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Abstract: The nanoindentation technique plays a significant role in characterizing the mechanical
properties of materials at nanoscale, where the adhesion effect becomes very prominent due to the
high surface-to-volume ratio. For this paper, the classical adhesion theories were generalized to
study the contact behaviors of various piezoelectric materials indented by conical punches with
different electric properties. With the use of the Hankel integral transform, dual integral equations,
and superposing principle, the closed-form solutions of the physical fields for the Johnson-Kendall-
Roberts (JKR) and Maugis-Dugdale (M-D) models were obtained, respectively. The contribution of the
electrical energy to the energy release rate under the conducting punch was taken into consideration.
The relationships between the contact radius, the indentation load, and the indentation depth were
set up using the total energy method for the JKR model and the Griffith energy balance for the M-D
model, respectively. Numerical results indicate that increasing the half cone angle of the conical
punch enhances the adhesion effect, which can significantly affect the accuracy of the results of
characterization in nanoindentation tests. It was found that the effect of electric potential on adhesion
behaviors is sensitive to different material properties, which are not revealed in the existing studies of
axisymmetric adhesive contact of piezoelectric materials and multiferroic composite materials. The
load-displacement curves under conical punches with different half cone angles have very different
slopes. These results indicate that the half cone angle has a prominent effect on the characterization
of mechanical properties of piezoelectric solids in nanoindentation tests.
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1. Introduction

As typical functional materials, piezoelectric materials have received increasingly
wide applications in a variety of smart structures and devices, such as transducers [1],
sensors [2], actuators [3], generators [4], energy harvest devices [5], and so on. It is essen-
tial for these various applications to accurately characterize the electric and mechanical
properties of piezoelectric materials for realizing effective quality control and performance
prediction [6,7]. In order to achieve these goals, many intelligent artificial algorithms, such
as the genetic algorithm [7–10], and soft computing tools, such as neural networks [11,12],
have been used. The nanoindentation technique, also known as instrumented indentation,
has become one of the most widely used testing techniques for evaluating the mechanical
properties of a variety of materials [13,14], including the traditional stiff piezoelectric ce-
ramics, such as polycrystalline lead zirconate titanate (PZT), barium titanate (BaTiO3), etc.,
and the new soft piezoelectric materials with low elastic modulus, such as polyvinylidene
fluoride (PVDF). However, soft materials always display obvious and strong adhesion
effects in nanoindentation experiments, which have significant influence on the results of
characterization [15,16].
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Adhesion is a phenomenon which describes the tendency of different surfaces or parti-
cles to cling to one another. The adhesion effect plays a significant role in micro/nanoscale
contact behaviors owing to the high surface-to-volume ratio [17–19]. During the nanoin-
dentation testing technique, the sample is pressed by a small indenter tip, and the force
and displacement are continuously measured as a function of time with high accuracy and
precision. The recorded indentation force-displacement curves are often viewed as the
‘fingerprints’ of the tested materials, which can be analyzed to evaluate their mechanical
properties. However, there always exists an obvious adhesion effect between the nanoin-
denter tip and the soft sample, which can lead to inaccurate estimation of the mechanical
properties, such as the elastic modulus and hardness values. For example, it has been veri-
fied by [20] that contact stiffness in the presence of adhesion effect is always smaller than
the counterpart value in the absence of the adhesion effect at the same indentation depth,
while for the same indentation force, the results are the opposite. Therefore, the adhesion
effect should be considered to avoid obtaining incorrect results during the nanoindentation
testing of soft materials.

Contact problems are not only very common in nature but also a key issue in practical
engineering. Whether discussing traditional indentation or nanoindentation technique,
their theoretical foundations are both in contact mechanics [13]. During the past few years,
the contact mechanics of piezoelectric materials have received comprehensive and rapid
development through theoretical deductions, numerical simulations, and experimental
observations. Various contact problems have received considerable attention and been
widely studied by many investigators, including the indentation problems under some
typical indenter profiles [21–31], the frictionless contact problems [32–41], the frictional
contact problems [42–47], the fretting contact problems [48–50] and the dynamic contact
problems [51,52]. During nanoindentation tests, sharp indenter is widely used due to
its higher resolution and the simplicity of the procedure [15]. As a typical sharp punch,
the contact behaviors of piezoelectric materials indented by a conical punch have been
widely investigated by many scholars. Chen et al. [21] studied the frictionless indenta-
tion problem of a piezoelectric solid punched by a rigid conical punch. Ding et al. [53]
analyzed the frictional contact behavior between a piezoelectric solid and a rigid conical
punch. Giannakopoulos and Suresh [22] developed a general theory for the axisymmetric
indentation problem of transversely isotropic piezoelectric materials by using the Hankel
integral transform technique. The closed-form solutions of physical quantities under the
action of the rigid conducting and insulating conical punches were obtained, which later
were generalized to piezoelectric film with finite thickness by [25,54]. Sridhar et al. [23]
conducted an experimental investigation into the mechanical and electrical responses
of piezoelectric solids indented by a rigid conducting conical punch with zero electric
potential. Makagon et al. [24] analyzed the sliding frictional contact behavior between a
piezoelectric solid and a rigid conical punch. Yang [26] obtained the general solutions of
the piezoelectric solids punched by a rigid indenter with axisymmetric arbitrary profile
and presented the closed-form solutions of the stress and electric displacement fields in the
case of a rigid conical punch.

It is worth noting that the aforementioned works only focus on the macroscale contact
behaviors of piezoelectric materials, and the influence of the adhesion effect was not taken
into consideration. With the increasingly broad applications of piezoelectric materials
in various micro-electro-mechanical systems (MEMS) devices, where the adhesion effect
becomes very prominent due to the high surface-to volume ratio [17], the contact problems
of piezoelectric materials at the micro/nanoscale have been studied by some researchers in
the past few years. Chen and Yu [55] first extended the classical JKR model [56] and the M-D
model [57] to study the adhesion behaviors of piezoelectric materials. The results indicated
that the coupling effect between adhesion and piezoelectric effects lead to much more
complicated adhesion behaviors than in the pure elastic case. Rogowski and Kalinski [58]
studied the adhesion behaviors of a piezoelectric solid indented by a rigid circular punch
and demonstrated the explicit expression of contact stresses, displacement outside the
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contact zone, and electric physical quantities. Guo and Jin [59] established a generalized
JKR model to study the adhesive contact problem between a piezoelectric solid and a
rigid cylinder with constant electric potential. It was found that piezoelectric materials
can be used to realize reversible adhesion. Jin et al. [60] developed the JKR-type adhesive
contact model for the piezoelectric solid punched by a rigid indenter with an axisymmetric
power-law profile. It is worth pointing out that all of the aforementioned works involved
only single layer piezoelectric materials. However, layered structures have been widely
used in various MEMS devices and structures [1,61]. To this end, the adhesion behaviors of
layered piezoelectric structures were studied [62–64], which are helpful for revealing the
adhesion mechanism of MEMS involving piezoelectric solids.

As typical multi-functional materials, multiferroic composite materials have been
widely used in a variety of MEMS smart structures [65–67] due to their multi-field coupling
effect. The contact behaviors of multiferroic composite media at micro/nanoscale have
attracted some attention from researchers. Recently, with the use of the superposition
principle and generalized potential theory, Wu et al. [68] first generalized the classical
adhesive contact theories to multiferroic composite materials. They established correspond-
ing JKR and M-D models for the multiferroic half-space under a spherical indenter with
four different electric and magnetic properties. It was found that the electric potential and
magnetic potential can be used to adjust the adhesion behaviors. More recently, Wu and
Li [69] studied the frictionless adhesive contact behaviors between a rigid conical punch
and a multiferroic half-space using the same approach. They found that the pull-off force
can be adjusted by altering the half cone angle of the conical punch.

It is worth mentioning that the adhesion behaviors of multiferroic composite materials
discussed in the above-mentioned two works [68,69] involved only one kind of material (i.e.,
BaTiO3-CoFe2O4). Although the effects of the electric potential and the half cone angle of the
conical punch on adhesion behaviors were discussed, whether these effects are dependent
on different material properties is unclear. However, the nanoindentation technique has
been widely used in characterizing the mechanical and electric properties of various
piezoelectric materials [70–72]. For the two-dimensional adhesive contact of piezoelectric
materials indent by a rigid cylinder, it has been verified that different types of piezoelectric
materials share entirely different adhesion behaviors under an electric load [60], which
reveals that the effect of the electric load on adhesion behaviors is sensitive to material
properties. For the indentation problem of purely elastic materials under a conical punch,
the existing results indicate that the half cone angle can significantly affect the calculation
of mechanical properties in nanoindentation tests [15]. For the indentation behaviors of
various piezoelectric materials indented by a rigid conical punch, it is unclear whether the
effects of the electric potential and the half cone angle on adhesion behaviors are sensitive
to different material properties, or whether the half cone angle has a significant effect on
the characterization of mechanical properties of piezoelectric materials in nanoindentation
tests. The current work is devoted to answer these queries.

It is well known that the classical adhesion theories include the JKR model [56], the
DMT model [73], the M-D model [57] and the double-Hertz (D-H) model [74]. The M-D
and D-H models are regarded as more general theories than the JKR and DMT models,
since both the M-D and D-H models are applicable to the arbitrary Tabor parameter [75],
whose applicable scope can vary between soft materials and extremely hard materials.
The JKR and DMT models can be described as two limit cases derived from the M-D
model, which thus can be used to verify the correctness of the M-D model. The JKR model
is the most widely used theory in nanoindentation experiments due to its convenience
and reasonability [16,76,77]. Based on the above considerations, the classical JKR and
M-D models were generalized in the present study to investigate the adhesive contact
behaviors of various piezoelectric materials indented by conical punches with different
electric properties. Numerical analysis indicated that the effect of the electric potential
on adhesion behaviors is sensitive to different material properties, while the effect of the
half cone angle on adhesion behaviors is insensitive to different material properties, which



Mathematics 2022, 10, 4511 4 of 50

are not revealed in the existing studies into piezoelectric materials [60] and multiferroic
composite materials [68,69]. Increasing the half cone angle can significantly enhance the
adhesion effect, which suggests to us that a conical punch with a small half cone angle
should be adopted in nanoindentation tests to reduce the effect of adhesion and improve the
accuracy of characterization results. Furthermore, it was found that the load-displacement
curves under conical punches with different half cone angles have very different slopes,
which indicates that the half cone angle can significantly affect the characterization of
mechanical properties of piezoelectric solids in nanoindentation tests.

2. Problem Description and Formulation
2.1. Problem Description

As shown in Figure 1, consider the axisymmetric frictionless adhesive contact problem
of a transversely isotropic piezoelectric solid indented by a rigid conical punch with a
constant electric potential, φ0, which is acted on by an indentation force, P. The cylindrical
coordinate (r, θ, z) is set up at the surface of the piezoelectric solid. The half cone angle
of the rigid conical punch is denoted as α, and the contact radius is a, while h stands for
the indentation depth and p(r) represents the adhesion force. The piezoelectric solid is
polarized with the positive z-axis.
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Figure 1. Schematic illustration of a piezoelectric solid in adhesive contact with a rigid conical punch
under a normal force, P (negative when tensile). φ0 denotes the constant electric potential; a, h, α, and
p(r) stand for the contact radius, the indentation depth, the half cone angle of the rigid conical punch,
and the adhesion force, respectively. The poling direction of the piezoelectric solid corresponds with
the positive z-axis.

2.2. Governing Equations

In the absence of body forces and body charges, the equilibrium equations and Gauss
equation can be given as

∂σrr
∂r + ∂σrz

∂z + σrr−σθθ
r = 0,

∂σrz
∂r + ∂σzz

∂z + σrz
r = 0,

∂Dr
∂r + Dr

r + ∂Dz
∂z = 0,

(1)

where σij and Di denote the stress and electric displacement components, respectively.
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In the cylindrical coordinates system, the constitutive equations can be expressed as

σrr = c11εrr + c12εθθ + c13εzz − e31Ez,

σθθ = c12εrr + c11εθθ + c13εzz − e31Ez,

σzz = c13(εrr + εθθ) + c33εzz − e33Ez,

σrz = 2c44εrz − e15Er,

Dr = 2e15εrz+ ∈11 Er,

Dz = e31(εrr + εθθ) + e33εzz+ ∈33 Ez,

(2)

where cij, eij, and ∈ij represent the elastic, piezoelectric, and dielectric constants, respec-
tively. Both εij and Ei denote the strain and electric field components, respectively. The
strain and electric field can be expressed by the mechanical displacements ur, uz, and the
electric potential, φ, via the following relations:

εrr =
∂ur
∂r , εθθ = ur

r , εzz =
∂uz
∂z ,

2εrz =
∂ur
∂z + ∂uz

∂r , Er = − ∂φ
∂r , Ez = − ∂φ

∂z .
(3)

Through substitution of Equations (2) and (3) into Equation (1), one can obtain the
following governing equations:

c11

(
∂2ur
∂r2 + 1

r
∂ur
∂r −

ur
r2

)
+ c44

∂2ur
∂z2 + (c13 + c44)

∂2uz
∂r∂z + (e31 + e15)

∂2φ
∂r∂z = 0,

(c13 + c44)
(

∂2ur
∂r∂z +

1
r

∂ur
∂z

)
+ c44

(
∂2uz
∂r2 + 1

r
∂uz
∂r

)
+ c33

∂2uz
∂z2

+e15

(
∂2φ

∂r2 + 1
r

∂φ
∂r

)
+ e33

∂2φ

∂z2 = 0,

(e31 + e15)
(

∂2ur
∂r∂z +

1
r

∂ur
∂z

)
+ e15

(
∂2uz
∂r2 + 1

r
∂uz
∂r

)
+ e33

∂2uz
∂z2

− ∈11

(
∂2φ

∂r2 + 1
r

∂φ
∂r

)
− ∈33

∂2φ

∂z2 = 0.

