Prediction of Strength Parameters of Thermally Treated Egyptian Granodiorite Using Multivariate Statistics and Machine Learning Techniques
Abstract
:1. Introduction
2. Rock Description and Experimental Data
2.1. Geological Setting
2.2. Rock Description
2.3. Experimental Data
2.4. Prediction Models
2.4.1. Multiple-Linear Regression (MLR)
2.4.2. Random Forest Regression (RFR)
2.4.3. The K-Nearest Neighbor (KNN)
2.4.4. Artificial Neural Network (ANN)
3. Results
3.1. Data Analysis
3.2. Model Performance
3.3. Prediction Models of UCS and E
3.3.1. Multilinear Regression Prediction Models
3.3.2. Random Forest Technique
3.3.3. K-Nearest Neighbor Technique
3.3.4. Neural Network Model
4. Discussion
5. Conclusions
- (1)
- Due to the close results of the slow cooling by the oven and rapid cooling by the water of thermally treated granodiorite, the cooling method and mass as input parameters to predict UCS and E have a minor effect on the prediction models of UCS and E. In contrast, the temperature, porosity, absorption, dry density, and P-wave velocity had good relations with UCS and E.
- (2)
- After 600 °C, the performance of the prediction models was diminished because many input and output parameters, such as Pv and E, were impossible to measure due to the severe damage to granodiorite samples. The prediction models were therefore developed up to this threshold temperature, which can be regarded as a threshold temperature point.
- (3)
- The inconsistent performance for the MLR model demonstrates that the temperature and P-wave velocity actively contributed to the prediction models of elastic modulus. In contrast, the porosity, absorption, and density had a less significant predictive impact. In comparison, porosity and density were the best effective parameters to predict the uniaxial compressive strength.
- (4)
- The performance coefficients for the MLR prediction models for UCS and E are 0.86% and 0.96%, respectively. In contrast, the intelligent models for UCS and E, including RFR, KNN, and ANN, provide a better performance coefficient (9–13%), indicating that their models for UCS and E prediction are more reasonable than the statistical model (MRL).
- (5)
- The comparative analysis of predictive models revealed that the ANN model used for predicting the UCS and E is the most accurate model, with R2 of 0.99, MAPE of 0.25%, VAF of 97.22%, and RMSE of 2.04.
Recommendation
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Verma, A.K.; Gautam, P.; Singh, T.N.; Bajpai, R.K. Discrete element modelling of conceptual deep geological repository for high-level nuclear waste disposal. Arab. J. Geosci. 2015, 8, 8027–8038. [Google Scholar] [CrossRef]
- Gomah, M.E.; Li, G.; Bader, S.; Elkarmoty, M.; Ismael, M. Damage Evolution of Granodiorite after Heating and Cooling Treatments. Minerals 2021, 11, 779. [Google Scholar] [CrossRef]
- Gomah, M.E.; Li, G.; Sun, C.; Xu, J.; Yang, S.; Li, J. On the Physical and Mechanical Responses of Egyptian Granodiorite after High-Temperature Treatments. Sustainability 2022, 14, 4632. [Google Scholar] [CrossRef]
- Ceryan, N. Application of support vector machines and relevance vector machines in predicting uniaxial compressive strength of volcanic rocks. J. Afr. Earth Sci. 2014, 100, 634–644. [Google Scholar] [CrossRef]
- Wang, Y.; Aladejare, A.E. Selection of site-specific regression model for characterization of uniaxial compressive strength of rock. Int. J. Rock Mech. Min. Sci. 2015, 75, 73–81. [Google Scholar] [CrossRef]
- Vasanelli, E.; Calia, A.; Colangiuli, D.; Micelli, F.; Aiello, M.A. Assessing the reliability of non-destructive and moderately invasive techniques for the evaluation of uniaxial compressive strength of stone masonry units. Constr. Build. Mater. 2016, 124, 575–581. [Google Scholar] [CrossRef]
- Liu, B.; Zhao, Y.; Zhang, C.; Zhou, J.; Li, Y.; Sun, Z. Characteristic strength and acoustic emission properties of weakly cemented sandstone at different depths under uniaxial compression. Int. J. Coal Sci. Technol. 2021, 8, 1288–1301. [Google Scholar] [CrossRef]
- Jangara, H.; Ozturk, C.A. Longwall top coal caving design for thick coal seam in very poor strength surrounding strata. Int. J. Coal Sci. Technol. 2021, 8, 641–658. [Google Scholar] [CrossRef]
- Zhang, Q.; Huang, X.; Zhu, H.; Li, J. Quantitative assessments of the correlations between rock mass rating (RMR) and geological strength index (GSI). Tunn. Undergr. Sp. Technol. 2019, 83, 73–81. [Google Scholar] [CrossRef]
- Bieniawski, Z.T. Engineering classification of jointed rock masses. Civ. Eng. S. Afr. 1973, 15, 335–343. [Google Scholar]
- Bieniawski, Z.T. Engineering Rock Mass Classifications: A Complete Manual for Engineers and Geologists in Mining, Civil, and Petroleum Engineering; John Wiley & Sons: Hoboken, NJ, USA, 1989; ISBN 0471601721. [Google Scholar]
- Hoek, E. Strength of Rock and Rock Masse. 1994. Available online: https://www.sid.ir/paper/546357/en (accessed on 1 October 2022).
