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Abstract: Nonlinear mapping is an essential and common demand in online systems, such as
sensor systems and mobile phones. Accelerating nonlinear mapping will directly speed up online
systems. Previously the authors of this paper proposed a Dendrite Net (DD) with enormously lower
time complexity than the existing nonlinear mapping algorithms; however, there still are redundant
calculations in DD. This paper presents a DD with an acceleration module (AC) to accelerate nonlinear
mapping further. We conduct three experiments to verify whether DD with AC has lower time
complexity while retaining DD’s nonlinear mapping properties and system identification properties:
The first experiment is the precision and identification of unary nonlinear mapping, reflecting the
calculation performance using DD with AC for basic functions in online systems. The second
experiment is the mapping precision and identification of the multi-input nonlinear system, reflecting
the performance for designing online systems via DD with AC. Finally, this paper compares the
time complexity of DD and DD with AC and analyzes the theoretical reasons through repeated
experiments. Results: DD with AC retains DD’s excellent mapping and identification properties and
has lower time complexity. Significance: DD with AC can be used for most engineering systems, such
as sensor systems, and will speed up computation in these online systems.

Keywords: dendrite net; online systems; nonlinear mapping; time complexity; engineering

MSC: 68-04; 68M07; 68N30; 93C10; 94-10

1. Introduction

The development of online systems, such as sensor systems, mobile phones, and
computers, is changing the world we live in [1,2]. Nowadays, attention has been paid to
the running speed of online systems, as running speed is the evaluation index for system
performance. Nonlinear mapping is an essential and common demand in online systems,
such as basic function calculation (e.g., y = sin(x), where map x to y) in computers [3–5].
The time complexity of nonlinear mapping directly affects the running speed of online
systems [6]. However, after years of development, the speed of nonlinear mapping is
becoming increasingly difficult to improve, and there is less and less research on improving
the running speed of online systems by accelerating the nonlinear mapping speed.

It is typical to store and calculate basic nonlinear functions (nonlinear mapping) in
a polynomial form in computers (e.g., sin(x) in C [4], or sin(x) in java [5]). This means
that polynomial storage and calculation methods with lower time complexity will speed
up the running speed of online systems. In mathematics and computer science, Horner’s
method (or Horner’s scheme) is a well-established algorithm with lower time complexity
(O(n)) for polynomial evaluation [7]. In 2021, the authors of this paper proposed DD [8].
DD can be seen as a polynomial form with lower time complexity than the traditional
polynomial form, and the time complexity of DD is consistent with Horner’s method.
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During the year, DD has already been used in multiple areas, such as energy saving [9],
spatiotemporal traffic flow data imputation [10], high-dimensional problems [11], image
processing [12], multi-objective optimization [13], accuracy prediction of the RV reducer to
be assembled [14], and precipitation correction in flood season [15]. Nevertheless, there are
still some redundant calculations in DD when the order of the DD model is higher than the
number of inputs.

This paper proposes an acceleration module for DD to reduce redundant calculation,
named DD with AC, which further speeds up the computation in online systems. According
to the theory of DD, DD with AC can be used for nonlinear mapping and system identification.
Meanwhile, the time complexity of DD with AC should be lower than DD according to the
aim of this study. Consequently, the corresponding theory of DD with AC is explored by the
experiments here. The main contributions of this paper are presented as follows:

1. In this paper, the redundant calculations in DD are found, and some characteristics of
the redundant calculations are given;

2. This paper presents an acceleration module for DD to reduce redundant calculations
and presents DD with AC by theoretically analyzing the redundant calculations in
DD;

3. The proposed concept is experimentally justified and computationally verified based
on the theoretical analysis. After theoretical and experimental analysis, it is demon-
strated that DD with AC can be used for nonlinear mapping and system identification
with lower time complexity than DD.

The rest of the paper is organized as follows. Section 2 introduces DD and describes the
design of DD with AC. Experiments and results are given in Section 3. Section 4 discusses
some experimental results and the significance of this study, and the conclusions are drawn
in Section 5.