(4)

2.3. General Solutions

The results shown in Equation (4) are the governing equations with respect to the
mechanical displacement components and the electric potential. By solving Equation (4)
and substituting the solutions into Equations (2) and (3), one can obtain the corresponding
components of stress and electric displacement. Using the Hankel integral transform, and
considering the frictionless contact boundary condition, the general solutions of the surface
normal displacement, surface normal stress, and electric displacement can be obtained
as follows [25]:

uz(r, 0) =
∫ ∞

0 [M1 A1(ξ) + M2 A2(ξ)]ξ J0(ξr)dξ,

φ(r, 0) =
∫ ∞

0 [M3 A1(ξ) + M4 A2(ξ)]ξ J0(ξr)dξ,

σzz(r, 0) =
∫ ∞

0 [M5 A1(ξ) + M6 A2(ξ)]ξ
2 J0(ξr)dξ,

Dz(r, 0) =
∫ ∞

0 [M7 A1(ξ) + M8 A2(ξ)]ξ
2 J0(ξr)dξ,

(5)

where Mi(i = 1, 2, . . . , 8) represent the material constants related to the material properties
of piezoelectric materials, whose explicit expressions were given by Appendix (A.8) in [25];
Ai(ξ) (i = 1, 2) denote the undetermined constants that can be obtained with use of the
corresponding boundary conditions; and J0(ξr) denotes the Bessel function of the first kind
of zero order. In order to obtain the general solutions shown in Equation (5), the regularity
condition of the piezoelectric solid at infinity is considered, i.e., ur, uz, φ→ 0,

√
r2 + z2 → 0 .

For the frictionless contact problem between a piezoelectric solid and a rigid axisym-
metric punch with arbitrary profile, whose shape function can be denoted as f (r), the
solutions of the surface mechanical displacement, stress, and electric displacement of the
piezoelectric solid can be obtained with use of Equation (5) and the corresponding boundary
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conditions. It is worth mentioning that the electrical boundary conditions for conducting
and insulating indenters are different.

First, whether for the conducting or insulating indenter, the mechanical boundary
conditions can be described as{

uz(r, 0) = h− f (r), 0 ≤ r ≤ a,
σzz(r, 0) = 0, r > a,

(6)

where h, f (r), and a stand for the indentation depth, the shape function of the punch, and
the contact radius, respectively. For the three typical indenters (the flat-ended cylindrical,
the conical, and the spherical punches), the shape functions are denoted as

f (r) =


0, (0 ≤ r ≤ a) (flat-endedcircular punch),
r cot α, (0 ≤ r ≤ a) (conical punch),
r2/(2R), (0 ≤ r ≤ a) (spherical punch).

(7)

For the electrically conducting indenter, the electrical boundary conditions are given as{
φ(r, 0) = φ0, 0 ≤ r ≤ a,
Dz(r, 0) = 0, r > a,

(8)

where φ0 is a constant denoting the constant electric potential.
For the electrically insulating indenter, the corresponding electrical boundary condi-

tion is expressed as

Dz(r, 0) = 0, r ≥ 0. (9)

In addition, for both the conducting and insulating indenters, the following equilib-
rium condition should be satisfied:

P = −2π
∫ a

0
rσzz(r, 0)dr, (10)

where P is the indentation load. For the conducting indenter, one can further obtain

Q = −2π
∫ a

0
rDz(r, 0)dr, (11)

where Q stands for the total electric charge.

3. The Solution of the JKR Model

In this section, the classical JKR model [56] is generalized to investigate the adhesive
contact problem of a piezoelectric solid indented by a rigid conical punch.

3.1. Boundary Conditions for the JKR Model

In the classical JKR model, only the adhesion force within the contact area was taken
into consideration. According to the different electric properties of the indenters, the
mixed boundary conditions for the conducting and insulating punches can be described
as follows:
Case I: electrically conducting punch

uz(r, 0) = h− r cot α, φ(r, 0) = φ0, 0 ≤ r < a,

σzz(r, 0) = Dz(r, 0) = 0, r > a,

σrz(r, 0) = 0, r ≥ 0.

(12)
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Case II: electrically insulating punch

uz(r, 0) = h− r cot α, 0 ≤ r < a,

σzz(r, 0) = 0, r > a,

σzr(r, 0) = Dz(r, 0) = 0, r ≥ 0.

(13)

Referring to the establishment process of the classical JKR model, the solutions for
piezoelectric materials can be derived by superposing the corresponding piezoelectric
Hertz contact solution under the conical punch, and the Boussinesq contact solution
under the flat-ended circular punch, as shown in Figure 2a,b. Using the general solutions
presented in Equation (5) and combining the corresponding boundary conditions shown in
Equations (12) and (13), one can obtain the closed-form analytical solutions of the contact
problems of the piezoelectric solid indented by the rigid conical punch and flat-ended
cylindrical punch, respectively. For the convenience of subsequent analysis, the solutions
of the above-mentioned two subproblems are listed in Appendices A and B.
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Figure 2. Illustration of the M-D model of a conical punch on a piezoelectric solid: (a) Hertz
piezoelectric contact for a conical punch. (b) Boussinesq piezoelectric contact for a flat-ended circular
punch. (c) An axisymmetric external crack in an infinite piezoelectric body.

3.2. The Solution of Case I: Electrically Conducting Punch

Using the Hertz solutions in Equations (A2)–(A6) and the corresponding Boussinesq
solutions in Equations (A14)–(A18), the solutions of the JKR model for a piezoelectric solid
indented by a rigid conducting conical punch can be obtained as

hJKR =
πa
4

cot α− B3φ0 +
P

4B4a
, (14)

σJKR
zz (r, 0) = −B4 cot αcos h−1

( a
r

)
+

πa2B4 cot α− P
2πa
√

a2 − r2
, (15)
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D JKR
z (r, 0) =

2B5(B6 + B3)φ0

π
√

a2 − r2
− B5 cot αcos h−1

( a
r

)
+

B5

B4

πa2B4 cot α− P
2πa
√

a2 − r2
, (16)

uJKR
z (r, 0) =

{
hJKR − r cot α, 0 ≤ r ≤ a,
2
π hJKR sin−1( a

r
)
+
(√

r2 − a2 − r
)

cot α, r > a,
(17)

φJKR(r, 0) =

{
φ0, 0 ≤ r ≤ a,
2
π φ0 sin−1( a

r
)
, r > a.

(18)

According to the establishment procedure of the classical JKR model, the total energy
method should be adopted to obtain the relationship between the indentation force and
contact radius. The total free energy of the contact system can be expressed as

UT = UE + UD + UP + US, (19)

where UT , UE, UD, UP, and US denote the total free energy, the elastic strain energy, the
electrostatic field energy, the mechanical energy, and the surface energy of the contact
system, respectively, which are defined as

UE = −1
2

∫ 2π

0

∫ a

0
σJKR

zz (r, 0)uJKR
z (r, 0) rdrdθ, (20)

UD = −1
2

∫ 2π

0

∫ a

0
D JKR

z (r, 0)φJKR(r, 0)rdrdθ, (21)

UP = −PhJKR, US = −πa2∆γ, (22)

where ∆γ is the surface energy denoting the work of adhesion for per unit area needed to
separate two contacting objects from equilibrium state to infinity.

Substituting Equations (14)–(18) into Equations (20)–(22) yields that

UE = P2

8B4a +
π2 cot2 αB4a3

24 − PB3φ0
2 , UD = B5

2B4
Pφ0 − 2B5(B6 + B3)aφ2

0,

UP = −π cot α
4 Pa− P2

4aB4
+ PB3φ0.

(23)

In order to obtain the results presented in Equation (23), the following integral results
were utilized [69]: ∫ a

0
r√

a2−r2 dr = a,
∫ a

0
r2

√
a2−r2 dr = π

4 a2,∫ a
0 rcos h−1 a

r dr = 1
2 a2,

∫ a
0 r2cos h−1 a

r dr = πa3

12 .
(24)

The equilibrium state of the contact system should satisfy the following condition:

∂UT
∂a

∣∣∣∣
P
= 0, (25)

By substituting Equation (23) into Equation (19) and then inserting the corresponding
result into Equation (25), one can obtain

P = π cot αB4a2 ± 4a
√

πB4∆γa + B4B5(B6 + B3)φ
2
0. (26)



Mathematics 2022, 10, 4511 9 of 50

The stable equilibrium state of the contact system should satisfy the condition ∂2UT
∂a2 > 0,

in which case

PJKR = πB4a2 cot α− 4a
√

πB4∆γa + B4B5(B6 + B3)φ
2
0. (27)

If the rigid conical punch has zero electric potential (i.e., φ0 = 0), Equation (27)
degenerates into the following form:

P = π cot αB4a2 − 4a
√

πB4∆γa, (28)

which is the same as the result of Equation (3.16) obtained in [60].
When a piezoelectric material degenerates into a isotropic elastic solid, considering

B4 = E∗/2 (where E∗ denotes the equivalent elastic modulus), Equation (28) can be
rewritten as

P =
π cot αE∗

2
a2 −

√
8πE∗∆γa3, (29)

which is in agreement with the result of Equation (17) derived from [78].

By substituting Equation (27) into Equations (14)–(16), one can obtain

hJKR = πa
2 cot α− B3φ0 − 1

B4

√
B4π∆γa + B4B5(B6 + B3)φ

2
0,

σJKR
zz (r, 0) = −B4 cot αcos h−1 a

r +
2
π

√
πB4∆γa+B4B5(B6+B3)φ

2
0

a2−r2 ,

D JKR
z (r, 0) = 2B5(B6+B3)φ0

π
√

a2−r2 − B5 cot αcos h−1 a
r

+ 2B5
πB4

√
πB4∆γa+B4B5(B6+B3)φ

2
0

a2−r2 .

(30)

In adhesive contact problems, the pull-off force is regarded as the maximum external
pulling force needed to separate two contacting objects, which is a vital physical quantity.
In order to obtain the explicit expression of the pull-off force, one must consider the
following condition:

dP
da

= 0. (31)

Inserting Equation (27) into Equation (31) yields

χ1a3 + χ2a2 + χ3a + χ4 = 0, (32)

where

χ1 = π3B3
4 cot2 α∆γ, χ2 = π2B3

4B5(B6 + B3) cot2 αφ2
0 − 9π2B2

4∆γ2,

χ3 = −12πB2
4B5(B6 + B3)∆γφ2

0, χ4 = −4B2φ4
0.