- Palmstrøm, A. Characterizing rock masses by the RMi for use in practical rock engineering: Part 1: The development of the Rock Mass index (RMi). Tunn. Undergr. Sp. Technol. 1996, 11, 175–188. [Google Scholar] [CrossRef]
- Yılmaz, I.; Sendır, H. Correlation of Schmidt hardness with unconfined compressive strength and Young’s modulus in gypsum from Sivas (Turkey). Eng. Geol. 2002, 66, 211–219. [Google Scholar] [CrossRef]
- Baykasoğlu, A.; Güllü, H.; Çanakçı, H.; Özbakır, L. Prediction of compressive and tensile strength of limestone via genetic programming. Expert Syst. Appl. 2008, 35, 111–123. [Google Scholar] [CrossRef]
- Karaman, K.; Kesimal, A. A comparative study of Schmidt hammer test methods for estimating the uniaxial compressive strength of rocks. Bull. Eng. Geol. Environ. 2015, 74, 507–520. [Google Scholar] [CrossRef]
- Wang, Y.; Aladejare, A.E. Bayesian characterization of correlation between uniaxial compressive strength and Young’s modulus of rock. Int. J. Rock Mech. Min. Sci. 2016, 85, 10–19. [Google Scholar] [CrossRef]
- Yang, D.; Ning, Z.; Li, Y.; Lv, Z.; Qiao, Y. In situ stress measurement and analysis of the stress accumulation levels in coal mines in the northern Ordos Basin, China. Int. J. Coal Sci. Technol. 2021, 8, 1316–1335. [Google Scholar] [CrossRef]
- Diamantis, K.; Gartzos, E.; Migiros, G. Study on uniaxial compressive strength, point load strength index, dynamic and physical properties of serpentinites from Central Greece: Test results and empirical relations. Eng. Geol. 2009, 108, 199–207. [Google Scholar] [CrossRef]
- Yagiz, S.; Sezer, E.A.; Gokceoglu, C. Artificial neural networks and nonlinear regression techniques to assess the influence of slake durability cycles on the prediction of uniaxial compressive strength and modulus of elasticity for carbonate rocks. Int. J. Numer. Anal. Methods Geomech. 2012, 36, 1636–1650. [Google Scholar] [CrossRef]
- Mishra, D.A.; Basu, A. Estimation of uniaxial compressive strength of rock materials by index tests using regression analysis and fuzzy inference system. Eng. Geol. 2013, 160, 54–68. [Google Scholar] [CrossRef]
- Jahed Armaghani, D.; Tonnizam Mohamad, E.; Momeni, E.; Narayanasamy, M.S.; Mohd Amin, M.F. An adaptive neuro-fuzzy inference system for predicting unconfined compressive strength and Young’s modulus: A study on Main Range granite. Bull. Eng. Geol. Environ. 2015, 74, 1301–1319. [Google Scholar] [CrossRef]
- Armaghani, D.J.; Tonnizam Mohamad, E.; Momeni, E.; Monjezi, M.; Sundaram Narayanasamy, M. Prediction of the strength and elasticity modulus of granite through an expert artificial neural network. Arab. J. Geosci. 2016, 9, 48. [Google Scholar] [CrossRef]
- Deere, D.U.; Miller, R.P. Engineering Classification and Index Properties for Intact Rock; Illinois Univ At Urbana Dept Of Civil Engineering: Urbana, IL, USA, 1966. [Google Scholar]
- Sheorey, P.R. Schmidt hammer rebound data for estimation of large scale in situ coal strength. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1984, 21, 10–28. [Google Scholar] [CrossRef]
- Sachpazis, C.I. Correlating Schmidt hardness with compressive strength and Young’s modulus of carbonate rocks. Bull. Int. Assoc. Eng. Geol. l’Association Int. Géologie l’Ingénieur 1990, 42, 75–83. [Google Scholar] [CrossRef]
