4.2. Second Approach to Analyzing the FDDO

In this section, another new approach, which is known as the Krylov–Bogoliubov–
Mitropolsky (KBM) method, is applied to solve the FDDO (18). For this purpose, the
i.v.p. (18) is written in the following p-problem (perturbation problem):{

Ψ̈ + ω2
0Ψ + p[2εΨ̇ + δΨ3 − f (t)] = 0,
Ψ(0) = Ψ0 & Ψ̇(0) = Ψ̇0.

(35)

It is assumed that the solution of the i.v.p. (35) is given by

Ψ = C1a cos(φ) + p[ϕ(a, φ) + C2a sin(φ)], (36)

with {
ȧ = pA(a),

φ̇ = ω0 + pB(a),
(37)

where a ≡ a(t) and φ ≡ φ(t).
Moreover, the residual error is defined by

Rw = Ψ̈ + ω2
0Ψ + p[2εΨ̇ + δΨ3 − f (t)]. (38)

Inserting Equations (36) and (37) into Equation (38) yields

Rw = p

 −2C1ω0(aε + A(a)) sin(φ)
+ 1

4 aC1
(
3a2δC2

1 − 8ω0B(a)
)

cos(φ)
+ω2

0

(
ϕ(0,2)(a, φ) + ϕ(a, φ)

)
+ 1

4 a3δ cos(3φ)C3
1 − f (t)

+ · · · . (39)
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Equating the coefficients of cos(φ), sin(φ), and the free term in expression (39) to
zero yields 

aε + A(a) = 0,
3a2δC2

1 − 8ω0B(a) = 0,
ω2

0

(
ϕ(0,2)(a, φ) + ϕ(a, φ)

)
+ 1

4 a3δ cos(3φ)C3
1 − f (t) = 0.

(40)

Solving the system (40) yields
A(a) = −εa,

B(a) = 3a2δC2
1

8ω0
,

ϕ(a, φ) =
a3C3

1 δ

32ω2
0

cos(3φ) + f (t)
ω2

0
.

(41)

By inserting the values of A(a) and B(a) given in the system (41) into the system (37)
and integrating the obtained results, the following values of (a, φ) are obtained:{

a = exp(−pεt),

φ = ω0t + 3C2
1 δ

16εω0

(
1− e−2εpt). (42)

The approximate solution can be obtained for p = 1. However, the parameter p can
be kept in order to obtain as small of a residual error as possible, but here, p represents an
optimal parameter. The constants C1 and C2 are obtained from the ICs

δp
32ω2

0
C3

1 + C1 +
f (0)p

ω2
0
−W0 = 0, (43)

and

C2 =
3C3

1δεp2 + 32C1εpω2
0 − 32p f ′(0) + 32Ẇ0ω2

0

12C2
1δp2ω0 + 32pω3

0
. (44)

The final solution of the i.v.p. (18) is given by

Ψ = C1e−pεt cos(φ) + p

 C3
1 δ

32ω2
0

exp(−3pεt) cos(3φ)

+ f (t)
ω2

0
+ C2a(t) sin(φ)

, (45)

with

φ = ω0t +
3C2

1δ

16εω0

(
1− e−2εpt

)
.

By applying the approximation in (45), the approximations to the i.v.p. in (6) and (13)
are achieved.

5. Finite Difference Method for Analyzing the FDCDOs

At the outset, it should be pointed out that the coupled system (7) would be analyzed
directly without causing decoupling for this system. In order to compute the numerical
approximations of (x, y) and their derivatives using the FDM, first, the time interval [0, T]
should be divided into n sub-intervals with a uniform step size ∆t = h = T/n and tj = jh,
where j = 0, 1, 2, · · · , n. Now, to replace the original system of the coupled differential
Equation (7) with difference equations, the following discretizations for the first- and
second-order derivatives are introduced ẋj =

3xj−2−4xj−1+xj
2∆t & ẍj =

xj−2−2xj−1+xj

∆t2 ,

ẏj =
3yj−2−4yj−1+yj

2∆t & ÿj =
yj−2−2yj−1+yj

∆t2 ,
(46)

where xj = x
(
tj
)
, yj = y

(
tj
)
, and j = 2, 3, · · · , n.
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Inserting the values of the first and second derivatives given in Equation (46) into the
x− y system of the coupled Equation (7), the following values of