2. Design of Dendrite Net with Acceleration Module
2.1. Dendrite Net and Its Redundant Calculations
2.1.1. Dendrite Net

In a previous study, the authors of this paper proposed a basic machine learning
algorithm called Dendrite Net or DD with white-box properties, controlled accuracy to
improve generalization, and low computational complexity [8]. DD’s main concept is
that if the output’s logical expression contains the logical relationship of a class among
inputs (and\or\not), the algorithm can recognize the class after learning [8]. DD is one of
the dendrites of a Gang neuron (an improved artificial neuron) [16], and its essence is a
specialized polynomial form.

DD consists of DD modules and linear modules (see Figure 1). The DD module is
straightforward and is expressed as follows.

Al = W l,l−1 Al−1 ◦ X (1)

where Al−1 and Al are the inputs and outputs of the module. X denotes the inputs of DD.
One of the elements in X can be set to 1 to generate a bias. W l,l−1 is the weight matrix from
the (l − 1)-th module to the l-th module. ◦ denotes the Hadamard product. Hadamard
product is used to construct interactive items (e.g., x1x2). The last module of DD is the
linear module, and the linear module is expressed as follows.

AL = W L−1,L AL−1 (2)

where AL−1 and AL are the inputs and outputs of the module. L expresses the number of
modules. W L,L−1 is the weight matrix from the (L− 1)-th module to the L-th module.
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W  X  X10 W  A  Xl,l-1 l-1 W    A  Xl+1,l L,L-1 L-1l W    A 
Al-1 Al

W     A  Xl+2,l+1 l+1Al+1 AL-1
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x1
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 Sample  Logical extractor(DD)

... ...
DD modules

Linear
module

Redundant Calculations

Figure 1. Schematic of dendrite net. DD aims to design the output’s logical expression of the
corresponding class (logical extractor).

The following set of equations describes the gradient descent rule of DD.
The forward propagation of DD module and linear module:{

Al = W l,l−1 Al−1 ◦ X

AL = W L,L−1 AL−1
(3)

The error-backpropagation of DD module and linear module:

dAL = Ŷ − Y (4){
dZL = dAL

dZl = dAl ◦ X
(5)

dAl−1 = (W l,l−1)TdZl (6)

The weight adjustment of DD:

dW l,l−1 =
1
m

dZl(Al−1)T (7)

W l,l−1(new) = W l,l−1(old) − αdW l,l−1 (8)

where Ŷ and Y are DD’s outputs and labels, respectively. m denotes the number of training
samples in one batch. The learning rate α can either be adapted with epochs or fixed to a
small number based on heuristics.

The most attractive feature is that there are only matrix multiplication and Hadamard
product in DD operation, which confers a white-box property and lower time complexity
onto DD. White-box property: The trained DD model can be translated into the Relation
spectrum about inputs and outputs by formula simplification with software (e.g., MATLAB,
an example in Figure 2). Concretely, the optimized weights are assigned to the correspond-
ing matrices in Equations (1) and (2). Then the Relation spectrum was obtained through
formula simplification in software. The white-box property solves the “black-box” issue
of ML in Figure 3 [17]; thus, DD integrates nonlinear mapping/pattern recognition and
system identification, compared to other ML algorithms (see Table 1). The lower time
complexity makes it possible for DD to become a common algorithm in online systems.
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Figure 2. The expanded form of DD.
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Traditional Machine 
Learning 

“x-y”system

Samples 
Generator

x

y

y

black box

Cannot analyse  
“x-y”system？

Figure 3. “Black-box” issue of traditional machine learning (ML) [17]. Traditional ML can generate ŷ
approaching y via x, but cannot analyze the “x-y” system. Interestingly, the trained DD model can
be transformed into a Relation spectrum such as the Taylor series for system identification [18,19].
[Analogous to the Fourier transform and Fourier spectrum used to decompose the signal, the DD
and the Relation spectrum decompose the system.].

Table 1. Comparison between DD and typical algorithms.

