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Abstract: Current mainstream deep learning methods for object detection are generally trained on
high-quality datasets, which might have inferior performances under bad weather conditions. In the
paper, a joint semantic deep learning algorithm is proposed to address object detection under foggy
road conditions, which is constructed by embedding three attention modules and a 4-layer UNet
multi-scale decoding module in the feature extraction module of the backbone network Faster RCNN.
The algorithm differs from other object detection methods in that it is designed to solve low- and high-
level joint tasks, including dehazing and object detection through end-to-end training. Furthermore,
the location of the fog is learned by these attention modules to assist image recovery, the image
quality is recovered by UNet decoding module for dehazing, and then the feature representations
of the original image and the recovered image are fused and fed into the FPN (Feature Pyramid
Network) module to achieve joint semantic learning. The joint semantic features are leveraged to push
the subsequent network modules ability, and therefore make the proposed algorithm work better
for the object detection task under foggy conditions in the real world. Moreover, this method and
Faster RCNN have the same testing time due to the weight sharing in the feature extraction module.
Extensive experiments confirm that the average accuracy of our algorithm outperforms the typical
object detection algorithms and the state-of-the-art joint low- and high-level tasks algorithms for the
object detection of seven kinds of objects on road traffics under normal weather or foggy conditions.

Keywords: machine learning; deep convolutional neural network; object detection; joint semantic
deep learning; single image fog removal

MSC: 54H30; 68U10; 94A08

1. Introduction

Fog is a common weather occurrence and can severely damage the image quality
captured by the outdoor equipment. There has been a large body of literature on object
detection under inclement weather conditions, which include one-stage and combination
approaches [1,2]. For example, one-stage approaches include the domain-based adaptive
target detection algorithm under foggy conditions [3–8]; however, these methods also
have limitations, for example, their performance is not guaranteed when the training
and test data sets are vastly different, and these methods failed to take advantage of
the image recovery potential information while combination ones include single image
fog removal [9–12] and combined object detection [13–16] algorithms. For combination
approaches specifically, their first step aims at fog removal for a single image [12], which is
the algorithm of low-level vision tasks in order to improve the performance of subsequent
high-level vision tasks [17]; their second step aims at object detection, which in turn is
a metric for the performance of the low-level task. Recently, deep learning methods for
single image fog removal have achieved superior image quality; however, due to the
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network design features of subsequent high-level tasks not being jointly taken into account,
combination models are often cumbersome and computationally inefficient. To overcome
these problems, in this paper, we propose the joint semantic deep learning algorithm for
object detection under foggy road conditions, referred to as JSFR.

The deep neural network of JSFR is constructed by embedding attention mechanism
modules (AM) and the UNet decoding modules into the same scale corresponding submod-
ules of the feature extraction module of object detection algorithm FasterRCNN. The main
idea of our proposed algorithm can be shown intuitionally in Figure 1. The novel algorithm
improves the subsequent target detection performance through the joint representation of
features before and after image recovery and is applied to detect seven types of objects on
road traffics under foggy conditions.

Foggy 
Image

Encoder 
Submodule

Attention 
Submodule

Decoder 
Submodule

Recovery 
Image

Clean 
Image (gt)

Multi-scale
Information 

Fusion

Detection 
Submodule

Classification + 
Bounding Box  (gt)

Classification + 
Bounding Box  

(predicted)

𝐿𝐿𝐷𝐷𝐷𝐷𝐷𝐷

𝐿𝐿𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

Figure 1. The idea of our proposed algorithm. The red boxes represent the inputs, the blue boxes
represent the outputs, the pink blocks represent the submodules, the orange–red block represents the
information fusion by element-wise addition, and the grey blocks represent the objective functions,
which are defined in accordance with Equations (1) and (3) in the following text.