- Katz, O.; Reches, Z.; Roegiers, J.-C. Evaluation of mechanical rock properties using a Schmidt Hammer. Int. J. Rock Mech. Min. Sci. 2000, 37, 723–728. [Google Scholar] [CrossRef]
- Yagiz, S. Predicting uniaxial compressive strength, modulus of elasticity and index properties of rocks using the Schmidt hammer. Bull. Eng. Geol. Environ. 2009, 68, 55–63. [Google Scholar] [CrossRef]
- Fattahi, H. Applying soft computing methods to predict the uniaxial compressive strength of rocks from schmidt hammer rebound values. Comput. Geosci. 2017, 21, 665–681. [Google Scholar] [CrossRef]
- Demirdag, S.; Sengun, N.; Ugur, I.; Altindag, R. Estimating the uniaxial compressive strength of rocks with Schmidt rebound hardness by considering the sample size. Arab. J. Geosci. 2018, 11, 502. [Google Scholar] [CrossRef]
- Fener, M.; Kahraman, S.; Bilgil, A.; Gunaydin, O. A comparative evaluation of indirect methods to estimate the compressive strength of rocks. Rock Mech. Rock Eng. 2005, 38, 329–343. [Google Scholar] [CrossRef]
- Maji, V.B.; Sitharam, T.G. Prediction of elastic modulus of jointed rock mass using artificial neural networks. Geotech. Geol. Eng. 2008, 26, 443–452. [Google Scholar] [CrossRef]
- Beiki, M.; Majdi, A.; Givshad, A.D. Application of genetic programming to predict the uniaxial compressive strength and elastic modulus of carbonate rocks. Int. J. Rock Mech. Min. Sci. 2013, 63, 159–169. [Google Scholar] [CrossRef]
- O’Rourke, J.E. Rock index properties for geoengineering in underground development. Min. Eng. 1989, 41, 106–109. [Google Scholar]
- Rezaei, M.; Majdi, A.; Monjezi, M. An intelligent approach to predict unconfined compressive strength of rock surrounding access tunnels in longwall coal mining. Neural Comput. Appl. 2014, 24, 233–241. [Google Scholar] [CrossRef]
- Feng, X. Application of Bayesian Approach in Geotechnical Engineering (Doctoral Dissertation, Caminos). 2015. Available online: https://oa.upm.es/37270/ (accessed on 1 October 2022).
- Aladejare, A.E.; Wang, Y. Estimation of rock mass deformation modulus using indirect information from multiple sources. Tunn. Undergr. Sp. Technol. 2019, 85, 76–83. [Google Scholar] [CrossRef]
- Gorai, A.K.; Raval, S.; Patel, A.K.; Chatterjee, S.; Gautam, T. Design and development of a machine vision system using artificial neural network-based algorithm for automated coal characterization. Int. J. Coal Sci. Technol. 2021, 8, 737–755. [Google Scholar] [CrossRef]
- Zhou, J.; Lin, H.; Jin, H.; Li, S.; Yan, Z.; Huang, S. Cooperative prediction method of gas emission from mining face based on feature selection and machine learning. Int. J. Coal Sci. Technol. 2022, 9, 51. [Google Scholar] [CrossRef]
- Xie, J.; Ge, F.; Cui, T.; Wang, X. A virtual test and evaluation method for fully mechanized mining production system with different smart levels. Int. J. Coal Sci. Technol. 2022, 9, 41. [Google Scholar] [CrossRef]
- Grima, M.A.; Babuška, R. Fuzzy model for the prediction of unconfined compressive strength of rock samples. Int. J. Rock Mech. Min. Sci. 1999, 36, 339–349. [Google Scholar] [CrossRef]
- Singh, V.K.; Singh, D.; Singh, T.N. Prediction of strength properties of some schistose rocks from petrographic properties using artificial neural networks. Int. J. Rock Mech. Min. Sci. 2001, 38, 269–284. [Google Scholar] [CrossRef]