Algorithms Readability Nonlinear Mapping
(Online) Analysis (Offline)

SVM, traditional NN,
etc. [17,20] Black box Yes No

Fourier transform and
Fourier Spectrum [21] White box No Yes (decomposing

signal)
DD and Relation

spectrum [8–15,18,19] White box Yes Yes (decomposing
system\model)

2.1.2. Redundant Calculations in Dendrite Net

DD constructs the interaction terms of the input variables and increases the order
by concatenating DD modules (see Figures 1 and 2) [8]. However, when the order of the
DD model is higher than the number of inputs, the previous DD module will build all
the interaction terms, while the later DD module will only increase the order without
increasing the interaction terms. For instance, in Figure 1, if the number of inputs is l + 1, l
DD modules have constructed all the interactive items (the order of l DD modules is l + 1.),
the later red DD modules will only increase the order and cannot increase the interactive
items. Hence, the later DD modules have redundant calculations, and we can increase
the order with lower computation than the DD module. Therefore, we replace the later
DD modules with an acceleration module to increase the order faster in this paper (see
Figure 4).

... cW  X  X10 W   A  Xd,d-1 d-1 W    A  Xd+1,d d+2,d+1 d+2d W      A 
A1 Ad-1 Ad Ad+1

x0

x1

x2

 Sample  Logical extractor(DD with AC)

DD modules
Acceleration 

module
Linear
module

Figure 4. Schematic of the dendrite net with the acceleration module.
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2.2. Dendrite Net with Acceleration Module
2.2.1. Architecture

Figure 4 shows the dendrite net with the acceleration module. It contains DD modules,
a linear module, and an acceleration module. The overall architecture of DD with the
acceleration module is shown in Figure 5. The architecture can be represented according to
the following formula.

Y = Wd+2,d+1[Wd+1,d(· · ·W21(W10X ◦ X) ◦ X · · · ) ◦ Xc], d ∈ N+ (9)

where X and Y denote the input space and the output space. One of the elements in X can
be set to 1 to generate a bias. W i,i−1 is the weight matrix from the (i− 1)-th module to the
i-th module. The last module is linear. d denotes the number of DD modules. c denotes
Power of Number. ◦ denotes Hadamard product.

Figure 5. Overall architecture of DD with AC with six inputs and four outputs. This figure is a visual
example of Equation (9).

The DD modules and the linear module have been described previously. The accelera-
tion module is expressed as follows:

Ad+1 = Wd+1,d Ad ◦ Xc (10)

where Ad and Ad+1 are the inputs and outputs of the module. X denotes the inputs of DD
with AC. One of the elements in X can be set to 1 to generate a bias. d denotes the number
of DD modules. c denotes Power of Number. Xc represents X to the power of c. Wd+1,d

is the weight matrix from the d-th module to the d + 1-th module. ◦ denotes Hadamard
product.

In order for the DD with AC to include all terms under the target order and use fewer
modules, the order of DD with AC n, the number of DD modules d, the power of AC c, and
the input dimension of DD with AC a should satisfy the following equations:

d + 1 + c = n

(c− 1)× a < n

c× a ≥ n

(11)

where d + 1 + c = n means that the order of DD with AC is equal to the sum of the order
of DD modules (d + 1) and the order of the acceleration module (c). (c− 1)× a < n means
that if c exceeds this range (the value of c is too large), DD with AC can not construct all the
interactive items. c× a ≥ n means that if the value of c is too small, there are still redundant
computations. d and c are calculated by Algorithm 1 in the case of a given order n.
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Algorithm 1: Design of DD with AC
Input: The order of DD with AC n, the input dimension of DD with AC a
Output: The number of DD modules d, the power of AC c

1 for i = 0 to n do
2 if (i− 1)× a < n and i× a ≥ n then
3 c← i
4 d← n− c− 1
5 if d < 1 then
6 d← 1
7 c← n− d− 1

2.2.2. Learning Rules

The graphical illustration of the learning rule is shown in Figure 6. As an example,
we use one-half of the mean squared error (MSE) as the loss function. The learning rules
of DD modules and the linear module have been described previously. The following set
of equations describes the error back-propagation-based learning rule of the acceleration
module (see Figure 6) [22].