The main contributions are as follows:

• The algorithm is proposed for the joint tasks of low-level dehazing and high-level
target detection. On the one hand, the two networks are combined to reduce the
parameter scale and to improve the test time. On the other hand, the joint feature
representations can help improve the robustness of road target detection under foggy
or fog-free conditions. In addition, the joint network architecture is beneficial for
improving the performances of both low-level and high-level tasks;

• The embedded attention mechanism module in the backbone network is conducive
to capturing the position information of the fog at any time. Since fog is different
from other noises, fog has the characteristics of fast drift and rapid position change, so
determining the position information of fog before dehazing is beneficial for restoring
image quality;

• Comprehensive experiments confirm the effectiveness of the proposed algorithm.
Regardless of normal or foggy weather, and irrespective of synthetic or real data, the
test results show the superiority of our algorithm. Figure 2 shows an example of its
detection effect in the real world.
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(a) Foggy Image (b) Ours (c) Faster R-CNN (d) DA

Figure 2. The detection effect in the real world. (a) indicates original image with fog; (b) indi-
cates defogged image by our proposed method; (c) indicates defogged image by Faster RCNN [14];
(d) indicates defogged image by DA (Domain Adaptive) [6].

The remaining sections are arranged as follows: Section 2 reviews the SOTA object
detection methods and single image fog removal methods; Section 3 gives an overview and
introduces the formulation and optimization of our method; Comprehensive experiments
are given in Section 4; and Section 5 concludes.

2. Related Work

In this section, deep neural network frameworks for object detection and for single
image fog removal are reviewed in detail.

2.1. Deep Neural Network Based Object Detection Methods

Object detection is a fundamental task in computer vision. Many researchers de-
veloped various deep neural networks to improve the performance of object detection.
These object detection methods can in general fall into two categories [18]: regression-
based [13,16,19–21] and region-based suggestion methods [14,22,23].

Regression-based methods include: Yolo family [16,19,20], SSD [21] and RetinaNet [13],
or their variants. The key idea is to use CNN modules to extract the images feature maps
and then predict bounding box coordinates and category probabilities. For example, Yolo is
first proposed by Redmon et al. [19] in 2016, which is constructed by 24 convolutional layers
and 2 fully connected layers to achieve real-time detecting through end-to-end training.
In the Yolo family, Yolo V2 [20] and Yolo V3 [16] obtain competitive detection performance
by modifying the backbone network and adding a multi-scale prediction network module.
Ref. [21] introduces SSD, which adds an auxiliary module to extract multi-scale feature
maps and achieve object detection of different scales. RetinaNet achieves higher detection
accuracy by introducing a focal loss function to balance the small sample category and
reduce the running time in all one-stage object detection methods. Although the detection
speed of the one-stage target detection algorithms is much higher than that of the two-stage
target detection algorithms, the detection accuracy is much more inferior than the latter
since the positioning of the target is not very accurate.

Region-based suggestion methods are two-stage object detection methods, including
the R-CNN family [14,22,23]: R-CNN [22], Fast RCNN [23] and Faster RCNN [14], and
R-FNN [24] and their variants. The key component of these combination methods is that a
region-based suggestion module is proposed. In other words, the corresponding regions
are extracted from the feature maps and then input into the ROI pooling module to generate
fixed-length feature vectors for the classification and further regression of bbox (Bounding
Box). It is worth mentioning that Faster RCNN has many advantages: it achieves the highest
precision in all popular object detection methods; it can solve multi-scale and small target
problems; it is easy to migrate to other categories and problems. So, Faster RCNN was
chosen as the backbone network in this paper.

2.2. Object Detection under Foggy Weather Conditions

To address object detection under foggy weather, many researchers have constructed
various deep learning methods from domain-adaptive or image recovery viewpoints,
respectively.
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Domain adaptive-based object detection methods under foggy weather conditions
include [3–6,8] etc. In particular, Ref. [25] proposes a multi-level domain adaptive Faster
RCNN, which uses different domain classifiers to supervise multi-scale feature alignment
and improve the recognition ability by increasing domain classifiers. Ref. [26] proposes a
robust multi-scale adversarial learning method for cross-domain object detection, which
reduces image-level domain differences by multiple expansion convolution kernels, and
reduces the influence of negative migration by excluding images and instances with low
transfer ability. Ref. [27] proposes a stacked complementary loss method to achieve
domain adaptation, which learns comprehensive discerning representations by detaching
the gradient into several auxiliary losses in different network stages. Domain adaptation
is a special case of transfer learning (TL). The idea is to project the features of different
domains into the same feature space so that the target domain training can be enhanced by
using data from other domains. It is a pity that TL has difficulty working well when there
is a huge difference between two domains.