- Gokceoglu, C. A fuzzy triangular chart to predict the uniaxial compressive strength of the Ankara agglomerates from their petrographic composition. Eng. Geol. 2002, 66, 39–51. [Google Scholar] [CrossRef]
- Lee, S.-C. Prediction of concrete strength using artificial neural networks. Eng. Struct. 2003, 25, 849–857. [Google Scholar] [CrossRef]
- Gokceoglu, C.; Zorlu, K. A fuzzy model to predict the uniaxial compressive strength and the modulus of elasticity of a problematic rock. Eng. Appl. Artif. Intell. 2004, 17, 61–72. [Google Scholar] [CrossRef]
- Karakus, M.; Tutmez, B. Fuzzy and multiple regression modelling for evaluation of intact rock strength based on point load, Schmidt hammer and sonic velocity. Rock Mech. Rock Eng. 2006, 39, 45–57. [Google Scholar] [CrossRef]
- Yılmaz, I.; Yuksek, A.G. An example of artificial neural network (ANN) application for indirect estimation of rock parameters. Rock Mech. Rock Eng. 2008, 41, 781–795. [Google Scholar] [CrossRef]
- Gokceoglu, C.; Sonmez, H.; Zorlu, K. Estimating the uniaxial compressive strength of some clay-bearing rocks selected from Turkey by nonlinear multivariable regression and rule-based fuzzy models. Expert Syst. 2009, 26, 176–190. [Google Scholar] [CrossRef]
- Dehghan, S.; Sattari, G.H.; Chehreh Chelgani, S.; Aliabadi, M.A.; Chelgani, S.C.; Aliabadi, M.A. Prediction of uniaxial compressive strength and modulus of elasticity for Travertine samples using regression and artificial neural networks. Min. Sci. Technol. 2010, 20, 41–46. [Google Scholar] [CrossRef]
- Cevik, A.; Sezer, E.A.; Cabalar, A.F.; Gokceoglu, C. Modeling of the uniaxial compressive strength of some clay-bearing rocks using neural network. Appl. Soft Comput. J. 2011, 11, 2587–2594. [Google Scholar] [CrossRef]
- Teymen, A.; Mengüç, E.C. Comparative evaluation of different statistical tools for the prediction of uniaxial compressive strength of rocks. Int. J. Min. Sci. Technol. 2020, 30, 785–797. [Google Scholar] [CrossRef]
- Armaghani, D.J.; Amin, M.F.M.; Yagiz, S.; Faradonbeh, R.S.; Abdullah, R.A. Prediction of the uniaxial compressive strength of sandstone using various modeling techniques. Int. J. Rock Mech. Min. Sci. 2016, 85, 174–186. [Google Scholar] [CrossRef]
- Li, W.; Tan, Z. Research on rock strength prediction based on least squares support vector machine. Geotech. Geol. Eng. 2017, 35, 385–393. [Google Scholar] [CrossRef]
- Mohamad, E.T.; Armaghani, D.J.; Momeni, E.; Yazdavar, A.H.; Ebrahimi, M. Rock strength estimation: A PSO-based BP approach. Neural Comput. Appl. 2018, 30, 1635–1646. [Google Scholar] [CrossRef]
- Umrao, R.K.; Sharma, L.K.; Singh, R.; Singh, T.N. Determination of strength and modulus of elasticity of heterogenous sedimentary rocks: An ANFIS predictive technique. Meas. J. Int. Meas. Confed. 2018, 126, 194–201. [Google Scholar] [CrossRef]
- Çelik, S.B. Prediction of uniaxial compressive strength of carbonate rocks from nondestructive tests using multivariate regression and LS-SVM methods. Arab. J. Geosci. 2019, 12, 193. [Google Scholar] [CrossRef]
- Mokhtari, M.; Behnia, M. Comparison of LLNF, ANN, and COA-ANN techniques in modeling the uniaxial compressive strength and static Young’s modulus of limestone of the Dalan formation. Nat. Resour. Res. 2019, 28, 223–239. [Google Scholar] [CrossRef]