Ad-1W d,d-1 XXW 10 X Ad+1W d+2,d+1

Y-Y

<

X A1 Ad-1 Ad+1 Y

<

dAd+2dAd+1

W d+2,d+1dZd+2

dAd X

W d,d-1

dZd+2 dAd+2=dZd==

dZddAd-1=
dAd-1dA1dA1 X

dZd+2Ad+1

m
1

W d+2,d+1-αdW d+2,d+1

dZd+2

dW d+2,d+1

W d+2,d+1

dZdAd-1

m
1

W d,d-1-αdW d,d-1

dZd

dW d,d-1

W d,d-1

dZ1Xm
1

W 10-αdW 10

dZ1

dW 10

W 10

dAd+1=

dZ1

AdW d+1,d XAd

dAd+1 X

W d+1,d

dZd+1=

dZd+1dAd =
dAd

dZd+1Ad

m
1

W d+1,d-αdW d+1,d

dZd+1

dW d+1,d

W d+1,d

c

c

DD modules
Acceleration 

module
Linear
module

Forward propagation 

Error-backpropagation

Weight adjustment

Figure 6. Graphical illustration of the learning rule.

The error back-propagation of the acceleration module:

dZd+1 = dAd+1 ◦ Xc (12)

dAd = (Wd+1,d)TdZd+1 (13)

The weight adjustment of the acceleration module:

dWd+1,d =
1
m

dZd+1(Ad)T (14)

Wd+1,d(new) = Wd+1,d(old) − αdWd+1,d (15)

where dAd+1 represents the error from the later module, m denotes the number of training
samples in one batch, α is the learning rate, and the other symbols represent the intermediate
variables or have been explained in Equation (10).

3. Experiments and Results

Ref. [8] demonstrates that DD has lower time complexity than traditional polynomials
or ML with nonlinear functions, which will speed up the computation of online systems. In
addition, DD has white-box properties and controllable accuracy for nonlinear mappings.
The main purpose of the following experiments is to demonstrate the feasibility of DD with
AC to further speed up the computation while retaining the properties of DD.
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3.1. Precision and Identification of Unary Nonlinear Mapping

In order to investigate the precision and identification of unary nonlinear mapping,
we considered the normalized Bessel function defined by:

f (x) =
sin(x)

x2 − cos(x)
x

(16)

where we defined x ∈ [−10, 0) ∪ (0, 10] , then x and f (x) were normalized to [−1, 1] ,
respectively. We gradually increase the order of DD with AC to approximate the normalized
Bessel function (from order 4 to order 15). The architectures of DD are designed by Ref. [8]
and are shown in Table 2. The architectures of DD with AC are obtained from Algorithm 1,
and the results are shown in Table 2. It is worth noting that the input dimension of DD or
DD with AC is set to 2 and one of the inputs is always 1 (Bias).

Table 2. Architectures of DD and DD with AC for unary nonlinear mapping/four-input nonlinear system.

Order DD DD with AC Number of Modules in DD Number of Modules
in DD with AC

4 3DD 1DD + AC2 3 2
5 4DD 1DD + AC3 4 2
6 5DD 2DD + AC3 5 3
7 6DD 2DD + AC4 6 3
8 7DD 3DD + AC4 7 4
9 8DD 3DD + AC5 8 4

10 9DD 4DD + AC5 9 5
11 10DD 4DD + AC6 10 5
12 11DD 5DD + AC6 11 6
13 12DD 5DD + AC7 12 6
14 13DD 6DD + AC7 13 7
15 14DD 6DD + AC8 14 7

A linear module follows each model, and the statistics for this module are not included in this table. “k”DD +
AC“j”: The model contains “k” DD modules and one acceleration module, and the power of X in the acceleration
module is “j”.