Another line of research focuses on image recovery. These strategies consist of
embedding an additional image recovery module into the object detection backbone
network [7,28], or recovering images first and then detecting objects for recovered im-
ages [11,12,29–31]. Ref. [28] proposes a dual subnet network (DSNet) to jointly learn
three tasks including visibility enhancement, object classification, and object localization
through embedding an image recovery module into RetinaNet. In [7], Image-Adaptive YOLO
(IA-YOLO) is proposed, which configures a small convolutional neural network and a
differentiable image processing module before Yolo V3 to balance two tasks, i.e., image
enhancement and object detection, under both foggy and low-light scenarios. Ref. [17]
improves the detection performance by concatenating the dehazing module AOD-Net (All-
in-One Dehazing Network) with the object detection network Faster RCNN by end-to-end
training. Ref. [32] proposes a lightweight dehazing network PDR-Net.

The above-mentioned two groups of methods have greatly advanced the research
of joint tasks including the low levels and high levels. However, the former often over-
looks the image recovery potential information while the latter does not emphasize object
detection performance and takes object detection as a task-driven evaluation index for
image restoration.

Then a natural question arises about how to organically integrate the defogging and
object detection modules to build an end-to-end joint tasks object detection algorithm
under foggy weather. Can we design a network to complete the process of low-level image
dehazing and high-level target recognition at the same system? In other words, can the
network dealing with low-level vision tasks and the network dealing with high-level vision
tasks be organically combined? Could it be possible not only to improve the generalization
of subsequent high-level tasks, but also to save energy? To this end, the JSFR algorithm
was proposed and applied to the detection of seven objects in road traffic scenarios.

3. Proposed Method

In this section, an overview of JSFR is first introduced in brief, and then the attention
module and the parameters flow-chart of the noval fusion network are described in detail,
and finally the formulation and the total loss function of JSFR are interpreted.

3.1. Framework Overview

For this paper, we designed JSFR to detect objects in road traffic under foggy weather
conditions, as shown in Figure 3. The whole framework consists of four main modules: the
image feature extraction module, the haze removal module, the multi-scale feature fusion
module and the detection module. Faster RCNN embeds the four-level decoder of UNet [33]
and the attention module [34] into the last, corresponding to the same scale sub-blocks of
the feature extraction module. The haze removal module and the feature extraction module
share weights to avoid additional computational burden. Finally, the four feature maps
and the corresponding recovered feature maps are summed together and then input to the
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feature pyramid network (FPN ) [35] to learn the multi-scale joint semantic representation,
and then the output results are input to the detection module separately to improve the
target detection accuracy under hazy weather conditions. The attention module is shown
in Figure 4 and the setup of the fusion sub-module is shown in Figure 5.
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Figure 3. Framework overview for our JSFR. Input elements are marked by the orange boxes
including the images O degraded by fog, the clean background images B, and ground truth images
D labeled with class and bounding box. Output elements are marked by a blue box, including
medium defog output B̂ and final object detection results output D̂. To see the results more clearly,
we zoom in on the detection results for the final output image, as shown in the grey box. The
orange/cyan/green/blue blocks represent the feature extraction module/UNet decoder/information
fusion module/detection module, respectively.

3.2. Attention Module (AM) and Parameters Flow-Chart

Considering that different channel features of the image degraded by the fog represent
different concentrations and different locations of the fog, AM modules [34] are embedded
between the feature extraction module and UNet decoder, which is used to learn the foggy
distribution. AM consists of channel and spatial attention, see Figure 4. The channel
attention pays more attention to the concentration information of the fog in the input image,
while the spatial attention module mainly focuses on the location information of the fog.
The fog information can be captured adequately by the combination of the two modules.

ReLU LayerConv Layer

Element-wise SumSigmoid

Average Pooling

Element-wise Proudct

Max Pooling

Channel Attention Spatial Attention

Figure 4. Attention Module framework [34].