(33)

Using the Cardans formula, one can derive

∆ =
( q

2

)2
+
( p

3

)3
= −

4B3φ6
0

B4
4π6 cot2 α

(
B2φ4

0
27∆γ4 +

Bφ2
0

3∆γ2 +
1

cot4 α

)
, (34)

where B = B4B5(B6 + B3), and p and q are defined as

p =
χ3

χ1
−

χ2
2

3χ2
1

, q =
χ4

χ1
+

2χ3
2

27χ3
1
− χ2χ3

3χ2
1

. (35)
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The numerical results indicate that B > 0 for several common piezoelectric materials
(e.g., PZT-4, PZT-5A, BaTiO3, and Ba0.917Ca0.083TiO3); hence, one can obtain that ∆ < 0,
and Equation (32) has three real roots given as follows:

a1 =
2
√
−3p
3 cos β

3 −
1
3

(
BB2

4π2 cot2 αφ2
0−9π2B2

4∆γ2

π3B3
4 cot2 α∆γ

)
,

a2 = −
√
−3p
3

(
cos β

3 −
√

3 sin β
3

)
− 1

3

(
BB2

4π2 cot2 αφ2
0−9π2B2

4∆γ2

π3B3
4 cot2 α∆γ

)
,

a3 = −
√
−3p
3

(
cos β

3 +
√

3 sin β
3

)
− 1

3

(
BB2

4π2 cot2 αφ2
0−9π2B2

4∆γ2

π3B3
4 cot2 α∆γ

)
,

(36)

where

β = arccos

(
−

3q
√
−3p

2p2

)
, 0 ≤ β ≤ π. (37)

From Equation (37), one can find that 0 ≤ β/3 ≤ π/3. Therefore, the three roots in
Equation (36) satisfy the following orders

a3 ≤ a2 ≤ a1. (38)

In addition, from Equation (36), one can obtain the following relation:

a1 =
2
√
−3p
3 cos β

3 −
1
3

(
BB2

4π2 cot2 αφ2
0−9π2B2

4∆γ2

π3B3
4 cot2 α∆γ

)
≥
√
−3p
3 − 1

3

(
BB2

4π2 cot2 αφ2
0−9π2B2

4∆γ2

π3B3
4 cot2 α∆γ

)

= 1
3

√ 36Bφ2
0

π2B2
4 cot2 α

+

(
BB2

4π2 cot2 αφ2
0−9π2B2

4∆γ2

π3B3
4 cot2 α∆γ

)2

− BB2
4π2 cot2 αφ2

0−9π2B2
4∆γ2

π3B3
4 cot2 α∆γ

]
≥ 0,

(39)

a3 = −
√
−3p
3

(
cos β

3 +
√

3 sin β
3

)
− 1

3

(
BB2

4π2 cot2 αφ2
0−9π2B2

4∆γ2

π3B3
4 cot2 α∆γ

)
≤ −
√
−3p
3 − 1

3

(
BB2

4π2 cot2 αφ2
0−9π2B2

4∆γ2

π3B3
4 cot2 α∆γ

)

= − 1
3

√ 36Bφ2
0

π2B2
4 cot2 α

+

(
BB2

4π2 cot2 αφ2
0−9π2B2

4∆γ2

π3B3
4 cot2 α∆γ

)2

+
BB2

4π2 cot2 αφ2
0−9π2B2

4∆γ2

π3B3
4 cot2 α∆γ

]
< 0.

(40)

It should be noted that the contact radius a should be a non-negative real quantity.
Therefore, a1 should be selected as the critical contact radius at the pull-off moment. One
can obtain

Ppull−off = π cot αB4a2
pull−off − 4apull−off

√
πB4∆γapull−off + B4B5(B6 + B3)φ

2
0, (41)

where

apull−off = a1 =
2
√
−3p
3

cos
β

3
− 1

3

(
BB2

4π2 cot2 αφ2
0 − 9π2B2

4∆γ2

π3B3
4 cot2 α∆γ

)
. (42)

By adopting the same solution procedures as those of Case I, one can also obtain the
JKR solutions for Case II, and the solutions of Case II have similar mathematical structures
to Case I. The corresponding solutions for Case II are presented in Appendix C.
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4. The Solution of M-D Model

In this section, the classical M-D model is generalized to investigate the adhesive
contact behaviors of a piezoelectric solid indented by a rigid conical punch. The adhesive
contact problem in classical M-D adhesion theory was divided into three subproblems,
i.e., the Hertz contact problem, the Boussinesq contact problem, and the external circular
crack problem, as shown in Figure 2. This solution approach will also be adopted here to
establish the M-D adhesive contact model for piezoelectric materials.

4.1. Boundary Conditions for the M-D Model

In the classical M-D model [57], the sophisticated adhesion force is simplified as a
constant in an annular zone by using the Dugdale model [79]. In this case, the boundary
conditions for the two cases of the M-D model can be expressed as follows:
Case I: electrically conducting punch

σzz(r, 0) =

σ0, a < r < c,

0, c < r < ∞,

uz(r, 0) = h− r cot α, φ(r, 0) = φ0, 0 ≤ r < a,

Dz(r, 0) = 0, r > a,

σzr(r, 0) = 0, r ≥ 0.

(43)

Case II: electrically insulating punch

σzz(r, 0) =

σ0, a < r < c,

0, c < r < ∞,

uz(r, 0) = h− r cot α, 0 ≤ r < a,

σzr(r, 0) = Dz(r, 0) = 0, r ≥ 0.

(44)

Note that in Equations (43) and (44), σ0 denotes the constant adhesion force outside of
the contact region, which is the theoretical adhesion strength of the material.

Using the general solutions obtained in Equation (5) and combining the corresponding
boundary conditions presented in Equations (43) and (44), the solutions of the three sub-
problems can be obtained. The corresponding Hertz contact solutions and the Boussinesq
contact solutions are presented in Appendices A and B, respectively. The solutions of the
axisymmetric external circular crack problem in an infinite piezoelectric solid are given in
Appendix E.

4.2. The Solution of Case I: Electrically Conducting Punch

The JKR solutions under a rigid conducting conical punch are presented in Section 4.
Introducing the following stress and electric displacement intensity factors:

KI =
P1 − P
2a
√

πa
, KD =

2B5(B6 + B3)φ0√
πa

, (45)

where P1 denotes the corresponding apparent Hertz load, then Equations (14)–(16)can be
rewritten as follows:

hJKR =
πa
2

cot α− B3φ0 −
√

πaKI
2B4

, (46)

σJKR
zz (r, 0) = −B4 cot αcos h−1 a

r
+

KI√
πa

a√
a2 − r2

, 0 ≤ r < a. (47)
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D JKR
z (r, 0) =

√
a
π

KD√
a2 − r2

− B5 cot αcos h−1 a
r
+

B5

B4

√
a
π

KI√
a2 − r2

, 0 ≤ r < a. (48)

Substituting Equation (46) into Equation (17), one can obtain

uJKR
z (r, 0) =


πa
2 cot α− B3φ0 −

√
πaKI
2B4

− r cot α, 0 ≤ r < a,

−
√

a
π

KI
B4

sin−1 a
r +

2
π

(
πa
2 cot α− B3φ0

)
sin−1 a

r

+
(√

r2 − a2 − r
)

cot α, r > a.

(49)

Using Equations (18) and (49), the discontinuity of the displacement and the electric
potential outside the contact region can be defined as[

uJKR
z (r, 0)

]
= f

( r
a
)
− δ + uz(r, 0)

= KI
√

πa
B4π cos−1 a

r +
(

2B3φ0
π − a cot α

)
cos−1 a

r +
√

r2 − a2 cot α, r > a,
(50)

and [
φJKR(r, 0)

]
=

2
π

φ0 sin−1 a
r
− φ0 = −2φ0

π
cos−1 a

r
, r > a, (51)

respectively.
The solutions of the external circular crack subjected to constant normal pressure, p0,

at the crack surfaces are presented in Appendix E. By inserting p0 = −σ0 into Equation
(A111) and Equations (A114)–(A117) and combining the result in Equation (A91), one
can obtain

σzz(r, 0) =

 Km√
πa

a√
a2−r2 +

2σ0
π tan−1

√
c2−a2

a2−r2 , r < a,

σ0, a < r < c,
(52)

Dz(r, 0) =
B5

B4π

Km
√

πa + 2σ0
√

c2 − a2
√

a2 − r2
, r < a, (53)

uT = − 2σ0
B1πa

[√
(c2 − a2)(r2 − a2)− ac2

∫ min(r,c)
a

√
r2−t2

t2
√

c2−t2 dt
]

+Km
√

πa+2σ0
√

c2−a2

B4π cos−1 a
r , r > a,

(54)

φT = −2B2σ0

B1πa

[√
(c2 − a2)(r2 − a2)− ac2

∫ min(r,c)

a

√
r2 − t2

t2
√

c2 − t2
dt

]
, r > a, (55)

δ
′
=

σ0

2B4

(
c2

a
cos−1 a

c
−
√

c2 − a2
)

, (56)

where

Km = − σ0√
πa

(√
c2 − a2 +

c2

a
cos−1 a

c

)
. (57)

By superposing Equations (47) and (48) and Equations (52) and (53), one can determine that

σM−D
zz (r, 0) =


−B4 cot αcos h−1 a

r +
a√
πa

KI+Km√
a2−r2

+ 2σ0
π tan−1

√
c2−a2

a2−r2 , r < a,

σ0, a < r < c.

(58)
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DM−D
z (r, 0) = KD√

πa
a√

a2−r2 − B5 cot α cosh−1 a
r

+ B5
B4

KI+Km√
πa

a√
a2−r2 +

2B5σ0
B4π

√
c2−a2

a2−r2 , r < a.
(59)

According to the classical M-D theory [57], in order to eliminate the stress singularity
at the fringe of the contact zone, the following continuity condition should be satisfied:

KI + Km = 0⇒ KI =
P1 − P
2a
√

πa
= −Km =

σ0√
πa

(√
c2 − a2 +

c2

a
cos−1 a

c

)
. (60)

From Equation (60), one can obtain

P = P1 − 2σ0a
(√

c2 − a2 + c2

a cos−1 a
c

)
= πa2B4 cot α− 2σ0a

(√
c2 − a2 + c2

a cos−1 a
c

)
.

(61)

Using the continuity condition in Equation (60), Equations (58) and (59) can be simpli-
fied as

σM−D
zz (r, 0) =

−B4 cot αcos h−1 a
r +

2σ0
π tan−1

√
c2−a2

a2−r2 , r < a,

σ0, a < r < c.
(62)

and

DM−D
z (r, 0) =

KD√
πa

a√
a2 − r2

− B5 cot α cosh−1 a
r
+

2B5σ0

B4π

√
c2 − a2

a2 − r2 , r < a, (63)

respectively.
For the indentation depth, by superposing Equations (14) and (56) and combining the

result presented in Equation (61), one can obtain

hM−D =
πa
2

cot α− σ0

B4

√
c2 − a2 − B3φ0. (64)

Using Equations (50) and (54), and considering the continuity condition in Equation (60),
the discontinuity displacement outside the contact region can be obtained as[

uM−D
z (r, 0)

]
=
(

2B3φ0
π − a cot α

)
cos−1 a

r

+
√

r2 − a2 cot α + 2σ0
√

c2−a2

πB4
cos−1 a

r

− 2σ0
B1πa

[√
(c2 − a2)(r2 − a2)− ac2

∫ min(r,c)
a

√
r2−t2

t2
√

c2−t2 dt
]
.

(65)

The discontinuity of the displacement can be given as

δt =
[
uM−D

z (c, 0)
]
=
[√

m2 − 1− cos−1
(

1
m

)]
a cot α

+ 2B3φ0
π cos−1

(
1
m

)
+ 2σ0a

π

[
1

B4

√
m2 − 1 cos−1

(
1
m

)
− 1

B1
(m− 1)

]
,

(66)

where m = c/a.
By superposing Equations (51) and (55), the discontinuity of electric potential can be

derived as [
φM−D(r, 0)

]
= − 2φ0

π cos−1 a
r

− 2B2σ0
B1πa

[√
(c2 − a2)(r2 − a2)− ac2

∫ min(r,c)
a

√
r2−t2

t2
√

c2−t2 dt
]
.

(67)
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where a < r < c, one can determine that[
φM−D(r, 0)

]
= − 2φ0

π cos−1 a
r

− 2B2σ0
B1πa

[√
(c2 − a2)(r2 − a2)− ac2

∫ r
a

√
r2−t2

t2
√

c2−t2 dt
]
.

(68)

by virtue of the following integral results [57]:

∫ r

a

√
r2 − t2

t2
√

c2 − t2
dt =

1
a

√
r2 − a2

c2 − a2 −
1
c

E(ζ, t), (69)

where

E(ζ, t) =
∫ ζ

0

√
1− t2 sin2 θdθ (70)

is the elliptic integral of the second kind, and

ζ = arcsin

 c
r

√
r2 − a2

c2 − a2

, t =
r
c

. (71)

Equation (68) can be simplified as[
φM−D(r, 0)

]
= − 2φ0

π cos−1 a
r

− 2B2σ0
B1πa

[√
(c2 − a2)(r2 − a2)− c2

√
r2−a2

c2−a2 + acE(ζ, t)
]
.

(72)

When ρ0 → 0 , from Equations (63) and (72), one can determine that

DM−D
z (a− ρ0, 0) ≈ 2B5(B6 + B3)φ0

π
√

2aρ0
+

B5

B4

2σ0

π

√
c2 − a2

2aρ0
. (73)

[
φM−D(a + ρ0, 0)

]
≈ − 2φ0

π cos−1 a
a+ρ0

− 2B2σ0
B1πa

[√
(c2 − a2)2aρ0 − c2

√
2aρ0

c2−a2 + acE(ζ, t)
]

.
(74)

In the case of ρ0 → 0 , using the following results [68]:

cos−1 a
a + ρ0

≈
√

2ρ0

a
, E(ζ, t) ≈

√
2aρ0

c

(
a√

c2 − a2
+

√
c2 − a2

a

)
, (75)

Equation (74) can be simplified as

[
φM−D(a + ρ0, 0)

]
= − 2

π

(
φ0 +

B2

B1
σ0

√
c2 − a2

)√
2ρ0

a
. (76)

Using the virtual crack closure integral technique [68,69], the energy release rate of the
piezoelectric solid can be calculated as

G = σ0δt + lim
δ→0

1
δ

∫ δ

0

1
2

DM−D
z (a− ρ0, 0)

[
φM−D(a + δ− ρ0, 0)

]
dρ0. (77)

By substituting Equations (73) and (76) into Equation (77), and using the following
integral result [80]:

lim
δ→0

1
δ

∫ δ

0

√
δ− ρ0

ρ0
dρ0 =

π

2
, (78)
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the energy release rate can be derived as

G =
[√

m2 − 1− cos−1
(

1
m

)]
σ0a cot α + 2B3φ0σ0

π cos−1
(

1
m

)
+

2σ2
0 a

π

[
1

B4

√
m2 − 1 cos−1

(
1
m

)
− 1

B1
(m− 1)

]
− B5(B3+B6)φ

2
0

πa

− 1
π

[
B5
B4

+ B2B5(B3+B6)
B1

]
φ0σ0
√

m2 − 1− B2B5
B1B4

σ2
0 a
π (m2 − 1).