- Ceryan, N.; Samui, P. Application of soft computing methods in predicting uniaxial compressive strength of the volcanic rocks with different weathering degree. Arab. J. Geosci. 2020, 13, 288. [Google Scholar] [CrossRef]
- Ebdali, M.; Khorasani, E.; Salehin, S. A comparative study of various hybrid neural networks and regression analysis to predict unconfined compressive strength of travertine. Innov. Infrastruct. Solut. 2020, 5, 93. [Google Scholar] [CrossRef]
- Barham, W.S.; Rabab’ah, S.R.; Aldeeky, H.H.; Al Hattamleh, O.H. Mechanical and Physical Based Artificial Neural Network Models for the Prediction of the Unconfined Compressive Strength of Rock. Geotech. Geol. Eng. 2020, 38, 4779–4792. [Google Scholar] [CrossRef]
- Khan, N.M.; Cao, K.; Emad, M.Z.; Hussain, S.; Rehman, H.; Shah, K.S.; Rehman, F.U.; Muhammad, A. Development of Predictive Models for Determination of the Extent of Damage in Granite Caused by Thermal Treatment and Cooling Conditions Using Artificial Intelligence. Mathematics 2022, 10, 2883. [Google Scholar] [CrossRef]
- Khan, N.M.; Cao, K.; Yuan, Q.; Bin Mohd Hashim, M.H.; Rehman, H.; Hussain, S.; Emad, M.Z.; Ullah, B.; Shah, K.S.; Khan, S. Application of Machine Learning and Multivariate Statistics to Predict Uniaxial Compressive Strength and Static Young’s Modulus Using Physical Properties under Different Thermal Conditions. Sustainability 2022, 14, 9901. [Google Scholar] [CrossRef]
- Singh, R.; Kainthola, A.; Singh, T.N. Estimation of elastic constant of rocks using an ANFIS approach. Appl. Soft Comput. 2012, 12, 40–45. [Google Scholar] [CrossRef]
- Jahed Armaghani, D.; Tonnizam Mohamad, E.; Hajihassani, M.; Yagiz, S.; Motaghedi, H. Application of several non-linear prediction tools for estimating uniaxial compressive strength of granitic rocks and comparison of their performances. Eng. Comput. 2016, 32, 189–206. [Google Scholar] [CrossRef]
- Barzegar, R.; Sattarpour, M.; Nikudel, M.R.; Moghaddam, A.A. Comparative evaluation of artificial intelligence models for prediction of uniaxial compressive strength of travertine rocks, case study: Azarshahr area, NW Iran. Model. Earth Syst. Environ. 2016, 2, 76. [Google Scholar] [CrossRef] [Green Version]
- Waqas, U.; Ahmed, M.F. Prediction Modeling for the Estimation of Dynamic Elastic Young’s Modulus of Thermally Treated Sedimentary Rocks Using Linear–Nonlinear Regression Analysis, Regularization, and ANFIS. Rock Mech. Rock Eng. 2020, 53, 5411–5428. [Google Scholar] [CrossRef]
- Helmy, H.M.; Ahmed, A.F.; El Mahallawi, M.M.; Ali, S.M. Pressure, temperature and oxygen fugacity conditions of calc-alkaline granitoids, Eastern Desert of Egypt, and tectonic implications. J. Afr. Earth Sci. 2004, 38, 255–268. [Google Scholar] [CrossRef]
- El-Taher, A.; Uosif, M.A.M.; Orabi, A.A. Natural radioactivity levels and radiation hazard indices in granite from Aswan to Wadi El-Allaqi southeastern desert, Egypt. Radiat. Prot. Dosim. 2007, 124, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Gomah, M.E.; Li, G.; Sun, C.; Jiahui, X.; Sen, Y.; Jinghua, L.; Ismael, M.; Elkarmoty, M. Macroscopic and microscopic research on Egyptian granodiorite behavior exposed to the various heating and cooling strategies. Geomech. Geophys. Geo-Energy Geo-Resour. 2022, 8, 158. [Google Scholar] [CrossRef]