Mathematics 2022, 10, 4526 6 of 17

3.3. The Parameters Flow-Chart of the Novel Fusion Network

In our model, the UNet encoder part is not designed separately, but shares the feature
extraction layers with Faster RCNN, viz. ResNet50. We divide the 16 residual blocks of
ResNet50 into four residual block stages, denoted as C2, C3, C4 and C5, respectively. The
output of each residual block is embedded into the attention module separately and passed
to the UNet Decoder part, and then its output is cascaded with the results of the feature
extraction layers to fuse the low-level detail features and high-level semantic features to
enrich the single image information. The whole parameters flow-chart is shown in Figure 5,
which is consistent with singl_u.py in our all codes.

Conv1(BN+ReLU)
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C5
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C3

Conv_Block

AM

Conv 1×1

Conv 1×1

Conv 1×1

Conv 1×1

AM

AM
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Upsample

Upsample

Upsample

Conv_Block

Upsample

Conv 3×3

Conv 3×3

Conv 3×3

Conv 3×3

Detection 
Module

Conv_Block

Upsample

C
336×168×256

336×168×512 336×168×256
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168×84×512
84×42×1024

84×42×1024
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336×168×256

168×84×256

84×42×256

42×21×256

336×168×256

168×84×256

84×42×256

42×21×256

C

C

Figure 5. The parameters flow-chart of the novel fusion network. In the figure, the green blocks
represent the feature extraction modules, the orange blocks represent the attention modules, the blue
blocks represent the convolution blocks, the yellow blocks represent the upsampling, the grey block
represents the detection module, © is for cascade, and ⊕ is element-wise addition.

3.4. Formalization and Loss Function

Let input image be O ∈ R w×h×n, which is a tensor, where w and h are the length
and width of the respective image, and n is the number of the channel. f1(O), f2(O),
f3(O), f4(O) are obtained from the last four feature extraction sub-blocks of Faster RCNN.
Secondly, f1(O), f2(O) and f3(O) are input into the output of the corresponding AM
module and we obtain h( f1(O)), h( f2(O)), and h( f3(O)), respectively. Then, f4(O) is fed
into the first layer of the UNet decoder and outputs u( f4(O)). Next, u( f4(O)) and h( f3(O))
are cascaded to pass the second layer of the UNet decoder, B1 = u(h( f3(O)); u( f4(O))) is
obtained. Similarly, we obtained successively B2 = u(h( f2(O));B1); B̂ = u(h( f2(O));B2).
So, the mean squared error (MSE loss) is used as one fine-tuning objective function Lde f for
recovering the quality of the foggy image, and Lde f is operated by the equation:

Lde f =
1
N

N

∑
i=1

∥∥B̂− B
∥∥2 , (1)

where N is the number of foggy images.
Then, the element-wise sum of B1 and f3(O), B2 and f2(O), B̂ and f1(O) are sent

to the corresponding scale sub-module of FPN, respectively. On the one hand, they are
fused layer by layer from bottom to top in the FPN module and are outputted into the RPN
network to generate regression detection boxes, and the detection boxes are classified into
two categories (positive and negative). Therefore, the loss function of the RPN network
is Lrpn:
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Lrpn = − 1
Ncls

∑i log
[
pi
∗pi +

(
1− p∗i

)
(1− pi)

]
+ λ

1
Nreg

∑i p
∗
i L1smooth(ti − t∗i )

where,

L1smooth =

{
0.5x2 if |x| < 1
|x| − 0.5 otherwise ,

(2)

where ti =
{

tx, ty, tw, th
}

is a vector representing the four parameterized coordinates of the
predicted bbox; t∗i is the predicted vector’ coordinate; pi is the probability of the predicted
foreground and p∗i is the probability of the predicted background; Ncls is the number of
all objects.

On the other hand, the fused feature maps through FPN and the proposal’s outputs
through RPN are first added element-wise, and then sent into the ROI pooling layer.
Next, these feature maps with ROI are fed into the subsequent fully connected layers,
whose outputs are employed to classify seven objects and to estimate these objects’ bboxes.
Toward this purpose, we use the Lrcnn as a loss function as follows:

Lrcnn =
1

Ncls

M

∑
j=1

Lcls(pj, p∗j ) + λ
1

Nreg

M

∑
j=1

p∗j Lreg(tj, t∗j ) (3)