(
xj, yj

)
are obtained:

xj = r

 −∆t2 f1

(
(j−2)T

n

)
+ ∆t2(β + γ)x3

j−2 + (4ε∆t− 2)xj−1

+xj−2

(
α∆t2 + ∆t2(β− 3γ)y2

j−2 − 3∆tε + 1
) , (47)

and

yj = r

 −∆t2 f2

(
(j−2)T

n

)
+ ∆t2(β + γ)y3

j−2 + (4ε∆t− 2)yj−1

+yj−2

(
α∆t2 + ∆t2(β− 3γ)x2

j−2 − 3∆tε + 1
) , (48)

where r = 1/(ε∆t− 1) and j = 2, 3, · · · , n.
In the same way, the FDM can be applied to analyze the forced and damped CDO

(II) (13):

xj = r

[
∆t2C3,0x3

j−2 + ∆txj−2

(
∆tC1,2y2

j−2 + ∆tα− 3ε
)
+ ∆t2C2,1x2

j−2yj−2

+∆t2C0,3y3
j−2 − ∆t2 f1

(
tj−2

)
+ 4ε∆txj−1 + xj−2 − 2xj−1

]
, (49)

and

yj = r

[
∆t2yj−2

(
D2,1x2

j−2 + α
)
+ ∆t2D1,2xj−2y2

j−2 + ∆t2D3,0x3
j−2

+∆t2D0,3y3
j−2 − ∆t2 f2

(
tj−2

)
− 3ε∆tyj−2 + 4ε∆tyj−1 + yj−2 − 2yj−1

]
. (50)

Finally, a system of n equations is obtained for n unknowns, which can be solved
recursively using RK4 method. However, the values of (x0, y0) and (x1, y1) must be known;
(x0, y0) represents the ICs given in the problem (7), whereas (x1, y1) = (x(t1), y(t1)) =
(x(h), y(h)) are unknown. However, the values of (x1, y1) may be estimated by using either
the analytical approximation or the RK4 method. Note here that our formulas for (x, y) are
elegant because the obtained system is solved recursively, and there is no need to solve any
cubic equations.

6. Results and Discussion

Let us consider the following numerical example for the first model of the FDCDO (I):{
z̈ + 0.2ż + z + z|z|2 + 0.2z̄3 = z(t),

z(0) = 0 & ż(0) = 0,
(51)

with f1(t) = γ1 cos(ω1t) = 0.1 cos(0.1t), f2(t) = γ2 cos(ω2t) = −0.02 cos(0.17t) and
T = 40.

Now, the ansatz approximation (29) and the KBM approximation (45) can be carried
out to model the i.v.p. (51). The approximation of the real component x(= u + v) and the ap-
proximation of the imaginary component y(= u− v) using the ansatz approximation (29)
and the KBM approximation (45) are compared with the numerical approximations using
the RK4 approach, as illustrated in Figures 1 and 2. In addition, the numerical approxi-
mations for both the real and imaginary components (x, y) using the FDM are compared
with the numerical RK4 approximations, as depicted in Figure 3. In addition, the abso-
lute analytical approximations of |z| using approximations (29) and (45) are compared
with the absolute numerical RK4 approximations, as illustrated in Figure 4. Moreover,
the numerical approximation using the FDM for the absolute |z| is compared with the
numerical RK4 approximation, as seen in Figure 5. Furthermore, the MRDE LMRDE for all
obtained approximations in comparison with that of the numerical RK4 approximation
is estimated, as shown in Table 1. Remember that the following formulas are used to
estimate the MRDE LMRDE: LMRDE|x = |x− Re(RK4)|, LMRDE|y = |y− Im(RK4)|, and
LMRDE||z| = ||z| − |RK4||.
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Table 1. The estimation of the MRDE LMRDE for all obtained approximations.

Approximation LMRDE|x LMRDE|y LMRDE||z|
Ansatz Approx. 0.00531153 0.000769225 0.00534933
KBM Approx. 0.00508124 0.00110036 0.00511926
FDM Approx. 0.00157888 0.000318576 0.0016104

RK4

Ansatz Approx.

0 10 20 30 40

-0.10

-0.05

0.00

0.05

0.10

0.15

t
a

x

Error = 0.00531153

RK4

Ansatz Approx.

0 10 20 30 40

-0.03

-0.02

-0.01

0.00

0.01

0.02

t
b

y

Error = 0.000769225

Fig. 1Figure 1. Both the analytic approximation (29) using the ansatz method and the RK4 approximation
to the i.v.p. (6) for (a) the real and (b) imaginary components (x, y) are considered.

RK4

KBM Approx.