- ASTM Committee D-18 on Soil and Rock. Standard Test Method for Laboratory Determination of Pulse Velocities and Ultrasonic Elastic Constants of Rock; ASTM International: West Conshohocken, PA, USA, 2008. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Jin, X.; Diao, W.; Xiao, C.; Wang, F.; Chen, B.; Wang, K.; Li, S. Estimation of wheat agronomic parameters using new spectral indices. PLoS ONE 2013, 8, e72736. [Google Scholar] [CrossRef] [Green Version]
- Qi, C.; Fourie, A.; Du, X.; Tang, X. Prediction of open stope hangingwall stability using random forests. Nat. Hazards 2018, 92, 1179–1197. [Google Scholar] [CrossRef]
- Ullah, H.; Khan, I.; AlSalman, H.; Islam, S.; Asif Zahoor Raja, M.; Shoaib, M.; Gumaei, A.; Fiza, M.; Ullah, K.; Rahman, M. Levenberg–Marquardt backpropagation for numerical treatment of micropolar flow in a porous channel with mass injection. Complexity 2021, 2021, 5337589. [Google Scholar] [CrossRef]
- Qi, C.; Tang, X. Slope stability prediction using integrated metaheuristic and machine learning approaches: A comparative study. Comput. Ind. Eng. 2018, 118, 112–122. [Google Scholar] [CrossRef]
- Zhang, K.; Wu, X.; Niu, R.; Yang, K.; Zhao, L. The assessment of landslide susceptibility mapping using random forest and decision tree methods in the Three Gorges Reservoir area, China. Environ. Earth Sci. 2017, 76, 405. [Google Scholar] [CrossRef]
- Brokamp, C.; Jandarov, R.; Rao, M.B.; LeMasters, G.; Ryan, P. Exposure assessment models for elemental components of particulate matter in an urban environment: A comparison of regression and random forest approaches. Atmos. Environ. 2017, 151, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Kumar, V.; Ross Quinlan, J.; Ghosh, J.; Yang, Q.; Motoda, H.; McLachlan, G.J.; Ng, A.; Liu, B.; Yu, P.S. Top 10 algorithms in data mining. Knowl. Inf. Syst. 2008, 14, 1–37. [Google Scholar] [CrossRef] [Green Version]
- Akbulut, Y.; Sengur, A.; Guo, Y.; Smarandache, F. NS-k-NN: Neutrosophic set-based k-nearest neighbors classifier. Symmetry 2017, 9, 179. [Google Scholar] [CrossRef] [Green Version]
- Basheer, I.A.; Hajmeer, M. Artificial neural networks: Fundamentals, computing, design, and application. J. Microbiol. Methods 2000, 43, 3–31. [Google Scholar] [CrossRef]
- Wasserman, P.D. Neural Computing: Theory and Practice; Van Nostrand Reinhold Co.: Washington, DC, USA, 1989; ISBN 0442207433. Available online: https://dl.acm.org/doi/abs/10.5555/63484 (accessed on 1 October 2022).
- Negnevitsky, M. Artificial Intelligence A Guide to Intelligent Systems; Addison-Wesley: Harlow, UK, 2002. [Google Scholar]
- Simpson, P.K. Artificial Neural Systems: Foundations, Paradigms, Applications, and Implementations; Elsevier Science Inc.: San Diego, CA, USA, 1989; ISBN 0080378951. [Google Scholar]
- Aboutaleb, S.; Behnia, M.; Bagherpour, R.; Bluekian, B. Using non-destructive tests for estimating uniaxial compressive strength and static Young’s modulus of carbonate rocks via some modeling techniques. Bull. Eng. Geol. Environ. 2018, 77, 1717–1728. [Google Scholar] [CrossRef]
- Atkinson, P.M.; Tatnall, A.R.L. Introduction neural networks in remote sensing. Int. J. Remote Sens. 1997, 18, 699–709. [Google Scholar] [CrossRef]
- Facchini, L.; Betti, M.; Biagini, P. Neural network based modal identification of structural systems through output-only measurement. Comput. Struct. 2014, 138, 183–194. [Google Scholar] [CrossRef]