L = αLde f + Lrpn + Lrcnn, (4)

where tj is the four coordinates of the label bbox of each object; t∗j is the coordinate of its
predicted bbox; M is the number of all objects, and M equals 7 in this paper; and Lreg(tj, t∗j )
is the L1smooth function. pj represents the probability of a label class, p∗j represents the
predicted probability of each class, and Lcls(pj, p∗j ) is the cross-entropy loss. The final

network output is denoted as D̂. The whole network is trained by L shown in Equation (4).
It is noted that α ∈ [0, 1] is a hyperparameter to be fine-tuned to improve the performance
of the object detection by recovering image quality. In ablation experiments, we set α
equal to 1; in this way, the mAP of the proposed method achieves the highest value. See
Section 4.4 for details.

4. Experimental Result
4.1. Experimental Setup
4.1.1. Implementation Details

To be fair, all algorithms were trained on the Foggy Cityscapes training subset again
by end-to-end, and were tested on the synthetic and real images with fog or no-fog. Foggy
Cityscapes was divided into a training subset, a validation subset and a testing subset
at the ratio of 8:1:1. During training, we let the batchsize, epoch, confidence threshold
be 2, 0.5, and 50, respectively. The initial learning rate was set to 5× 10−4 and descent
mode to segmented constant decay. All experiments were run on Pytorch with an NVIDIA
GeForce GTX3090.

4.1.2. Evaluation Metric

Precision [36], IoU [19], Recall [36], AP [37], and mAP [28] were used to evaluate the
object detection performance for our experimental results, whose expressions are reviewed
in brief as follows:

IoU =
A ∩ B
A ∪ B

, (5)

where A is the label of bbox and B is the predicted bbox. For each object, when the intersection
over union ratio IoU is greater than 0.5, the detection is considered correct.

Additionally, precision, recall and AP are defined as:

Precision =
TP

TP + FP
(6)
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Recall =
TP

TP + FN
(7)

AP =
∫ 1

0
P(R)dR, (8)

where TP, FP, and FN are true positives, false positives, and false negatives, respectively,
and P/R ∈ [0, 1] is Precision/Recall.

Finally, mAP is defined as

mAP =
1
N

N

∑
i=1

APi, (9)

which is the average AP value over all object classes; N is the number of categories.

4.2. Datasets

Although there existed a few datasets for object detection under inclement weather,
Foggy Cityscapes [38] was the synthetic dataset, while Foggy Driving Dataset [38], RTTS [39]
and Foggy Zurich Dataset [40] were the real datasets. In this paper, Foggy Cityscapes was
used to train these competing methods; Foggy Cityscapes, Foggy Driving Dataset, and RTTS
were used to test these methods.

Foggy Cityscapes Dataset. Foggy Cityscapes contains eight categories, namely person,
rider, car, truck, bus, train, motorcycle, and bicycle. As we were studying bus road
traffic situations, we re-constructed the Foggy Cityscapes with seven categories composed
of person, rider, car, truck, bus, motorcycle, and bicycle. In addition, considering that
Foggy Cityscapes is based on Cityscapes [41], we could use images from Cityscapes as the
corresponding ground truth (or label) from Cityscapes.

Real Datasets. The Foggy Driving Dataset [38] consists of 101 color images depicting
real-world foggy driving scenes, which are used to test the performance of object detection
in foggy weather. It consists of 509 vehicle instances (cars, trucks, buses, trains, motorcycles,
and bicycles) and 290 human instances (people and riders), which are used for testing
generalization. RTTS is also a real-world unpaired foggy image, which is a subset of
RESIDE [39]. The format of RTTS is the same as that of VOC2007, and there exist five classes
(cars, bicycles, motorcycles, people and buses) of objects with labels for object detection.

4.3. Experiment and Analysis

In this section, we compare the proposed algorithm JSFR with the popular object
detection algorithms, the combination approaches, and the domain adaptive approaches
by testing on synthetic or real images with and without fog.