Figure 7 displays the precision of unary nonlinear mapping using DD with AC. What
stands out in this figure is the gradual increase in precision with the increasing order, which
is present in both DD and DD with AC. Furthermore, the precision of DD with AC is lower
than DD in the same order, especially at higher orders. This may be due to the fact that it is
more difficult to find the optimal solution using DD with AC than using DD. Although DD
with AC has a drawback, it retains the key property of DD; that is, the precision increased
with the number of modules, which corresponds to the property in Taylor’s expansion [8].

-1.0 -0.5 0.0 0.5 1.0
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

x

Va
lu

e
of
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tp

ut

Normalized Bessel function

6DD+AC8
6DD+AC7

4DD+AC6
4DD+AC5

2DD+AC4
2DD+AC3

2 3 4 5 6 7 8 9 10 11 12 13 14 15
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5×10-2

1×10-1

1.5×10-1

2×10-1
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Order

M
SE

DD
DD with AC

(a) (b)

Figure 7. Precision comparison between DD and DD with AC for nonlinear mapping. (a) Nonlinear
mapping using DD with AC. (b) Precision comparison between DD and DD with AC as the target
order increases. “k”DD + AC“j”: The model contains “k” DD modules and one acceleration module,
and the power of X in the acceleration module is “j”.



Mathematics 2022, 10, 4477 8 of 14

The trained DD with AC models were translated into the relation spectrum about
inputs and outputs by formula simplification with MATLAB 2019b [13,18,19]. Concretely,
we set system input variables[1x] and use it to express the forward propagation formula
(see Figure 4). Then, the optimized weights were assigned to the corresponding matrices in
DD with AC. Finally, the Relation spectrum was obtained through formula simplification
in MATLAB. Note: The Relation spectrum, similar to the Fourier spectrum, focuses on
transforming and observing the corresponding phenomenon in the spectrum for analysis.
The Relation spectrum presents the polynomial itself after the format transformation, so the
transformation can be proved to be valid by observing whether there are similar relations
in the Relation spectrum. More explanations and applications can be found in previous
researches, such as Ref. [19], Ref. [18], and Ref. [13].

Turning now to the identification by DD with AC in Figure 8, the comparison between DD
and DD with AC shows that DD with AC also retains the properties of the relation spectrum
of DD. The difference in the Relation spectrum corresponds to the difference in precision in
Figure 7. Models with large differences in precision also have large differences in the Relation
spectrum. In other words, the Relation spectrum in Figure 8 explain the models in Figure 7.

1 3

2 order

Item

Co
ef

fic
ie

nt

1 4

3 order

Item

Co
ef

fic
ie

nt

1 5

4 order

Item
Co

ef
fic

ie
nt

1 6

5 order

Item

Co
ef

fic
ie

nt

1 7

6 order

Item

Co
ef

fic
ie

nt

1 8

7 order

Item

Co
ef

fic
ie

nt

1 9

8 order

Item

Co
ef

fic
ie

nt

1 10

9 order

Item

Co
ef

fic
ie

nt

1 11

10 order

Item

Co
ef

fic
ie

nt

1 12

11 order

Item

Co
ef

fic
ie

nt

1 13

12 order

Item

Co
ef

fic
ie

nt

1 14

13 order

Item

Co
ef

fic
ie

nt

1 15

14 order

Item

Co
ef

fic
ie

nt

1 16

15 order

Item

Co
ef

fic
ie

nt DD

DD with AC

Figure 8. Identification comparison between DD and DD with AC for nonlinear mapping. The
abscissa indicates the relation items. In analogy to the abscissa of Fourier spectrum, there are many
relation items. Therefore, the relation items will not be listed here and can be obtained by looking up
the table in the software.
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3.2. Mapping Precision and Identification of Multi-Input Nonlinear System

Modeling a multi-input nonlinear system is an essential and common demand in
online systems, such as sensor systems. We randomly constructed a multi-input nonlinear
system, whose output is shown in Figure 9 (dotted line) and the inputs are defined by:

I1(t) =sin(2t)

I2(t) =sin(3t)

I3(t) =sin(5t)

(17)

where we defined t ∈ [0, 7].