- Tian, H.; Kempka, T.; Yu, S.; Ziegler, M. Mechanical properties of sandstones exposed to high temperature. Rock Mech. rock Eng. 2016, 49, 321–327. [Google Scholar] [CrossRef]
- Armaghani, D.J.; Mohamad, E.T.; Narayanasamy, M.S.; Narita, N.; Yagiz, S. Development of hybrid intelligent models for predicting TBM penetration rate in hard rock condition. Tunn. Undergr. Sp. Technol. 2017, 63, 29–43. [Google Scholar] [CrossRef]
Rock Type (Region) | Reference | Conditions | Input Parameters | Output Parameters |
---|---|---|---|---|
Travertine (Haji a bad, Iran). | Dehghan et al., 2010 [49] | 25 °C | Vp, n, Is, SH | UCS, E |
Carbonate rocks (southwestern Turkey). | Yagiz et al., 2012 [20] | 25 °C | n, SH, Id, Vp | UCS, E |
Granite (Peninsular Malaysia). | Jahed et al., 2015 [22] | 25 °C | ρdry, Qtz, Plg, Vp | UCS, E |
“Gabbro, limestone, granite, sandstone, quartzite, tuff, diabase, etc. (Turkey) | Teymen, et al., 2020 [51] | 25 °C | BTS, SH, SSH, Is, Vp, UW | UCS |
Basalt stones (Jordan) | Barham, et al., 2020 [60] | 25 °C | ρdry, SH, BTS, Id, Is | UCS |
limestone, sandstone, marl, and dolomite (Khewra Gorge) | Umer et al., 2020 [66] | 200 °C | BTS, UCS | Ed |
Granite (Pakistan) | Naseer et al., 2022 [61] | 25–900 °C | ρdry, n, Vp | DT |
Marble (Pakistan) | Naseer et al., 2022 [62] | 25–500 °C | T, Vp, ρdry, n, Ed | UCS, E |
Input Data | Output Data | |||||||
---|---|---|---|---|---|---|---|---|
Method | Temperature (°C) | Mass (g) | Density (g/cm³) | P-Wave Velocity (m/s) | Porosity % | Absorption wt. % | UCS (MPa) | E (GPa) |
- | 25 °C | 779 | 2.69 | 5619.82 | 1.33 | 0.50 | 66.9 | 50.7 |
803 | 2.70 | 5645.16 | 0.00 | 0.00 | 65.9 | 47.8 | ||
800 | 2.69 | 5633.80 | 1.35 | 0.53 | 59.2 | 48.0 | ||
S-C | 200 °C | 789 | 2.67 | 4455.88 | 1.20 | 0.46 | 66.3 | 41.1 |
779.15 | 2.67 | 4450.37 | 1.29 | 0.50 | 67.1 | 44.1 | ||
784.25 | 2.67 | 4454.55 | 1.25 | 0.48 | 67.6 | 43.0 | ||
R-C | 200 °C | 796 | 2.67 | 4039.74 | 0.00 | 0.00 | 70.2 | 41.8 |
799 | 2.67 | 4070.00 | 1.27 | 0.51 | 71.6 | 50.2 | ||
799.3 | 2.68 | 4050.00 | 1.29 | 0.50 | 67.4 | 45.1 | ||
S-C | 400 °C | 791 | 2.65 | 3482.81 | 1.32 | 0.51 | 75.9 | 31.5 |
790 | 2.64 | 3495.68 | 1.43 | 0.56 | 67.9 | 28.9 | ||
790.9 | 2.64 | 3384.83 | 1.32 | 0.51 | 73.9 | 31.2 | ||
R-C | 400 °C | 788 | 2.63 | 2911.69 | 0.00 | 0.00 | 55.0 | 24.7 |
787 | 2.63 | 2606.52 | 2.48 | 0.98 | 56.1 | 25.1 | ||
786.7 | 2.60 | 2613.88 | 2.57 | 1.00 | 69.3 | 26.5 | ||
S-C | 600 °C | 793 | 2.54 | 855.17 | 5.49 | 2.09 | 31.6 | 9.1 |
793 | 2.54 | 1098.21 | 3.77 | 1.45 | 26.1 | 9.5 | ||
783.9 | 2.54 | 815.49 | 5.17 | 2.03 | 26.8 | 8.6 | ||
R-C | 600 °C | 784 | 2.56 | 909.63 | 3.82 | 1.48 | 20.8 | 4.3 |
783 | 2.42 | 754.55 | 3.80 | 1.45 | 19.4 | 3.9 | ||
801.8 | 2.57 | 725.43 | 5.13 | 1.97 | 20.0 | 3.2 | ||
S-C | 800 °C | 787 | 2.24 | 0.00 | 10.85 | 4.17 | 2.7 | - |
787 | 2.29 | 0.00 | 14.38 | 5.56 | 2.8 | - | ||
R-C | 800 °C | 786 | 2.22 | 0.00 | 16.88 | 5.64 | 1.5 | - |
775 | 2.19 | 0.00 | 16.47 | 6.50 | 1.1 | - |
Parameters | Values | Details |
---|---|---|
n-estimators | 100 | Number of trees in RFR |
Max-depth | 12 | Maximum depth of tree |
Random state | 10 | Random state |
Parameters | Values | Descriptions |
---|---|---|
n-neighbors | 11 | Number neighbors |