0 10 20 30 40

-0.10

-0.05

0.00

0.05

0.10

0.15

t
a

x

Error0.00508124

RK4

KBM Approx.

0 10 20 30 40

-0.03

-0.02

-0.01

0.00

0.01

0.02

t
b

y

Error0.00110036

Fig. 2Figure 2. Both the analytic approximation (45) using the KBM method and the RK4 approximation to
the i.v.p. (6) for (a) the real and (b) imaginary components (x, y) are considered.

RK4

FDM

0 10 20 30 40

-0.10

-0.05

0.00

0.05

0.10

0.15

t
a

x

Error = 0.00157888

RK4

FDM

0 10 20 30 40

-0.03

-0.02

-0.01

0.00

0.01

0.02

t
b

y

Error = 0.000318576

Fig. 3Figure 3. The numerical approximations for (a) the real and (b) imaginary components (x, y) using
the FDM are compared with the RK4 numerical approximations.
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RK4

Ansatz Approx.

0 10 20 30 40

0.00

0.05

0.10

0.15

t
a

|z
|

Error = 0.00534933

RK4

KBM Approx.

0 10 20 30 40

0.00

0.05

0.10

0.15

t
b

|z
|

Error0.00511926

Fig. 4Figure 4. (a) The analytic approximation (29) using the ansatz method and (b) the analytic approxi-
mation (45) using the KBM method for the absolute value of |z| are compared with the numerical
RK4 approximations of the i.v.p. (6).

RK4

FDM

0 10 20 30 40

0.00

0.05

0.10

0.15

t

|z
|

Error = 0.0016104

Fig. 5
Figure 5. The numerical approximation for the absolute value |z| using the FDM is compared with
the numerical RK4 approximation.

The tabulated and graphical findings show that all of the analytical and numerical
approximations have a high degree of accuracy and are more stable with respect to long
periods of time. However, the analytical KBM approximations are more accurate than the
ansatz approximations, but they are less accurate than the numerical FDM approximations.
In the same way, all obtained analytical and numerical approximations can be applied in
order to model the second model of the FDCDO (II) (13) and many other models.

The impacts of some related parameters on the profile of the FDCDO (I) (3) are
investigated in Figure 6. It is observed that the amplitude of the oscillator decreases with
the enhancement of (ε, α), while increasing both (γ1, γ2) would lead to an increase in the
oscillator amplitude. The amplitude is somewhat insensitive to other parameters, such
as (β, γ). For some physical applications, such as plasma physics, the fluid equations
for some plasma models can be reduced to a nonlinear Schrödinger-type equation by
using a reductive perturbation method [20]. Subsequently, the nonlinear Schrödinger-type
equation [20,21] can be reduced to a CDO by using a suitable transformation. After that,
the obtained approximations can be implemented to study the impacts of the plasma
parameters on the profile of the CDO.



Mathematics 2022, 10, 4475 12 of 13

ε=0.01

ε=0.04

ε=0.08

0 10 20 30 40 50

0.00

0.05

0.10

0.15

0.20

0.25

t
a

|z
|

(�,�,γ,γ1,γ2,ω1,ω2)=(1,1,0.2,0.1,0.1,0.1,0.1)
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t
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Fig. 6Figure 6. The impacts of the coefficients (a) ε, (b) α, (c) (γ1, γ2), and (d) β on the profile of the forced
and damped CDO (I) (3) according to the analytic approximation (29).

7. Conclusions

Nonlinear complex Duffing oscillators, including a damped complex Duffing oscillator
(CDO) and a forced and damped CDO, were analyzed and solved by using some different
analytical and numerical approaches. Two different general models of the forced and
damped CDO, which are known as the forced and damped CDO (I) and the forced and
damped CDO (II), were analyzed and discussed via both the ansatz method and the
KBM approach. Accordingly, some accurate analytic approximations were derived in
the terms of trigonometric functions for both the unforced and damped CDO and the
forced and damped CDO. All analytical approximations that were obtained were compared
with the numerical approximations when using both the fourth-order Runge–Kutta (RK4)
method and the finite difference method (FDM). The distinguishing feature of the numerical
methods is that of obtaining numerical approximations without decoupling in the original
coupled models. To verify the accuracy of the obtained approximations, the maximum
residual distance error was estimated in the whole study domain, as compared with that
in the numerical RK4 approximations. It was found that the obtained approximations
exhibited good accuracy and prolonged stability. However, it was noticed that the second
analytic approximation (45) was a little more accurate than the first one (29).
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