(79)

Using the Griffith energy balance criterion, one can determine that[√
m2 − 1− cos−1

(
1
m

)]
σ0a cot α + 2B3φ0σ0

π cos−1
(

1
m

)
+

2σ2
0 a

π

[
1

B4

√
m2 − 1 cos−1

(
1
m

)
− 1

B1
(m− 1)

]
− B5(B3+B6)φ

2
0

πa

− 1
π

[
B5
B4

+ B2B5(B3+B6)
B1

]
φ0σ0
√

m2 − 1− B2B5
B1B4

σ2
0 a
π (m2 − 1) = ∆γ,

(80)

where ∆γ denotes the work of adhesion.
The correctness of the above results can be verified by checking whether the corre-

sponding JKR solutions obtained in Section 3.2 can be derived as the limit case from them,
and the detailed procedures can be found in Appendix F. This verified method was also
adopted in the classical M-D theory [81].

By adopting the same solution procedures as those of Case I, one can also obtain the
corresponding solutions for Case II, and the solutions of Case II have the similar mathematical
structures to Case I. The corresponding solutions for Case II are presented in Appendix D.

5. Numerical Results and Discussion

In this section, the effects of the electric potential, the half cone angle of the conical
punch, and different material properties on the adhesion behaviors will be revealed. In
the following numerical analysis, the corresponding numerical results were computed by
Mathematica software. The material properties of the four different piezoelectric materials
examined here are listed in Table 1. For the sake of convenience, the following dimensionless
physical parameters are defined:

P∗ = P
/(

∆γ2

B4

)
, a∗ = a

/(
∆γ
B4

)
, h∗ = h

/(
∆γ
B4

)
,

φ∗ = B3φ0

/(
∆γ
B4

)
, m = c

a , λ = σ0
B4

.
(81)

5.1. JKR Solutions

Based on the JKR theory, the variations of the dimensionless contact radius, a∗, with the
dimensionless indentation force, P∗, for the four different piezoelectric materials are shown
in Figure 3. From Figure 3a, one can see that the electric potential has a prominent effect
on the adhesive contact behavior. For the electrically conducting punch, the pull-off force
increases with the electric potential. In the case of Ba0.917Ca0.083TiO3, as the dimensionless
electric potential, φ∗, increases from 0 to 3, the corresponding pull-off force increases by
about six times, which indicates that the adhesion effect can be strengthened by applying
electric potential. This conclusion is in good agreement with the experimental results
derived by [82]. Furthermore, the above result also suggests that as typical functional
materials, piezoelectric materials offer a new approach to achieve reversible adhesion.
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Table 1. Material constants of the four piezoelectric materials.

PZT-4 PZT-5A BaTiO3 (Ba0.917Ca0.083)TiO3

Elastic coefficients (GPa)
c11 139.00 121.00 150.00 158.00
c33 115.00 111.00 146.00 150.00
c44 25.60 21.10 44.00 45.00
c12 77.80 75.40 66.00 69.00
c13 74.30 75.20 66.00 67.50
Piezoelectric coefficients (C/m2)
e31 −5.200 −5.400 −4.350 −3.100
e33 15.10 15.80 17.50 13.50
e15 12.70 12.30 11.40 10.90
Dielectric constants (10−9 F/m)
∈11 6.461 8.107 9.868 8.850
∈33 5.620 7.346 11.151 8.054
Material coefficients
B1 (GPa) 56.41 47.88 70.68 71.48
B2 (109 V/m) 1.246 1.0196 0.8645 0.8787
B3 (10−10 m/V) 2.501 3.035 1.668 1.312
B4 (GPa) 43.00 36.56 61.77 64.09
B5 (C/m2) 10.756 11.097 10.302 8.411
B6 (10−10 m/V) 8.027 9.807 11.567 11.381
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Figure 3. The dimensionless contact radius, a∗, as a function of the dimensionless indentation
force, P∗, at a fixed value of α = π/3 for the JKR model. (a) PZT-4. (b) PZT-5A. (c) BaTiO3.
(d) Ba0.917Ca0.083TiO3.

For a given indentation force, one can determine from Figure 3 that the larger the
exerted electric potential, the larger the contact radius, which reveals that it is easier
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to obtain a larger contact area for a conducting punch with higher electric potential. It
is worth noting that the P∗ − a∗ curves of the insulating punch are always below the
corresponding curves for the conducting punch. This result indicates that the minimum
pull-off force is obtained for the insulating punch, and for a given indentation force,
the contact radius under the action of the insulating punch is always smaller than the
counterpart value induced by the conducting punch. In addition, comparing the results
displayed in Figure 3a–d, one can determine that under the action of the same electric
potential, the adhesion strengthening effect induced by the electric potential for the BaTiO3
and Ba0.917Ca0.083TiO3 was more prominent than that for the PZT-4 and PZT-5A, which
stems from different material properties between them. This reveals that the effect of the
electric potential on the a∗ ∼ P∗ curve is sensitive to different material properties, which
was not suggested in the existing studies on piezoelectric materials [60] and multiferroic
composite materials [68,69].

Figures 4 and 5 display the effect of the half cone angle of the rigid conical punch
on the adhesion behaviors of the four different piezoelectric materials. It can be seen in
Figure 4 that whether for the insulating punch or the conducting punch with zero electric
potential, the pull-off force increases with the half cone angle of the rigid conical punch.
For a given indentation force, the larger the half cone angle, the larger the contact radius. It
is worth mentioning that the curves of the conducting punch with zero electric potential
are always above the corresponding curves for the insulating punch, which indicates that
for conical punches with the same half cone angle, the contact radius induced by the
conducting punch is always larger than the counterpart value under the insulating punch
when both of them are subjected to the same indentation force.
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Figure 4. Variation of the dimensionless contact radius, a∗, with the dimensionless indentation force,
P∗, at the different values of α = π/6, π/4 and π/3 for the conducting punch with zero electric
potential and insulating punch. (a) PZT-4. (b) PZT-5A. (c) BaTiO3. (d) Ba0.917Ca0.083TiO3.
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According to the results presented in Figures 3 and 4, one can find that increasing
the electric potential or increasing the half cone angle of the conical punch can enhance
the adhesion effect. Therefore, it can be found from Figures 4 and 5 that the pull-off force
and the contact radius under the action of the same indentation force for a conducting
punch with non-zero electric potential are obviously larger than the counterpart values
induced by a conducting punch with zero potential. Furthermore, one can see from Figure 5
that for the conducting punch with non-zero electric potential, the adhesion strengthening
effect induced by increasing the half cone angle was very prominent. For example, for the
PZT-4 subjected to the dimensionless electric potential φ∗ = 2, as the half cone angle of the
conical punch changes from π/6 to π/3, the pull-off force of the contact system increases
by about seven times, which suggests to us that a conical punch with a small cone angle
should be adopted in nanoindentation tests in order to reduce the effect of adhesion on
the results of characterization. From Figures 4 and 5, one can determine that the a∗ ∼ P∗

curves for the four different piezoelectric materials examined here are not very distinct,
which reveals that the effect of the half cone angle on the adhesion behavior is insensitive
to the material properties. This conclusion was obtained for the first time in our work
and was not given in the existing studies on piezoelectric materials [60] and multiferroic
composite materials [68,69].
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Figure 5. Variation of the dimensionless contact radius, a∗, with the dimensionless indentation force,
P∗, at the different values of α = π/6, π/4 and π/3 for the conducting punch with non-zero electric
potential (φ∗ = 2). (a) PZT-4. (b) PZT-5A. (c) BaTiO3. (d) Ba0.917Ca0.083TiO3.

The scanning probe microscope and nanoindentation technique play significant roles
in characterizing the mechanical properties of various materials. During the nanoinden-
tation testing technique, the sample is pressed by a small indenter tip and the force and
displacement are continuously measured as a function of time with high accuracy and pre-
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cision, which can be used to evaluate the mechanical properties of the materials. Therefore,
the indentation force-displacement curve P∗ ∼ h∗ is the key theoretical foundation of the
nanoindentation technique. When a piezoelectric solid is indented by a rigid conducting
or insulating conical punch, the dimensionless indentation force, P∗, as a function of the
dimensionless indentation depth, h∗, for the four different piezoelectric materials is shown
in Figure 6. We found that the pull-off force of the conducting punch under force control
increases with increases in the electric potential. The sign of the electric potential has little
effect on the magnitude of pull-off force. Furthermore, one may notice that the critical in-
dentation depth at the pull-off moment in the case of a negative electric potential is always
larger than the counterpart value when the punch is subjected to positive electric potential.

Mathematics 2022, 10, x FOR PEER REVIEW 22 of 58 
 

 

nanoindentation testing technique, the sample is pressed by a small indenter tip and the 

force and displacement are continuously measured as a function of time with high accu-

racy and precision, which can be used to evaluate the mechanical properties of the mate-

rials. Therefore, the indentation force-displacement curve P h   is the key theoretical 

foundation of the nanoindentation technique. When a piezoelectric solid is indented by a 

rigid conducting or insulating conical punch, the dimensionless indentation force, P
, as 

a function of the dimensionless indentation depth, h , for the four different piezoelectric 

materials is shown in Figure 6. We found that the pull-off force of the conducting punch 

under force control increases with increases in the electric potential. The sign of the electric 

potential has little effect on the magnitude of pull-off force. Furthermore, one may notice 

that the critical indentation depth at the pull-off moment in the case of a negative electric 

potential is always larger than the counterpart value when the punch is subjected to pos-

itive electric potential. 

  

  

Figure 6. The dimensionless indentation force, P
, as a function of the dimensionless indentation 

depth, h
, at a fixed value of / 3 =  for the JKR model. (a) PZT−4. (b) PZT−5A. (c) BaTiO3. 

(d) Ba0.917Ca0.083TiO3. 

It can be seen from Figure 6 that the P h   curves of the conducting punch are 

always below the corresponding curves of the insulating punch, which yields two main 

conclusions. First, the pull-off force under force control for the conducting punch is al-

ways larger than the counterpart value of the insulating punch, which is consistent with 

the conclusions derived from Figures 3 and 4. Second, for a given indentation force, the 

indentation depth under the action of the insulating punch is always smaller than the 

counterpart value for the conducting punch. In contrast, for a given indentation depth, 

Figure 6. The dimensionless indentation force, P∗, as a function of the dimensionless indentation
depth, h∗, at a fixed value of α = π/3 for the JKR model. (a) PZT-4. (b) PZT-5A. (c) BaTiO3.
(d) Ba0.917Ca0.083TiO3.

It can be seen from Figure 6 that the P∗ ∼ h∗ curves of the conducting punch are
always below the corresponding curves of the insulating punch, which yields two main
conclusions. First, the pull-off force under force control for the conducting punch is al-
ways larger than the counterpart value of the insulating punch, which is consistent with
the conclusions derived from Figures 3 and 4. Second, for a given indentation force, the
indentation depth under the action of the insulating punch is always smaller than the
counterpart value for the conducting punch. In contrast, for a given indentation depth,
the indentation force exerted on the insulating punch is larger than the counterpart value
applied to the conducting punch. The above results can serve as the theoretical foundation
for the nanoindentation technique in characterizing the mechanical and adhesion prop-
erties of piezoelectric materials. By comparing the results shown in Figure 6a–d, one can
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conclude that the effect of the electric potential on the adhesion behaviors of BaTiO3 and
Ba0.917Ca0.083TiO3 was more prominent than that on PZT-4 and PZT-5A, which is attributed
to the different material properties of the four piezoelectric materials examined here. This
also reveals that the effect of the electric potential on P∗ ∼ h∗ curve is largely dependent on
different material properties, which was not derived in the existing studies on piezoelectric
materials [60] and multiferroic composite materials [68,69].