4.3.1. Synthetic Foggy Image

To discuss the object detection performance under foggy weather, a qualitative compar-
ison between our proposed JSFR with popular object detection methods Faster RCNN [14],
RetinaNet [14], Yolo V3 [16], Efficient-Det [15] is shown in Figures 6 and 7, and quantitative
evaluations can be seen in Table 1. Figures 6 and 7 present scenes with sparse and dense
fog, respectively. Regarding Figure 6, our algorithm recognizes seven vehicles, one rider
and one bicycle. However, all others did not recognize the two distant vehicles. In addition,
the confidence of all recognized objects by JSFR is not less than that of the others. While the
detected object is a small target and in a dense foggy scene, as in Figure 7, our algorithm
and Faster RCNN can identify the vehicles in the distance, but the confidence in recognized
objects by JSFR is 0.99, which is higher than that of Faster RCNN. The quantitative results
show that JSFR outperforms by up to 23%, 31.14%, 23.6% and 36% higher than Faster RCNN,
RetinaNet, Yolo V3, and Efficient-Det, as shown in in Table 1.

Figures 8 and 9 and Table 2 compare the test results between JSFR and combinations
such as AODNet [17] + Faster RCNN, FFANet [42] + Faster RCNN, PSDNet [32] + Faster
RCNN, and domain adaptive based methods such as DA [6] and ATF [43]. Under the scene
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with sparse fog (refer to Figure 8) JSFR and ATF identified more targets than others, but
there is still one person and a car not detected by ATF in Figure 8g. In the scene with dense
fog, only JSFR recognized the small objects such as vehicles, while the others did not work
on them; the confidence scores of all objects recognized by our method are higher than the
corresponding scores of other methods (refer to Figure 9). From Table 2, we can see that the
mAP of JSFR is up to 53.14%, which is higher than that of the others.

From Figures 6–9 and Tables 1 and 2, we summarize that the object detection perfor-
mances of our algorithm, and domain adaptive and combined algorithms are all higher
than those of the popular object detection algorithms under foggy weather, and our pro-
posed method outperforms the others. So, we conclude that it is very necessary for the
subsequent high-level object detection task that a sub-block is embedded into the whole
object detection network to recover the quality from images degraded by fog.

(a) Foggy Image (b) JSFR(Ours) (c) Faster RCNN

(d) Yolo V3 (e) RetinaNet (f) Efficient-Det

Figure 6. Test results of JSFU and object detection methods including Faster RCNN, Yolo V3, RetinaNet
and Efficient-Det on Foggy Cityscapes with sparse fog (electronic zoom-in recommended).

(a) Foggy Image (b) JSFR(Ours) (c) Faster RCNN

(d) Yolo V3 (e) RetinaNet (f) Efficient-Det

Figure 7. Testing results of JSFU and object detection methods including Faster RCNN, Yolo V3,
RetinaNet and Efficient-Det on Foggy Cityscapes with dense fog (electronic zoom-in recommended).
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Table 1. Comparison of AP and mAP between JSFR and object detection methods including Faster
RCNN, RetinaNet, Yolo V3, and Efficient-Det.

Category Faster RCNN RetinaNet Yolo V3 Efficient-Det Ours

bicycle 0.36 0.28 0.36 0.23 0.49
bus 0.41 0.38 0.38 0.31 0.51
car 0.62 0.43 0.58 0.38 0.74

motorcycle 0.39 0.31 0.33 0.26 0.43
person 0.38 0.25 0.39 0.21 0.58
rider 0.44 0.32 0.43 0.26 0.56
truck 0.14 0.21 0.23 0.19 0.41
mAP 39.14% 31.14% 38.57% 37.86% 53.14%

(a) Foggy Image (b) JSFR(Ours) (c) AODNet+Faster RCNN

(d) FFANet + Faster RCNN (e) PSDNet+Faster RCNN (f) DA

(g) ATF

Figure 8. Results comparison of Foggy Cityscapes with sparse fog between JSFU, combination methods
including AODNet+Faster RCNN, FFANet + Faster RCNN, PSDNet + Faster RCNN, and domain
adaptive methods including DA and ATF (electronic zoom-in recommended).

Table 2. Comparison of AP and mAP between JSFR, combination methods including AODNet+Faster
RCNN, FFANet + Faster RCNN, PSDNet + Faster RCNN, and domain adaptive methods including DA
and ATF.