Metric | Minkowski | The distance metric to use |
Temperature (°C) | Actual UCS (MPa) | Actual E (GPa) | Predicted UCS (KNN) | Predicted E (KNN) | Predicted UCS (RFR) | Predicted E (RFR) | Predicted UCS (ANN) | Predicted E (ANN) |
---|---|---|---|---|---|---|---|---|
25 °C | 66.85 | 50.73 | 66.95 | 47.68 | 66.43 | 49.38 | 66.79 | 50.68 |
65.89 | 47.75 | 66.95 | 47.68 | 64.85 | 43.90 | 65.82 | 47.70 | |
59.2 | 48 | 66.95 | 47.68 | 61.84 | 47.59 | 59.14 | 47.95 | |
200 °C | 66.34 | 41.1 | 68.16 | 44.60 | 67.02 | 42.44 | 66.27 | 41.06 |
67.08 | 44.1 | 68.16 | 44.60 | 68.04 | 45.64 | 67.01 | 44.06 | |
67.64 | 43 | 68.16 | 44.60 | 67.61 | 43.53 | 67.57 | 42.96 | |
70.15 | 41.8 | 68.78 | 44.30 | 69.13 | 42.91 | 70.08 | 41.76 | |
71.56 | 50.2 | 68.78 | 44.30 | 70.28 | 47.62 | 71.49 | 50.15 | |
67.41 | 45.1 | 68.78 | 44.30 | 67.75 | 46.05 | 67.34 | 45.05 | |
400 °C | 75.92 | 31.5 | 67.02 | 27.90 | 72.93 | 31.17 | 75.84 | 31.47 |
67.91 | 28.9 | 67.02 | 27.90 | 69.17 | 29.72 | 67.84 | 28.87 | |
73.93 | 31.2 | 67.02 | 27.90 | 70.95 | 30.65 | 73.86 | 31.17 | |
54.95 | 24.7 | 54.89 | 22.35 | 57.02 | 25.47 | 54.89 | 24.67 | |
56.11 | 25.1 | 67.03 | 27.90 | 63.40 | 26.75 | 56.05 | 25.07 | |
69.32 | 26.5 | 70.20 | 32.48 | 66.10 | 26.21 | 69.25 | 26.47 | |
600 °C | 31.61 | 9.1 | 24.66 | 6.48 | 30.51 | 9.11 | 31.58 | 9.09 |
26.11 | 9.5 | 24.49 | 6.70 | 25.10 | 8.16 | 26.08 | 9.49 | |
26.8 | 8.6 | 24.66 | 6.48 | 30.89 | 10.04 | 26.77 | 8.59 | |
20.79 | 4.3 | 24.49 | 6.70 | 23.17 | 6.02 | 20.77 | 4.30 | |
19.44 | 3.9 | 24.49 | 6.70 | 21.70 | 5.41 | 19.42 | 3.90 | |
20.01 | 3.2 | 24.49 | 6.70 | 25.01 | 7.11 | 19.99 | 3.20 |
Predicted Parameter | Models | R2 | RMSE | MAPE (%) | VAF (%) |
---|---|---|---|---|---|
UCS | MLR | 0.86 | 27.15 | 34.53 | 81.02 |
E | 0.96 | 0.90 | 23.15 | 31.53 | |
UCS, E | RFR | 0.98 | 0.14 | 1.18 | 94.23 |
KNN | 0.95 | 3.02 | 0.94 | 94.01 | |
ANN | 0.99 | 2.04 | 0.25 | 97.22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomah, M.E.; Li, G.; Khan, N.M.; Sun, C.; Xu, J.; Omar, A.A.; Mousa, B.G.; Abdelhamid, M.M.A.; Zaki, M.M. Prediction of Strength Parameters of Thermally Treated Egyptian Granodiorite Using Multivariate Statistics and Machine Learning Techniques. Mathematics 2022, 10, 4523. https://doi.org/10.3390/math10234523
Gomah ME, Li G, Khan NM, Sun C, Xu J, Omar AA, Mousa BG, Abdelhamid MMA, Zaki MM. Prediction of Strength Parameters of Thermally Treated Egyptian Granodiorite Using Multivariate Statistics and Machine Learning Techniques. Mathematics. 2022; 10(23):4523. https://doi.org/10.3390/math10234523
Chicago/Turabian StyleGomah, Mohamed Elgharib, Guichen Li, Naseer Muhammad Khan, Changlun Sun, Jiahui Xu, Ahmed A. Omar, B. G. Mousa, Marzouk Mohamed Aly Abdelhamid, and M. M. Zaki. 2022. "Prediction of Strength Parameters of Thermally Treated Egyptian Granodiorite Using Multivariate Statistics and Machine Learning Techniques" Mathematics 10, no. 23: 4523. https://doi.org/10.3390/math10234523
APA StyleGomah, M. E., Li, G., Khan, N. M., Sun, C., Xu, J., Omar, A. A., Mousa, B. G., Abdelhamid, M. M. A., & Zaki, M. M. (2022). Prediction of Strength Parameters of Thermally Treated Egyptian Granodiorite Using Multivariate Statistics and Machine Learning Techniques. Mathematics, 10(23), 4523. https://doi.org/10.3390/math10234523