Figures 7 and 8 present the effect of the half cone angle of a conical punch on the
variation of the dimensionless indentation force, P∗, with the dimensionless indentation
depth, h∗. One can see in Figure 7 that the pull-off force increases with the half cone
angle for both the insulating and conducting conical punches, which is consistent with the
conclusions obtained from Figures 4 and 5. It is noteworthy that the P∗ ∼ h∗ curve lies
almost entirely on the positive semi-axis of P∗ for the very sharp punch (i.e., α ≤ π/6),
which suggests that the adhesion effect is very weak in this case. Therefore, a conical punch
with a small half cone angle should be adopted in nanoindentation tests, as this can weaken
the adhesion effect and improve the accuracy of the results of characterization.
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Figure 7. Variation of the dimensionless indentation force, P∗, with the dimensionless indentation
depth h∗ at the different values of α = π/6, π/4 and π/3 for the conducting punch with zero electric
potential and the insulating punch. (a) PZT-4. (b) PZT-5A. (c) BaTiO3. (d) Ba0.917Ca0.083TiO3.

For the conducting punch with non-zero electric potential, the results shown in Figure 8
reveal that the adhesion strengthening effect induced by increasing the half cone angle of the
conical punch becomes more prominent. It can be seen in Figures 7 and 8 that the P∗ ∼ h∗

curves for the four different piezoelectric materials examined here are very similar, which
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suggests that the effect of the half cone angle on the load-displacement curves is insensitive
to material properties, which was not revealed in the existing studies on piezoelectric
materials [60] and multiferroic composite materials [68,69]. Furthermore, one can see
from Figure 7 that the load-displacement curves under the conical indenters with different
half cone angles have very different slopes, which indicates that the half cone angle can
significantly affect the characterization of mechanical properties in nanoindentation tests.
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Figure 8. The dimensionless indentation force, P∗, as a function of the dimensionless indentation,
h∗, at the different values of α = π/6, π/4 and π/3 for the conducting punch with non-zero electric
potential (φ∗ = 1.5). (a) PZT-4. (b) PZT-5A. (c) BaTiO3. (d) Ba0.917Ca0.083TiO3.

Figure 9 illustrates the influence of the dimensionless electric potential, φ∗, on the
variation of the dimensionless contact radius, a∗, with the dimensionless indentation
depth, h∗. The results reveal that the electric potential has a prominent effect on the
relation between the contact radius and the indentation depth. It is worth noting that the
a∗ ∼ h∗ curves for the conducting punch are always above the corresponding curve for the
insulating punch, which indicates that for a given indentation depth, the contact radius
under the action of the conducting punch is always larger than the counterpart value of the
insulating punch. Furthermore, for the insulating punch and the conducting punch with
zero electric potential, one can determine that the critical contact radius at pull-off moment
is a finite value under displacement control. In contrast, the pull-off moment happens when
the contact radius decreases to zero for the conducting punch. However, the correctness of
these conclusions should be verified by corresponding experimental studies in the future.
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Figure 9. The dimensionless contact radius, a∗, as a function of the dimensionless indentation
depth, h∗, at a fixed value of α = π/3 for the JKR model. (a) PZT-4. (b) PZT-5A. (c) BaTiO3. (d)
Ba0.917Ca0.083TiO3.

The effect of the half cone angle on the variation of the dimensionless contact radius
as a function of the dimensionless indentation depth is shown in Figures 10 and 11. It can
be seen in Figure 10 that for a given indentation depth, the larger the half cone angle, the
larger the contact radius for both the insulating and conducting punches, which is easy to
understand. In the case of a punch with the same half cone angle and indentation depth, the
contact radius for the conducting punch is always larger than the counterpart value for the
insulating punch, and the difference between them increases with increases in the half cone
angle. By comparing the results displayed in Figures 10 and 11, one can determine that the
half cone angle has a more prominent effect on the variation of the dimensionless contact
radius with the dimensionless indentation depth when a piezoelectric solid is indented by
a conducting punch with non-zero electric potential. Furthermore, the a∗ ∼ h∗ curves for
the four different piezoelectric materials presented in Figures 10 and 11 are very similar,
which also means that the effect of the half cone angle on the relation between the contact
radius and indentation depth is insensitive to material properties.
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Figure 10. Variation of the dimensionless contact radius, a∗, with the dimensionless indentation
depth, h∗, at the different values of α = π/6, π/4 and π/3 for the conducting punch with zero
electric potential and the insulating punch. (a) PZT-4. (b) PZT-5A. (c) BaTiO3. (d) Ba0.917Ca0.083TiO3.
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Figure 11. Variation of the dimensionless contact radius, a∗, with the dimensionless indentation
depth, h∗, at different values of α = π/6, π/4 and π/3 for the conducting punch with non-zero
electric potential (φ∗ = 0.5). (a) PZT-4. (b) PZT-5A. (c) BaTiO3. (d) Ba0.917Ca0.083TiO3.

Figure 12 presents the effect of the electric potential on the pull-off force of different
piezoelectric adhesion systems. It can be seen in Figure 12 that the electric potential has
a very significant effect on the pull-off force of the piezoelectric adhesion system. For
the four different piezoelectric materials considered here, the dimensionless pull-off force
increases by more than two times as the absolute value of the dimensionless electric
potential increases from 0 to 2. This result embodies the adhesion strengthening effect
induced by the electric potential, which is in agreement with the experimental result given
by [82]. In addition, one can also determine that the pull-off force for the conducting punch
is always larger than the counterpart value of the insulating punch. The variation of the
dimensionless pull-off force as a function of the half cone angle of the conical punch is
shown in Figure 13. The results reveal that the magnitude of the pull-off force increases
with the half cone angle and finally approaches infinity in the limit case α = π/2, which
is consistent with the result given by a multiferroic half-space indented by a rigid conical
punch [69]. In the limit case of α = π/2, the rigid conical punch becomes the semi-infinite
rigid punch. By comparing the results presented in Figure 13a–d, one can conclude that the
effect of the half cone angle on the pull-off force is insensitive to the material properties.
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5.2. M-D Solutions 

Figure 14 displays the variation of the dimensionless parameter /m c a=  as a 

function of the dimensionless contact radius, a , for the M-D model. It is shown that the 
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5.2. M-D Solutions

Figure 14 displays the variation of the dimensionless parameter m = c/a as a function
of the dimensionless contact radius, a∗, for the M-D model. It is shown that the transition
parameter, λ, and the dimensionless electric potential, φ∗, have significant effects on
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the physical quantity, m, whose value reflects the size of the cohesive zone. The results
presented in Figure 14a indicate that the dimensionless parameter, m, diminishes as the
transition parameter, λ, and the dimensionless contact radius, a∗, increase. When the
transition parameter, λ, increases, which can be understood as the adhesion force increasing,
then the dimensionless parameter, m, decreases, i.e., the cohesive zone outside the contact
region diminishes. In Figure 14b, one can see that for a given transition parameter, λ, and a
dimensionless contact radius, a∗, the larger the electric potential, the larger the value of m is,
which reveals that the adhesion effect can be strengthened by applying the electric potential.
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Figure 14. Variation of c/a with the dimensionless contact radius, a∗. (a) The effect of the transition
parameter, λ. (b) The effect of the dimensionless electric potential, φ∗.

Figures 15 and 16 illustrate the variation of the dimensionless contact radius, a∗, with
the dimensionless indentation force, P∗, under the action of the insulating punch and the
conducting punch with non-zero electric potential based on the M-D model, respectively. It
can be found that for both the insulating punch and the conducting punch with non-zero
electric potential, as the transition parameter, λ, increases from 0.1 to 2.0, the a∗ ∼ P∗ curve
for the M-D model then can be approximated by the corresponding curve in the JKR model.
This suggests that the a∗ ∼ P∗ curve in the JKR model can be regarded as the limit case
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of the corresponding solution for the M-D model, which has been verified by theoretical
derivation in Appendix F.
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Figure 15. The dimensionless contact radius, a∗, as a function of the dimensionless indentation force,
P∗, under the action of an insulating punch for the M-D model. (a) PZT-4. (b) PZT-5A. (c) BaTiO3.
(d) Ba0.917Ca0.083TiO3.
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Figure 16. The dimensionless indentation force, P∗, as a function of the dimensionless indentation
depth, h∗, under the action of a conducting punch for the M-D model. (a) PZT-4. (b) PZT-5A.
(c) BaTiO3. (d) Ba0.917Ca0.083TiO3.

The variations of the dimensionless indentation force, P∗, with the dimensionless
indentation depth, h∗, for the insulating punch and the conducting punch with a constant
electric potential are shown in Figures 17 and 18, respectively. It is seen that for both
the insulating punch and the conducting punch with non-zero electric potential, when
the transition parameter, λ, changes from 0.2 to 2.0, the P∗ ∼ h∗ curves for the M-D
model can be approximated by the corresponding curves in the JKR model. Similarly,
the a∗ ∼ h∗ curves for the M-D model can also be replaced by the corresponding results
in the JKR model when the transition parameter changes from 0.2 to 2.0, as shown in
Figures 19 and 20. This reveals that the JKR solutions can be regarded as the limit case,
which can be degenerated from the corresponding solutions in M-D model. This conclusion
has also been verified through rigorous theoretical derivation in Appendix F.
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Figure 17. The dimensionless indentation force, P∗, as a function of the dimensionless indentation
depth, h∗, under the action of an insulating punch for the M-D model. (a) PZT-4. (b) PZT-5A.
(c) BaTiO3. (d) Ba0.917Ca0.083TiO3.
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Figure 18. The dimensionless indentation force, P∗, as a function of the dimensionless indentation
depth, h∗, under the action of a conducting punch for the M-D model. (a) PZT-4. (b) PZT-5A.
(c) BaTiO3. (d) Ba0.917Ca0.083TiO3.
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Figure 19. The dimensionless contact radius, a∗, as a function of the dimensionless indentation depth,
h∗, under the action of an insulating punch for the M-D model. (a) PZT-4. (b) PZT-5A. (c) BaTiO3.
(d) Ba0.917Ca0.083TiO3.
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Figure 20. The dimensionless contact radius, a∗, as a function of the dimensionless indentation depth,
h∗, under the action of a conducting punch for the M-D model. (a) PZT-4. (b) PZT-5A. (c) BaTiO3.
(d) Ba0.917Ca0.083TiO3.

6. Conclusions

The adhesive contact problem between a rigid conical punch and a transversely
isotropic piezoelectric solid was studied in this work. The classical adhesion theories were
extended to investigate the contact behaviors of various piezoelectric materials indented
by conical punches with different electric properties. The closed-form solutions for the JKR
and M-D models were obtained by virtue of the Hankel integral transform, dual integral
equations, and the superposing principle. The contribution of the electrical energy to
the energy release rate under the conducting punch was taken into consideration. The
relationships between the contact radius, the indentation load, and the indentation depth
were established using the total energy method for the JKR model and the Griffith energy
balance for the M-D model. The main conclusions can be summarized as follows:

(1) The adhesion effect between the tip of the conical punch and the piezoelectric solid
can be enhanced by increasing the electric potential and the half cone angle of the
punch, which suggests that a conical punch with a small half cone angle should be
adopted in nanoindentation tests in order to reduce the effect of adhesion and improve
the accuracy of characterization results.

(2) The effect of electric potential on adhesion behaviors is sensitive to different material
properties, while the effect of the half cone angle of the conical punch on adhesion
behaviors is insensitive to different material properties. These conclusions were made
for the first time in this work.

(3) The load-displacement curves under the conical punch with different half cone angles
have very different slopes, which indicates that the half cone angle of the conical punch
can significantly affect the characterization of mechanical properties of piezoelectric
solids in nanoindentation tests.

The results obtained from this paper can not only serve as the theoretical foundation
for nanoindentation tests in characterizing the material properties of piezoelectric solids,
but also offer new approaches to achieving reversible adhesion.
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Appendix A. The Hertz Contact Solution

For the Hertz contact problem of a piezoelectric solid indented by a rigid punch,
the analytical solutions of the full fields were obtained by [25]. For the convenience of
referring and using, the corresponding results are presented in this section. The explicit
expressions of the material constants Bi(i = 1, 2, . . . , 6) involved in this section and the
following sections (Appendices B–E) are given as follows [25]:

B1 = M6 M7−M5 M8
M1 M8−M2 M7

, B2 = M3 M8−M4 M7
M1 M8−M2 M7

, B3 = M1 M6−M2 M5
M4 M5−M3 M6

,

B4 = M6 M3−M5 M4
M1 M4−M2 M3

, B5 = M3 M8−M4 M7
M1 M4−M2 M3

, B6 = M1 M8−M2 M7
M3 M8−M4 M7

,
(A1)

where the explicit expressions of Mi(i = 1, 2, . . . , 8) can be found in Equation (A8) of [25].
Case I: electrically conducting punch

For the electrically conducting punch, the Hertz contact solutions can be obtained
using the following equations:

σH
zz(r, 0) = −B4 cot αcos h−1 a

r
, (A2)

DH
z (r, 0) = −B5

[
cot αcos h−1 a

r
− 2(B3 + B6)φ0

π
√

a2 − r2

]
, (A3)

hH =
π

2
a cot α− B3φ0, PH = B4πa2 cot α, (A4)

uH
z (r, 0) =

hH − r cot α, 0 ≤ r ≤ a,
2hH

π sin−1 a
r + cot α

(√
r2 − a2 − r

)
, r > a,

(A5)

φH(r, 0) =

{
φ0, 0 ≤ r ≤ a,
2φ0
π sin−1 a

r , r > a,
(A6)

[
uH

z (r, 0)
]
= f (r)− δ + uH

z (r, 0)

=
(

2B3φ0
π − a cot α

)
cos−1 a

r +
√

r2 − a2 cot α, r > a,
(A7)

[
φH(r, 0)

]
= φH(r, 0)− φ0 = −2φ0

π
cos−1 a

r
, r > a. (A8)

Case II: electrically insulating punch
When the rigid conical punch is electrically insulating, the corresponding solutions

can be defined as

σH
zz(r, 0) = −B1 cot αcos h−1 a

r
, 0 ≤ r < a (A9)

hH =
πa cot α

2
, PH = πa2B1 cot α, (A10)

uH
z (r, 0) =


hH − r cot α, 0 ≤ r ≤ a,

2hH

π

(√
r2

a2 − 1− r
a + sin−1 a

r

)
, r > a,

(A11)

φH(r, 0) =


B2(hH − r cot α), 0 ≤ r ≤ a,

2B2hH

π

(√
r2

a2 − 1− r
a + sin−1 a

r

)
, r > a.