Category AODNet FFANet PSDNet DA ATF Ours

bicycle 0.27 0.24 0.32 0.45 0.39 0.49
bus 0.41 0.36 0.31 0.23 0.48 0.51
car 0.61 0.59 0.59 0.57 0.51 0.74

motorcycle 0.33 0.23 0.39 0.23 0.34 0.43
person 0.29 0.33 0.37 0.39 0.38 0.58
rider 0.38 0.37 0.45 0.46 0.48 0.56
truck 0.26 0.17 0.28 0.07 0.26 0.41
mAP 36.43% 32.71% 38.71% 32.85% 40.57% 53.14%
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(a) Foggy Image (b) JSFR(Ours) (c) AODNet+Faster RCNN

(d) FFANet + Faster RCNN (e) PSDNet+Faster RCNN (f) DA

(g) ATF

Figure 9. Results comparison of Foggy Cityscapes with dense fog between JSFU, combination methods
including AODNet+Faster RCNN, FFANet + Faster RCNN, PSDNet + Faster RCNN, and domain
adaptive methods including DA and ATF (electronic zoom-in recommended).

4.3.2. Real Foggy Image

Figures 10 and 11 show the test results in real Foggy Driving Datasets. It can be
concluded that the generalization of JSFR is better than that of others. For example,
Figure 10b shows that our JSFR algorithm can correctly identify six cars, a rider, and a
bicycle. However, Yolo V3 can recognize six cars in Figure 10d, in which a car is mis-
predicted as a truck and a bicycle is not detected; Efficient-Det detected only three cars;
only four cars were detected by RetinaNet. Referring to Figure 11, our algorithm detected
a car at a distance in dense fog. The test results on RTTS are shown in Figures 12 and 13.
In Figure 12, JSFR, RetinaNet, and Yolo V3 detected the person with different confidence
levels of 0.99, 0.97, and 0.52, respectively, so it is evident that our algorithm has the highest
confidence. As seen in Figure 13, our algorithm had the ability to detect distant people
which were not detected by other methods, and all confidence scores were also the highest.
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(a) Foggy Image (b) JSFR(Ours) (c) Faster RCNN

(d) Yolo V3 (e) RetinaNet (f) Efficient-Det

Figure 10. Testing results of JSFR and object detection methods including Faster RCNN, Yolo V3,
RetinaNet, and Efficient-Det on Foggy Driving Dataset (electronic zoom-in recommended).

(a) Foggy Image (b) JSFR(Ours) (c) AODNet+Faster RCNN

(d) FFANet + Faster RCNN (e) PSDNet+Faster RCNN (f) DA

(g) ATF

Figure 11. Testing results on Foggy Driving Dataset about JSFR, combination methods including
AODNet + Faster RCNN, FFANet + Faster RCNN, and PSDNet + Faster RCNN, and domain adaptive
methods including DA and ATF. (Electronic zoom-in recommended).
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(a) Foggy Image (b) JSFR(Ours) (c) Faster RCNN

(d) Yolo V3 (e) RetinaNet (f) Efficient-Det

Figure 12. Testing results on RTTS for JSFR and object detection methods including Faster RCNN,
Yolo V3, RetinaNet, and Efficient-Det (electronic zoom-in recommended).

(a) Foggy Image (b) JSFR(Ours) (c) AODNet+Faster RCNN

(d) FFANet + Faster RCNN (e) PSDNet+Faster RCNN (f) DA

(g) ATF

Figure 13. Testing results on RTTS for JSFR, combination methods including AODNet+Faster RCNN,
FFANet + Faster RCNN, and PSDNet + Faster RCNN, and domain adaptive methods including DA
and ATF (electronic zoom-in recommended).

4.3.3. Synthetic Image Without Fog

In order to clarify that our method, JSFR, is also able to detect objects in normal
weather, we performed a qualitative comparison and a quantitative evaluation by mAP
between JSFR and Faster RCNN, RetinaNet, Yolo V3, Efficient-Det on Cityscapes [41].

As can be seen from Figure 14, JSFR can detect the person in the chair in normal
weather, while the others cannot do it, and the confidence of all recognized targets is also
the highest. Table 3 shows that the mAP of JSFR is higher than that of the other models,
being 10.29%, 19.57%, 8.43% and 17.86% higher than Faster RCNN, RetinaNet, Yolo V3 and
Efficient-Det, respectively.
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(a) Image (b) JSFR(Ours) (c) Faster RCNN

(d)·Yolo V3 (e) RetinaNet (f) Efficient-Det

Figure 14. Testing results on Cityscapes for JSFR and object detection methods including Faster RCNN,
Yolo V3, RetinaNet, and Efficient-Det (electronic zoom-in recommended).