0 2 4 6
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

x

Multi-input nonlinear system
8DD+AC4
8DD+AC3

5DD+AC3
5DD+AC2
3DD+AC2

4 5 6 7 8 9 10 11 12 13
0

2×10-3

4×10-3

6×10-3

8×10-3

Order
M

SE

DD
DD with AC

(a) (b)

Figure 9. Precision comparison between DD and DD with AC for multi-input nonlinear system.
(a) Multi-input nonlinear system using DD with AC. (b) Precision comparison between DD and DD
with AC as the target order increases. “k”DD + AC“j”: The model has “k” DD modules and one
acceleration module, and the power of X in the acceleration module is “j”.

We gradually increase the order of DD and DD with AC to approximate the multi-
input nonlinear system (from order 4 to order 13). The architectures of DD were designed
according to the literature [8] (see Table 3). The architectures of DD with AC were obtained
by Algorithm 1, and the results are given in Table 3. It is worth noting that the input
dimension of DD or DD with AC is set to 4, and one of the inputs is always 1 (Bias).

Table 3. Architectures of DD and DD with AC for a four-input nonlinear system.

Order DD DD with AC Number of Modules in DD Number of Modules
in DD with AC

4 3DD 2DD + AC1 3 3
5 4DD 2DD + AC2 4 3
6 5DD 3DD + AC2 5 4
7 6DD 4DD + AC2 6 5
8 7DD 5DD + AC2 7 6
9 8DD 5DD + AC3 8 6

10 9DD 6DD + AC3 9 7
11 10DD 7DD + AC3 10 8
12 11DD 8DD + AC3 11 9
13 12DD 8DD + AC4 12 9

A linear module follows each model, and the statistics for this module are not included in this table. “k”DD +
AC“j”: The model contains “k” DD modules and one acceleration module, and the power of X in the acceleration
module is “j”.

Figure 9 presents the precision of multi-input nonlinear system using DD with AC.
What stands out in this figure is that the precision gradually improved with the increasing
order, which exists in DD and DD with AC.

The trained DD with AC models were transformed into a Relation spectrum of the
inputs and outputs by simplifying the equations in MATLAB 2019b [13,18,19]. Figure 10
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provides an identification comparison between DD and DD with AC for a multi-input
nonlinear system. The results between DD and DD with AC are similar, revealing that
DD with AC also retains the properties of the Relation spectrum in DD. These properties
have a wide range of applications, such as analyzing the human brain [19] and physical
design [13].
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Figure 10. Identification comparison between DD and DD with AC for multi-input nonlinear system.
The abscissa indicates the relation items. In analogy to the abscissa of Fourier spectrum, there are
many relation items. Therefore, the relation items will not be listed here and can be obtained by
looking up the table in the software.

3.3. Time Complexity
3.3.1. Computation of Time Complexity

Here we take unary nonlinear mapping as an example to calculate the time complexity.
The time complexity of the modules is summarized in Table 4.
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Table 4. Time complexity in DD and DD with AC for unary nonlinear mapping.

Module Time Complexity

DD module (“WA ◦ X”) 6 multiplication, 2 addition
Linear module (“WA”) 2 multiplication, 1 addition

Acceleration module (“WA ◦ Xc”) (4 + 2c) multiplication, 2 addition
Unary Nonlinear Mapping means that the input vector X contains two elements, one of which is 1, for example:
X = [1 x]. c denotes Power of Number. Xc represents X to the power of c.

DD is composed of DD modules and a linear module [8]. Therefore, DD contains
6(n− 1) + 2 multiplication and 2(n− 1) + 1 addition, where n denotes the order of poly-
nomial. The time complexity of DD is O(n), which happens to be consistent with Horner’s
method [7].

We take the two-input system (unary nonlinear mapping) and the four-input system
using DD with AC as an example and display the number of modules required for the
target order in Figure 11. Concretely, the architecture of DD with AC is obtained by
Algorithm 1, and the results are shown in Tables 2 and 3. It is evident from Figure 11
and Table 4 that, compared with increasing one order by adding a DD module, the time
complexity is reduced by 2 multiplications and 1 addition by adjusting the acceleration
module. Therefore, the time complexity of DD with AC is less than that of DD or
Horner’s method [7].
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DD with AC
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Figure 11. The number of modules required for target order. (a) Module number for two-input system.
When one of the inputs is 1, it corresponds to the unary nonlinear mapping above. (b) Module number for
four-input system. When one of the inputs is 1, it corresponds to the above multi-input nonlinear system.