(A12)
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[
uH

z (r, 0)
]
=
√

r2 − a2 cot α− a cot α cos−1 a
r

. (A13)

Appendix B. The Boussinesq Contact Solution

For the Boussinesq contact problem, the corresponding solutions can be obtained
as follows:
Case I: electrically conducting punch

σB
zz(r, 0) = − PB

2πa
√

a2 − r2
, r < a, (A14)

DB
z (r, 0) = −2B5(hB − B6φ0)

π
√

a2 − r2
, r < a, (A15)

PB = 4aB4(hB + B3φ0), (A16)

uB
z (r, 0) =

hB, r ≤ a,
2hB

π sin−1 a
r , r > a,

(A17)

φB(r, 0) =

{
φ0, r ≤ a,
2φ0
π sin−1 a

r , r > a.
(A18)

Case II: electrically insulating punch

σB
zz(r, 0) = − PB

2πa
√

a2 − r2
, r < a, (A19)

PB = 4aB1hB, (A20)

uB
z (r, 0) =

hB, r ≤ a,
2hB

π sin−1 a
r , r > a,

(A21)

φB(r, 0) =

B2hB, r ≤ a,
2B2hB

π sin−1 a
r , r > a.

(A22)

Appendix C. The Solutions of the JKR Model for Case II

When the conical punch is electrically insulating, by superposing the Hertz con-
tact solutions from Equations (A9)–(A13) and the Boussinesq contact solutions from
Equations (A19)–(A22), one can determine that

hJKR =
πa cot α

4
+

P
4B1a

, (A23)

σJKR
zz (r, 0) = −B1 cot αcos h−1 a

r
+

B1 cot απa2 − P
2πa
√

a2 − r2
, (A24)

uJKR
z (r, 0) =

hJKR − r cot α, r ≤ a,
2
π hJKR sin−1 a

r +
(√

r2 − a2 − r
)

cot α, r > a,
(A25)

φJKR(r, 0) =

B2(hJKR − r cot α), r ≤ a,

B2

[
2
π hJKR sin−1 a

r +
(√

r2 − a2 − r
)

cot α
]
, r > a,

(A26)
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[
uJKR

z (r, 0)
]
= f (r)− hJKR + uJKR

z (r, 0)

=
√

r2 − a2 cot α− 2
π hJKR cos−1 a

r , r > a.
(A27)

For the rigid insulating indenter, the contribution of the electrical energy to the total
free energy of the contact system is nil due to the lack of electric displacement within the
contact region. Under these circumstances, the total free energy, UT , is composed of three
parts, including the elastic strain energy, UE, the mechanical potential energy, UP and the
surface energy, US. As such, one can deduce that

UT = UE + UP + US, (A28)

They can be calculated as

UE = −1
2

∫ 2π

0

∫ a

0
σzz(r, θ, 0)uJKR

z (r, θ, 0) rdrdθ =
B1π2 cot2 αa3

24
+

P2

8B1a
, (A29)

UP = −π cot α

4
Pa− P2

4B1a
, (A30)

US = −πa2∆γ, (A31)

In order to obtain the result in Equation (A29), the integral results shown in Equation (24)
were used.

The equilibrium state of the contact system should satisfy the following condition:

∂UT
∂a

∣∣∣∣
P
= 0. (A32)

By inserting the results presented in Equations (A28)–(A31) into Equation (A32), one
can obtain

P = πB1 cot αa2 ± 4
√

π∆γB1a3. (A33)

The stable equilibrium state of the contact system should satisfy the condition ∂2UT
∂a2 > 0,

then one can determine that

P = πB1 cot αa2 − 4
√

π∆γB1a3. (A34)

When piezoelectric materials degenerate into isotropic elastic solids, i.e., B1 = E∗/2
(E∗ is the equivalent elastic modulus), Equation (A34) can be rewritten as

P =
πE∗ cot α

2
a2 −

√
8π∆γE∗a3, (A35)

which is the same as the result of Equation (17) obtained in [78].
Considering the following condition:

dP
da

= 0, (A36)

substituting Equation (A34) into Equation (A36) yields

apull-off =
9∆γ

πB1 cot2 α
, (A37)



Mathematics 2022, 10, 4511 35 of 50

which is the critical contact radius at the pull-off moment. By inserting this result into
Equation (A34), one can define the explicit expression of the pull-off force as

Ppull-off = −
27∆γ2

πB1 cot3 α
. (A38)

If the piezoelectric materials degenerate into isotropic elastic solids, one can obtain

Ppull-off = −
54∆γ2

πE∗ cot3 α
, (A39)

This result is consistent with that of Equation (16) defined in [78].

Appendix D. The Solutions of the M-D Model for Case II

The JKR solutions for a piezoelectric solid indented by a rigid insulating conical punch
are presented in Equations (A23)–(A27). If we define that

KI = lim
r→a

√
2π(a− r)σzz(r, 0) =

PH − P
2a
√

πa
, (A40)

where PH is the apparent Hertz load, then the stress distribution in Equation (A24) can be
rewritten as follows:

σJKR
zz (r, 0) = −B1 cot αcos h−1 a

r
+

KI√
πa

a√
a2 − r2

. (A41)

The solutions of the external circular crack subjected to a uniform pressure, p0, on the
crack surfaces are presented in Appendix E. By substituting p0 = −σ0 into Equations (A98),
(A102), and (A106), one can obtain

σzz(r, 0) =


Km√

πa
a√

a2−r2 +
2σ0
π tan−1

√
c2−a2

a2−r2 , r < a,

σ0, a < r < c,
(A42)

uT = − 2σ0
B1π

[√
c2 − a2

(√
r2

a2 − 1− cos−1 a
r

)
− c2

∫ min(r,c)
a

√
r2−t2

t2
√

c2−t2 dt
]

+Km
√

πa
B1π cos−1 a

r , r > a,
(A43)

δ
′
=

σ0a
2B1

(
c2

a2 cos−1 a
c
−
√

c2

a2 − 1

)
, (A44)

where

Km = − σ0√
πa

(√
c2 − a2 +

c2

a
cos−1 a

c

)
. (A45)

Superposing Equations (A41) and (A42) yields

σM−D
zz (r, 0) =


Km+KI√

πa
a√

a2−r2 − B1 cot αcos h−1 a
r

+ 2σ0
π tan−1

√
c2−a2

a2−r2 r < a,

σ0, a < r < c.

(A46)

According to the classical M-D theory [57], in order to eliminate the stress singularity
at the contact periphery, the following condition should be satisfied:

KI + Km = 0⇒ KI = −Km ⇒
PH − P
2a
√

πa
=

σ0√
πa

(√
c2 − a2 +

c2

a
cos−1 a

c

)
. (A47)
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From Equation (A47), one can obtain

PM−D = PH − 2σ0a
(√

c2 − a2 + c2

a cos−1 a
c

)
= B1 cot απa2 − 2σ0a

(√
c2 − a2 + c2

a cos−1 a
c

)
.

(A48)

Using the continuity condition in Equation (A47), the stress distribution given by
Equation (A46) can be simplified as follows:

σM−D
zz (r, 0) =

 −B1 cot αcos h−1 a
r +

2σ0
π tan−1

√
c2−a2

a2−r2 , r < a,

σ0, a < r < c.
(A49)

By adding Equation (A23) to Equation (A28) and using the result in Equation (A48),
one obtains

hM−D = πa cot α
4 + P

4B1a +
σ0a
2B1

(
c2

a2 cos−1 a
c −

√
c2

a2 − 1
)

= πa cot α
2 − σ0

B1

√
c2 − a2.

(A50)

Using the result in Equation (A40), Equation (A23) can be rewritten as

hJKR =
πa cot α

2
− KI

√
πa

2B1
. (A51)

Inserting Equation (A51) into Equation (A27), one can obtain[
uJKR

z (r, 0)
]
=
√

r2 − a2 cot α− a cot α cos−1 a
r

+KI
√

πa
B1π cos−1 a

r , r > a.
(A52)

By superposing Equation (A43) and (A52), considering the continuity condition in
Equation (A47), one obtains[

uM−D
z (r, 0)

]
=
√

r2 − a2 cot α− a cot α cos−1 a
r

− 2σ0
B1π

[√
c2 − a2

(√
r2

a2 − 1− cos−1 a
r

)
− c2

∫ min(r,c)
a

√
r2−t2

t2
√

c2−t2 dt
]

, r > a.
(A53)

Using Equation (A53), the discontinuity displacement can be defined as

δt =
[
uM−D

z (c, 0)
]
=
(√

m2 − 1− cos−1 1
m

)
a cot α

+ 2σ0a
B1π

(√
m2 − 1 cos−1 1

m −m + 1
)

,
(A54)

where m = c/a.
Using the relation in Equation (A121), Equation (A54) can be rewritten as

δt =
(√

m2 − 1− tan−1
√

m2 − 1
)

a cot α

+ 2σ0a
B1π

(√
m2 − 1 tan−1

√
m2 − 1−m + 1

)
.

(A55)

When the complicated adhesion force is simplified by using the Dugdale cohesive
model [79], one can obtain the following relation:

J = G = σ0δt = ∆γ, (A56)

where J, G and ∆γ denote the J-integral, energy release rate and work of adhesion, respectively.
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By substituting Equation (A55) into Equation (A56), one can obtain(√
m2 − 1− tan−1

√
m2 − 1

)
σ0a cot α

+
2σ2

0 a
B1π

(√
m2 − 1 tan−1

√
m2 − 1−m + 1

)
= ∆γ.

(A57)

In the subsequent analysis, the correctness of these solutions will be verified by check-
ing whether the corresponding JKR solutions presented in Appendix C can be degenerated
as the limiting case from the M-D solutions obtained in this section.