Table 3. Comparison of AP and mAP between JSFR and object detection methods including Faster
RCNN, RetinaNet, Yolo V3, and Efficient-Det on Cityscapes.

Category Faster RCNN RetinaNet Yolo V3 Efficient-Det Ours

bicycle 0.31 0.24 0.33 0.24 0.42
bus 0.29 0.27 0.27 0.32 0.26
car 0.57 0.43 0.62 0.50 0.73

motorcycle 0.29 0.20 0.40 0.25 0.31
person 0.33 0.19 0.34 0.16 0.54
rider 0.35 0.17 0.34 0.12 0.53
truck 0.18 0.17 0.15 0.20 0.25
mAP 33.14% 28.86% 35.00% 25.57% 43.43%

4.4. Ablation Study

To verify the fine-tuning effect of the restored image module, we conducted an ablation
experiment for hyperparameter α. Let α be 0, 1.0, and 0.5, respectively; we obtained four
models such as Faster RCNN, JSFR1, JSFR2, and JSFR, which were tested on Foggy Cityscapes.
From Table 4 it can be seen that the mAP values are the lowest if α = 0 and the highest if
α = 1. So, we selected α equal to 1 in the final model, JSFR1.

Table 4. The ablation experiments for hyperparameter α.

α Model mAP

0 Faster RCNN 39.14%
0.1 JSFR1 50.39%
0.5 JSFR2 52.28%
1.0 JSFR 53.14%

4.5. Inference Time

We recorded the testing times of all models tested on Foggy Cityscapes, RTTS, Foggy
Driving Dataset and Cityscapes in Table 5. An image from the four datasets can be tested in
about 1.6 s by JSFR on a single NVIDIA GeForce GTX 3090 GPU. Our testing time is shorter
than that of the combination and domain adaptive methods, while it is comparable to the
time of the Faster RCNN. In other words, JSFR still maintains the testing speed of Faster
RCNN, even though the UNet decoder module is embedded into Faster RCNN.
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Table 5. Testing speeds of JSFR, combination methods including AODNet+Faster RCNN, FFANet +
Faster RCNN, and PSDNet + Faster RCNN, domain adaptive methods including DA and ATF, and
Faster RCNN on the four datasets with GPU.

Algorithm

Speed(s) Dataset
Foggy Cityscapes RTTS Foggy Driving Dataset Cityscapes

AODNet + Faster RCNN 2.68 2.55 2.54 2.68
FFANet + Faster RCNN 6.22 6.31 6.36 6.22
PSDNet + Faster RCNN 3.45 3.22 3.27 3.45

DA 2.73 2.66 2.65 2.73
ATF 2.71 2.56 2.54 2.72

Faster RCNN 1.66 1.56 1.56 1.66
JSFR 1.69 1.54 1.55 1.69

5. Conclusions

In this paper, JSFR is proposed to address multiple object detection in bus traffic road
scene under foggy weather, which is designed to be a deep neural network by embedding
UNet decoder and attention mechanism sub-modules into Faster RCNN for joint low-level
and high-level task. Though UNet decoder achieves fog removal and recove the degraded
image quality, its running time is still saved because of sharing parameters of the feature
extracted module. The joint semantic representation is learned from recovered image and
the image with fog by FPN, thus the fused information is leveraged to improve the the
target detection performance. Comprehensive experiments confirm that JSFR outperforms
other methods for target detection on synthetic and real image in both foggy and normal
conditions. In the future, we will further improve the accuracy of the algorithm and
reduce network parameters to meet the needs of landing implementation [44]. Secondly,
we will continue to deeply study the application scenarios such as video detection of bus
traffic roads and vehicle or pedestrian tracking. Thirdly, we will consider fusing overlap
functions and fuzzy (rough) sets (see [45–49]) to design fog-attention-module. To provide
convenience for researchers, all codes will be available at http://github.com/mendy-2013.
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