3.3.2. Experiments of Time Complexity

In addition, to further verify the above results, 20 runs of DD and DD with AC were per-
formed for the two-input system and the four-input system, and the run times (online speeds)
were recorded. The tests were executed in MATLAB 2021b on a 2.2-GHz laptop Personal
Computer (PC). Among them, we recorded the running time for 10,000 forward-propagation
with 1000 samples for the 2-input systems and the running time for 10,000 forward-
propagation with 7000 samples for the 4-input systems.

The results are ideal. All online speeds from the online tests met our expectations (see
Figure 12). By comparing the results of Figures 11 and 12, it can be concluded that the
online speed corresponds with the number of modules.
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Figure 12. Online speed for a certain order. (a) Online speed for a two-input system. (b) Online speed
for a four-input system. Data: Mean± SD.

4. Discussion

Prior studies have noted the importance of nonlinear mapping in online computa-
tion [1–5]. Our previous studies about DD observed faster speeds of nonlinear mapping
using DD [8]. Due to the white-box attribute, controllable precision, and lower time com-
plexity, DD was comprehensively applied in the areas of energy, traffic, weather, and
physical design [9–15]. However, there has still been a redundant calculation in DD. This
study aimed to eliminate the redundant computation while retaining DD’s properties.

According to the analysis of DD, we designed an acceleration module, presented
DD with AC, and conducted three experiments. These experimental results are in accord
with the theoretical results. DD with AC has a lower time complexity than DD (see
Figures 11 and 12), has controllable precision (see Figures 7 and 9), and can also be used
for nonlinear mapping and system identification (see Figures 8 and 10). This paper was the
continued work of previous studies about DD, which may improve the application of DD
in various fields. Table 5 shows some examples of current applications of DD by referring
to the reviewer’s suggestions.

Table 5. Some applications of DD.

Applications Literature

A hybrid data-driven framework for spatiotemporal traffic flow data imputation Literature [10]
Energy saving of buildings for reducing carbon dioxide emissions using novel
dendrite net integrated adaptive mean square gradient

Literature [9]

Unsteady aerodynamics modeling method based on dendrite-based gated recur-
rent neural network model

Literature [23]

A radial sampling-based subregion partition method for dendrite network-based
reliability analysis

Literature [24]

An Algorithm for Precipitation Correction in Flood Season Based on Dendritic
Neural Network

Literature [15]

Multi-Objective Optimization for the Radial Bending and Twisting Law of Axial
Fan Blades

Literature [13]

An Accuracy Prediction Method of the RV Reducer to Be Assembled Considering
Dendritic Weighting Function

Literature [14]

An Adaptive Dendrite-HDMR Metamodeling Technique for High-Dimensional
Problems

Literature [11]

Convolutional dendrite net detects myocardial infarction based on ECG signal
measured by flexible sensor

Literature [25]

Photovoltaic Power Prediction Under Insufficient Historical Data Based on
Dendrite Network and Coupled Information Analysis

Literature [26]
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The limitation of this paper comes from the lack of engineering data. In this paper, DD
with AC is fundamentally verified by many experiments, which is a stronger way to prove
it than using special data. Future experiments will be conducted on engineering problems.

5. Conclusions

This paper presents a Dendrite Net with an Acceleration module for nonlinear map-
ping and system identification. The theoretical and experimental results suggest that DD
with AC retains DD’s nonlinear mapping properties and system identification properties.
Interestingly, the time complexity of DD is lower than the traditional polynomial or ML
with a nonlinear function and is consistent with Horner’s method. The time complexity
of DD with AC is lower than DD or Horner’s method, which provides a new strategy for
online systems that require lower time complexity and has the potential to speed up the
calculation of basic functions in computers.
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