First, from Equation (A47), one can obtain

KI =
σ0√
πa

(√
c2 − a2 +

c2

a
cos−1 a

c

)
=

σ0a√
πa

(√
m2 − 1 + m2 cos−1 1

m

)
. (A58)

Using the relation in Equation (A121), Equation (A58) can be rewritten as

KI
√

πa
σ0a

=
√

m2 − 1 + m2 tan−1
√

m2 − 1. (A59)

When m→ 1 , tan−1
√

m2 − 1 ∼
√

m2 − 1, then

KI
√

πa
σ0a

≈ 2
√

m2 − 1. (A60)

Using Equation (A60), the stress distribution in Equation (A49) can be expressed
as follows:

σM−D
zz (ρ, 0) =

 −B1 cot αcos h−1 1
ρ + 2σ0

π tan−1
√

m2−1
1−ρ2 , ρ < 1,

σ0, 1 < ρ < m,
(A61)

where ρ = r/a.
It can be seen in Equation (A60) that m→ 1 as σ0 → ∞ . Under these circumstances,

Equation (A61) can be simplified as follows:

σzz(ρ, 0) = −B1 cot αcos h−1 1
ρ
+

KI√
πa

1√
1− ρ2

, ρ < 1, (A62)

which is consistent with the corresponding JKR solution presented in Equation (A24).
From Equation (A59), one can find that σ0 → 0 as m→ ∞ , and as such, Equation (A61)

degenerates into the following form:

σzz(r, 0) = −B1 cot αcos h−1 a
r

, r < a, (A63)

which is in agreement with the corresponding Hertz solution obtained in Equation (A9).
The discontinuity displacement outside the contact region in Equation (A53) can be

expressed as follows:[
uM−D

z (r, 0)
]
=
√

r2 − a2 cot α− a cot α cos−1 a
r

− 2σ0a
B1π

[√
m2 − 1

(√
r2

a2 − 1− cos−1 a
r

)
−m2

∫ min(ρ,m)
1

√
ρ2−t2

t2
√

m2−t2 dt
]

.
(A64)

As m→ ∞ , Equation (A64) can be simplified as [57]:

[uz(r, 0)] =
√

r2 − a2 cot α− a cot α cos−1 a
r

, (A65)

which is the same as the corresponding Hertz solution shown in Equation (A13).
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When m→ 1 , Equation (A65) can be expressed as follows:[
uM−D

z (r, 0)
]
=
√

r2 − a2 cot α− a cot α cos−1 a
r +

2σ0a
√

m2−1
B1π cos−1 a

r

− 2σ0a
B1π

[√
m2 − 1

√
r2

a2 − 1−m2
∫ min(ρ,m)

1

√
ρ2−t2

t2
√

m2−t2 dt
]

, r > a.
(A66)

Substituting Equation (A60) into Equation (A66) yields[
uM−D

z (r, 0)
]
=
√

r2 − a2 cot α− a cot α cos−1 a
r +

KI
√

πa
B1π cos−1 a

r

− 2σ0a
B1π

[√
m2 − 1

√
r2

a2 − 1−m2
∫ min(ρ,m)

1

√
ρ2−t2

t2
√

m2−t2 dt
]

, r > a.
(A67)

Using the integral result in Equation (A128), Equation (A67) can be simplified as

[uz(r, 0)] =
√

r2 − a2 cot α− a cot α cos−1 a
r
+

KI
√

πa
B1π

cos−1 a
r

, r > a, (A68)

which is consistent with the corresponding JKR solution obtained in Equation (A27).
By virtue of the relation in Equation (A132), the indentation depth in Equation (A50)

can be expressed as

hM−D =
πa cot α

4
+

P
4B1a

+
σ0a
2B1

(
m2 tan−1

√
m2 − 1−

√
m2 − 1

)
. (A69)

From Equation (A47), one can obtain the following result:

σ0a =
B1πa2 cot α− P

2a
(√

m2 − 1 + m2 tan−1
√

m2 − 1
) . (A70)

By substituting Equation (A70) into Equation (A69), one can obtain

hM−D = πa cot α
4 + P

4B1a

+ B1πa2 cot α−P
4B1a

m2 tan−1
√

m2−1−
√

m2−1
m2 tan−1

√
m2−1+

√
m2−1

.
(A71)

When m→ 1 , by combining the results obtained in Equation (A134), Equation (A71)
can be simplified as

h =
πa cot α

4
+

P
4B1a

, (A72)

which is the same as the corresponding JKR solution presented in Equation (A23).
When m→ ∞ , Equation (A71) can be simplified as:

h =
πa cot α

2
, (A73)

which is identical to the Hertz solution obtained in Equation (A10).
The energy release rate can be derived from Equation (A56) as follows:

G =
(√

m2 − 1− tan−1
√

m2 − 1
)

σ0a cot α

+
2σ2

0 a
B1π

(√
m2 − 1 tan−1

√
m2 − 1−m + 1

)
.

(A74)
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Inserting Equation (A70) into Equation (A74) yields

G = (PH−P) cot α
2a

√
m2−1−tan−1

√
m2−1√

m2−1+m2 tan−1
√

m2−1

+ (PH−P)2

2πB1a3

√
m2−1 tan−1

√
m2−1−m+1

(
√

m2−1+m2 tan−1
√

m2−1)
2 .

(A75)

In the limit case, as m→ 1 , letting m = 1 + ε and using the result in Equation (A144),
one can obtain

G ≈ (PH − P)2

16πB1a3 . (A76)

Using the energy balance relation, one can obtain

P = PH ± 4
√

πB1∆γa3. (A77)

Considering the stable equilibrium condition of the contact system, one can deter-
mine that

P = PH − 4
√

πB1∆γa3 = B1 cot απa2 − 4
√

πB1∆γa3, (A78)

which is in agreement with the corresponding JKR solution obtained in Equation (A34).
Therefore, the above results indicate that the JKR solutions of a piezoelectric solid in-

dented by a rigid insulating conical punch can be regarded as the limiting case, which can be
degenerated from the corresponding M-D solutions. The correctness of the corresponding
solutions is verified.

Appendix E. External Circular Crack Problem

In this section, we will investigate the external circular crack problem in an infinite
piezoelectric solid, as shown in Figure A1. The prescribed normal pressure, p(r), is sym-
metrically exerted on the upper and lower crack surfaces. The considered problem can be
formulated by 

uz(r, 0) = 0, φ(r, 0) = 0, 0 ≤ r ≤ a,

σzz(r, 0) = −p(r), Dz(r, 0) = 0, r > a,

σrz(r, 0) = 0, r ≥ 0.

(A79)

It should be noted that p(r) is positive for compression and negative for tension.
The general solutions of the axisymmetric problem for the piezoelectric solids are

presented in Equation (5). By substituting Equation (5) into Equation (A79), one can obtain
∫ ∞

0 A1(ξ)ξ J0(ξr)dξ = 0, 0 < r < a,∫ ∞
0 A1(ξ)ξ

2 J0(ξr)dξ = − M8 p(r)
M5 M8−M6 M7

, r > a,
(A80)


∫ ∞

0 A2(ξ)ξ J0(ξr)dξ = 0, 0 < r < a,∫ ∞
0 A2(ξ)ξ

2 J0(ξr)dξ = M7 p(r)
M5 M8−M6 M7

, r > a.
(A81)

Equations (A80) and (A81) are a pair of dual integral equations with respect to
the undetermined constants A1(ξ) and A2(ξ). The explicit expressions of A1(ξ) and
A2(ξ) can be obtained by solving Equations (A80) and (A81) using the same method
adopted in [83,84], and then, by inserting the corresponding solutions into Equation (5),
one can obtain the solutions for the external circular crack problem. In order to save space,
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the detailed solution procedures are omitted here, and we only present the final results
as follows: 

uz(r, 0) = 2
B1π

∫ r
a

g(t)√
r2−t2 dt, r > a,

φ(r, 0) = B2
B1

2
π

∫ r
a

g(t)√
r2−t2 dt, r > a,

σzz(r, 0) = 2
π

[
g(a)√
a2−r2 +

∫ ∞
a

g
′
(t)√

t2−r2 dt
]

, r < a,

Dz(r, 0) = 0, r ≥ 0,

(A82)

where B1 and B2 are material constants defined in Equation (A1), and

g(t) =
∫ ∞

t

sp(s)√
s2 − t2

ds. (A83)

When the surface of external crack is subjected to the prescribed uniform pressure, p0,
one has the following equation from [81]:

g(t) =
∫ ∞

t

sp(s)√
s2 − t2

ds =

{
p0
√

c2 − t2, a < t < c,
0, t ≥ c,

(A84)

and one can the determine that

g
′
(t) =

{
− p0t√

c2−t2 , a < t < c,

0, t ≥ c.
(A85)

Inserting Equations (A84) and (A85) into (82)3 yields

σzz(r, 0) =
2p0

π

√ c2 − a2

a2 − r2 − tan−1

√
c2 − a2

a2 − r2

, r < a, (A86)

and the stress distribution at the crack surface can obtained as

σzz(r, 0) =


2p0
π

(√
c2−a2

a2−r2 − tan−1
√

c2−a2

a2−r2

)
, r < a,

−p0, a < r < c,

0, r > c.

(A87)

By substituting of Equation (A84) into Equations (A82)1 and (A82)2, can obtain

uz(r, 0) =
2p0

B1π

[√
c2 − a2

√
r2 − a2

a
− c2

∫ min(r,c)

a

√
r2 − t2

t2
√

c2 − t2
dt

]
, r > a, (A88)

φ(r, 0) =
B2

B1

2p0

π

[√
c2 − a2

√
r2 − a2

a
− c2

∫ min(r,c)

a

√
r2 − t2

t2
√

c2 − t2
dt

]
, r > a. (A89)

respectively.
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By substituting of Equation (A84) into Equations (A82)1 and (A82)2, can obtain 
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1
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a

pB c a r a r t
r c dt r a

B a t c t




 − − −
−  

−  
  (A89) 

respectively. 
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Figure A1. Schematic illustration of an external circular crack contained in an infinite transversely
isotropic piezoelectric solid.

It is worth noting that the stresses at the crack surface are not self-equilibrated since
the force∫ a

0
σzz(r, 0)2πrdr = p0π(c2 − a2)− 2p0a2

[
c2

a2 cos−1
( a

c

)
−
√

c2

a2 − 1

]
(A90)

does not equilibrate with the force p0π(c2 − a2) exerted on the crack surface. Therefore, an
additional force of

P
′
= 2p0a2

[
c2

a2 cos−1
( a

c

)
−
√

c2

a2 − 1

]
> 0 (A91)

is thus exerted at infinity which permits uz(r, ∞) to be zero.
In order to satisfy the force equilibrium condition, keeping the radius, a, constant,

exerting the force −P
′

(tensile force) at infinity, which will give rise to a displacement like
the Boussinesq flat punch and introduce in the ligament a stress distribution. According
to the different electric properties of the punch, two cases will be discussed separately in
the following:

Case (a): superposing the solutions of a rigid insulating circular punch
The solutions to the Boussinesq problem under the action of a rigid insulating circular

punch are presented in Equations (A19)–(A22). By inserting−P
′
into Equations (A19)–(A22),

one can obtain

σB
zz(r, 0) =

P
′

2πa
√

a2 − r2
, r < a, (A92)

hB = − P
′

4B1a
, (A93)

uB
z (r, 0) =


− P

′

4B1a , 0 ≤ r ≤ a,

− P
′

2B1πa sin−1( a
r
)
, r > a,

(A94)
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φB(r, 0) =


− B2P

′

4B1a , 0 ≤ r ≤ a,

− B2P
′

2B1πa sin−1( a
r
)
, r > a.

(A95)

By superposing Equations (A87)1 and (A92), and combining the results in Equation (A91),
one obtains

σzz(r, 0) =
Km√

πa
a√

a2 − r2
− 2p0

π
tan−1

√
c2 − a2

a2 − r2 , r < a, (A96)

where

Km =
p0√
πa

[√
c2 − a2 +

c2

a
cos−1

( a
c

)]
. (A97)

By considering Equations (A87) and (A96), the stress distribution of the circular
external crack subjected to the uniform pressure, p0, on crack surfaces can be defined as

σzz(r, 0) =


Km√

πa
a√

a2−r2 −
2p0
π tan−1

√
c2−a2

a2−r2 , r < a,

−p0, a < r < c,

0, r > c.

(A98)

By substituting Equation (A91) into Equations (A94) and (A95), one can obtain

uB
z (r, 0) =


− p0a

2B1

[
c2

a2 cos−1( a
c
)
−
√

c2

a2 − 1
]

, 0 ≤ r ≤ a,

− p0a
B1π

[
c2

a2 cos−1( a
c
)
−
√

c2

a2 − 1
]

sin−1( a
r
)
, r > a.

(A99)

φB(r, 0) =


− B2 p0a

2B1

[
c2

a2 cos−1( a
c
)
−
√

c2

a2 − 1
]

, 0 ≤ r ≤ a,

− B2 p0a
B1π

[
c2

a2 cos−1( a
c
)
−
√

c2

a2 − 1
]

sin−1( a
r
)
, r > a.

(A100)

respectively.
In Boussinesq’s theory, the profile of the surface is given by [81]:

uB = − p0a
B1π

[
c2

a2 cos−1
( a

c

)
−
√

c2

a2 − 1

]
sin−1

( a
r

)
, r ≥ a, (A101)

and the “penetration” of the punch is defined by

δB = − p0a
2B1

[
c2

a2 cos−1
( a

c

)
−
√

c2

a2 − 1

]
< 0. (A102)

Taking the origin of displacement at the tip of the crack, one has

u
′
z(r, 0) = δB − uB, (A103)

Substitution of Equations (A101) and (A102) into Equation (A103) yields

u
′
z(r, 0) =

p0a
B1π

(√
c2

a2 − 1− c2

a2 cos−1 a
c

)
cos−1 a

r
< 0. (A104)
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Similarly, one can obtain

φ
′
(r, 0) =

B2 p0a
B1π

(√
c2

a2 − 1− c2

a2 cos−1 a
c

)
cos−1 a

r
< 0. (A105)

Adding the displacement and electric potential shown in Equations (A104) and (A105)
to the corresponding results given by Equations (A88) and (A89), respectively, we obtain

uT = uz(r, 0)− u
′
z

= 2p0
B1π

[√
c2 − a2

(√
r2

a2 − 1− cos−1 a
r

)
− c2

∫ min(r,c)
a

√
r2−t2

t2
√

c2−t2 dt
]

+Km
√

πa
B1π cos−1 a

r ,

(A106)

φT = φ(r, 0)− φ
′

= 2B2 p0
B1π

[√
c2 − a2

(√
r2

a2 − 1− cos−1 a
r

)
− c2

∫ min(r,c)
a

√
r2−t2

t2
√

c2−t2 dt
]

+ B2Km
√

πa
B1π cos−1 a

r .

(A107)

When a piezoelectric material degenerates into an isotropic elastic solid, B1 = E∗/2 =
E/2(1− ν2) (where E and ν are the elastic modulus and the Poisson’s ratio of the isotropic
elastic material, respectively), Equation (A106) can be rewritten as

uT = 4 1−ν2

πE p0

[√
c2 − a2

(√
r2

a2 − 1− cos−1 a
r

)
− c2

∫ min(r,c)
a

√
r2−t2

t2
√

c2−t2 dt
]

+ 1−ν2

πE Km
√

πa cos−1 a
r ,

(A108)

which is the same as the result of Equation (3.150) obtained in [81].
Case (b): superposing the solutions of a rigid conducting circular punch
The solutions to the Boussinesq problem under the action of a rigid conducting circular

punch are given by Equations (A14)–(A18). For a rigid conducting circular punch with zero
electric potential (i.e., φ0 = 0), substituting −P

′
into Equations (A14)–(A18) yields

σB
zz(r, 0) =

P
′

2πa
√

a2 − r2
, (A109)

DB
z (r, 0) =

B5

B4

P
′

2πa
√

a2 − r2
, (A110)

hB = − P
′

4aB4
, (A111)

uB
z (r, 0) =

−
P
′

4aB4
, 0 ≤ r ≤ a,

− P
′

2πaB4
sin−1( a

r
)
, r > a,

(A112)

φB(r, 0) = 0, r ≥ 0. (A113)

By adding the stress distribution given by Equations (A87)–(A109) and combining the
result of Equation (A91), one can obtain

σzz(r, 0) =


Km√

πa
a√

a2−r2 −
2p0
π tan−1

√
c2−a2

a2−r2 , r < a,

−p0, a < r < c,

0, r > c,

(A114)
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which are the same as the results given by Equation (A98).
Inserting Equation (A91) into Equation (A110) yields

Dz(r, 0) =
B5

B4

Km
√

πa− 2p0
√

c2 − a2

π
√

a2 − r2
, r < a, (A115)

where Km is defined by Equation (A97).
By adopting the same solution procedures as those of Equations (A101)–(A107), the

crack opening displacement and the discontinuity of the electric potential under the action
of −P

′
can be defined as

uT = 2p0
B1πa

[√
(c2 − a2)(r2 − a2)− ac2

∫ min(r,c)
a

√
r2−t2

t2
√

c2−t2 dt
]

+Km
√

πa−2p0
√

c2−a2

B4π cos−1 a
r , r > a.

(A116)

φT =
B2

B1

2p0

πa

[√
(c2 − a2)(r2 − a2)− ac2

∫ min(r,c)

a

√
r2 − t2

t2
√

c2 − t2
dt

]
, r > a. (A117)

Appendix F. Verification of the Results in Section 4.2

In this section, the correctness of the results obtained in Section 4.2 will be verified,
which was achieved by checking whether the corresponding JKR solutions presented
in Section 3.2 can be degenerated as the limiting cases of the M-D solutions obtained
in Section 4.2.

First, Equations (62) and (63) can be rewritten in the following forms:

σM−D
zz (ρ, 0) =

−B4 cot αcos h−1 1
ρ + 2σ0

π tan−1
√

m2−1
1−ρ2 , ρ < 1,

σ0, 1 < ρ < m,
(A118)

DM−D
z (ρ, 0) =

2B5(B6 + B3)φ0

πa
√

1− ρ2
− B5 cot αcos h−1 1

ρ
+

B5

B4

2σ0

π

√
m2 − 1
1− ρ2 , ρ < 1, (A119)

where ρ = r/a, m = c/a.
From Equation (60), one can obtain

KI =
σ0a√

πa

(√
m2 − 1 + m2 cos−1 1

m

)
. (A120)

Using the following relation from [81]:

cos−1
(

1
m

)
= tan−1

√
m2 − 1, m > 0, (A121)

Equation (A120) can be expressed as

KI
√

πa
σ0a

=
√

m2 − 1 + m2 tan−1
√

m2 − 1. (A122)

When m→ 1 , considering the relation tan−1
√

m2 − 1 ∼
√

m2 − 1, one can deter-
mine that

KI
√

πa
σ0a

≈ 2
√

m2 − 1. (A123)
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Substituting Equation (A123) into Equations (A118) and (A119) yields
σzz(ρ, 0) = −B4 cot αcos h−1 1

ρ + KI√
πa

1√
1−ρ2

, ρ < 1,

Dz(ρ, 0) = 2B5(B6+B3)φ0

πa
√

1−ρ2
− B5 cot αcos h−1 1

ρ + B5
B4

KI√
πa

1√
1−ρ2

, ρ < 1,
(A124)

which are consistent with the JKR solutions obtained in Equations (47) and (48).
When m→ ∞ , from Equation (A122), one can determine that σ0 → 0 . In this case,

Equations (62) and (63) can be simplified as
σzz(ρ, 0) = −B4 cot αcos h−1 1

ρ , ρ < 1,

Dz(ρ, 0) = 2B5(B6+B3)φ0

πa
√

1−ρ2
− B5 cot αcos h−1 1

ρ , ρ < 1,
(A125)

which are the same as the corresponding Hertz solutions presented in Equations (A2) and (A3).
For the discontinuity displacement outside the contact region, σ0 → 0 as m→ ∞ , and

Equation (65) degenerates into the following form:

[uz(r, 0)] =
(

2B3φ0

π
− a cot α

)
cos−1 a

r
+
√

r2 − a2 cot α, r > a, (A126)

which is consistent with the Hertz solution presented in Equation (A7).
When m→ 1 , using the relation in Equation (A123), Equation (65) can be simplified

as follows:

[uz(r, 0)] =
(

2B3φ0
π − a cot α

)
cos−1 a

r +
√

r2 − a2 cot α + KI
√

πa
B4π cos−1 a

r

− 2σ0a
B1π

[√
(m2 − 1)(ρ2 − 1)−m2

∫ min(ρ,m)
1

√
ρ2−t2

t2
√

m2−t2 dt
]

, r > a.
(A127)

Considering the following integral result [81]:

lim
m→1

(
m2
∫ m

1

√
ρ2−t2

t2
√

m2−t2 dt
)
= lim

m→1

(
m2
√

ρ2 − ξ2
∫ m

1
dt

t2
√

m2−t2

)
= lim

m→1

√
ρ2 − ξ2

√
m2 − 1 =

√
(m2 − 1)(ρ2 − 1).

(A128)

By inserting Equation (A128) into Equation (A127), one can obtain

[uz(r, 0)] =
(

2B3φ0
π − a cot α

)
cos−1 a

r +
√

r2 − a2 cot α

+KI
√

πa
B4π cos−1 a

r , r > a,
(A129)

which is the same as the corresponding JKR solution presented in Equation (50).
From the results given by Equations (A126) and (A128), one can determine that for

both m→ ∞ and m→ 1 , Equation (67) can be simplified as follows:

[φ(r, 0)] = −2φ0

π
cos−1 a

r
, r > a, (A130)

which is consistent with the Hertz solution and the JKR solution obtained in Equations (A8)
and (51), respectively.

For the indentation depth, superposing Equations (14) and (56) yields

hM−D =
πa
4

cot α +
P

4B4a
− B3φ0 +

σ0a
2B4

(
m2 tan−1

√
m2 − 1−

√
m2 − 1

)
. (A131)
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Using Equations (45) and (A122), one can determine that

σ0a =
B4πa2 cot α− P

2a
(√

m2 − 1 + m2 tan−1
√

m2 − 1
) . (A132)

Substituting Equation (A132) into Equation (A131) yields

hM−D = πa
4 cot α + P

4B4a − B3φ0

+m2 tan−1
√

m2−1−
√

m2−1
m2 tan−1

√
m2−1+

√
m2−1

B4πa2 cot α−P
4B4a .

(A133)

As m→ 1 ,

m2 tan−1
√

m2 − 1−
√

m2 − 1

m2 tan−1
√

m2 − 1 +
√

m2 − 1
≈
√

m2 − 1−
√

m2 − 1

2
√

m2 − 1
= 0, (A134)

and as such, Equation (A133) can be simplified as

h =
πa
4

cot α +
P

4B4a
− B3φ0, (A135)

which is consistent with the corresponding JKR solution obtained in Equation (14).
When m→ ∞ , it can be determined that

m2 tan−1
√

m2 − 1−
√

m2 − 1

m2 tan−1
√

m2 − 1 +
√

m2 − 1
≈ πm2/2−

√
m2 − 1

πm2/2 +
√

m2 − 1
≈ 1, (A136)

then one can determine that

h =
πa
2

cot α− B3φ0, (A137)

which is the same as the Hertz solution presented in Equation (A4).
Using the relation given by Equation (A121), the energy release rate obtained in

Equation (79) can be expressed in the following form:

G =
(√

m2 − 1− tan−1
√

m2 − 1
)

σ0a cot α + 2B3φ0σ0
π tan−1

√
m2 − 1

+
2σ2

0 a
πB4

[√
m2 − 1 tan−1

√
m2 − 1− B4

B1
(m− 1)

]
− B5(B3+B6)φ

2
0

πa

− 1
π

[
B5
B4

+ B2B5(B3+B6)
B1

]
φ0σ0
√

m2 − 1− B2B5
B1B4

σ2
0 a
π (m2 − 1).

(A138)

Substitution of Equation (A132) into Equation (A138) yields

G =
cot α(PH−P)(

√
m2−1−tan−1

√
m2−1)

2a(
√

m2−1+m2 tan−1
√

m2−1)

+
{

B3 tan−1
√

m2 − 1− 1
2

[
B5
B4

+ B2B5(B3+B6)
B1

]√
m2 − 1

}
×

(PH−P)φ0

πa2(
√

m2−1+m2 tan−1
√

m2−1)
− B2B5

4πB1B4a3
(PH−P)2

(m2−1)√
m2−1+m2 tan−1

√
m2−1

+ (PH−P)2

2πB4a3

√
m2−1 tan−1

√
m2−1− B4

B1
(m−1)

(
√

m2−1+m2 tan−1
√

m2−1)
2 −

B5(B3+B6)φ
2
0

πa .

(A139)



Mathematics 2022, 10, 4511 47 of 50

When m→ 1 , using the relation tan−1
√

m2 − 1 ∼
√

m2 − 1, Equation (A139) can be
simplified as

G =
{

B3 − 1
2

[
B5
B4

+ B2B5(B3+B6)
B1

]}
(PH−P)φ0

2πa2

+ (PH−P)2

2πB4a3

√
m2−1 tan−1

√
m2−1− B4

B1
(m−1)

(
√

m2−1+m2 tan−1
√

m2−1)
2 −

B5(B3+B6)φ
2
0

πa .
(A140)

For several common piezoelectric materials (e.g., PZT-4, PZT-5A, BaTiO3 and
BaaCabTiO3), the numerical results indicate that

B3 ≈
1
2

[
B5

B4
+

B2B5(B3 + B6)

B1

]
,

B4

B1
≈ 1. (A141)

Using the above results, Equation (A140) can be further simplified as

G =
(PH − P)2

2πB4a3

√
m2 − 1 tan−1

√
m2 − 1−m + 1(√

m2 − 1 + m2 tan−1
√

m2 − 1
)2 −

B5(B3 + B6)φ
2
0

πa
. (A142)

As m→ 1 , letting m = 1 + ε, one can obtain [81]:

tan−1
√

m2 − 1 ≈
√

2ε

(
1− 5ε

12

)
, (A143)

and as such,√
m2 − 1 tan−1

√
m2 − 1−m + 1 ≈ 2ε,

√
m2 − 1 + m2 tan−1

√
m2 − 1 ≈ 2

√
2ε. (A144)

Inserting Equation (A144) into Equation (A142) yields

G =
(PH − P)2

16πB4a3 −
B5(B3 + B6)φ

2
0

πa
. (A145)

Using the energy balance relation as presented in Equation (80), one can determine that

P = PH ± 4a
√

πB4a∆γ + B4B5(B3 + B6)φ
2
0. (A146)

Combining the stable equilibrium condition of the contact system, we can determine that

P = PH − 4a
√

πB4a∆γ + B4B5(B3 + B6)φ
2
0. (A147)

Substituting Equation (A4)2 into Equation (A147) yields

P = πB4a2 cot α− 4a
√

πB4a∆γ + B4B5(B3 + B6)φ
2
0, (A148)

which is the same as the corresponding JKR solution obtained in Equation (27).
Therefore, the above results indicate that the JKR solutions of a piezoelectric solid

under the action of a rigid conducting conical punch can be regarded as the limiting case,
which can be degenerated from the corresponding M-D solutions. The correctness of the
corresponding solutions is verified.
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