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Abstract: The uncertainty due to road fluctuations and vision system dynamics represents a big
challenge to adjusting the steering angle of autonomous vehicles (AVs). Furthermore, AVs require fast
action to follow the target lane to overcome lateral deviation with minor errors. In this regard, this
paper introduces a fast model predictive controller formulated based on the discrete-time Laguerre
function (DTLF) to overcome the high computational burden of the traditional MPC. To improve the
hybrid DTLF-MPC performance, a modern and effective dandelion optimizer (DO) strategy is used in
this work, which resulted in obtaining the optimal DTLF-MPC parameters and achieving satisfactory
results. Furthermore, the proposed hybrid DTLF-MPC is designed based on different algorithms in
the literature to evaluate the performance of the DO. Several scenarios are discussed in this paper to
confirm the effectiveness and efficiency of the proposed control strategy system against the vision
system uncertainty and road fluctuations. The results emphasize that the proposed DTLF-MPC based
on the DO can achieve the best damping performance for the lateral deviations with less overshoot;
around 0.4533, and a settling time of around 0.01979 s compared with other algorithms.

Keywords: model predictive control; computational techniques; dandelion optimizer; autonomous
vehicles; vision system

MSC: 65K99; 90C99

1. Introduction

Recently, modern transportation systems are focused on the utilization of autonomous
vehicles (AVs) widely due to their stability in movement, reduced accidents, and the
ability to manufacture them with different provisions to suit the required function [1,2].
However, AVs still face some challenges, and among these are the ability to control the
steering angle and ensure that the AVs continue to move in a smooth and balanced manner
through the application of different AV movement algorithms such as path planning and
trajectory tracking [3]. Furthermore, the AVs require an effective control paradigm with
a low computational burden to handle road fluctuations and vision system uncertainty
issues as well as achieve good damping performance for lateral deviations [4].

In the last decades, many AV steering angle control systems have been applied, includ-
ing classical and intelligent control approaches. The popular classical control approaches
that are applied for AVs include the proportional integral derivative (PID) controller as
well as the sliding mode control [5,6]. At the same time, intelligent control strategies
are constructed with modern machine learning and fuzzy logic systems [7,8]. In [9], a
PID controller is applied for the speed control of AVs with adaptive gains based on the
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neural network (NN) with a radial basis function. In [10], a later control of AVs is cre-
ated based on PID control with NN utilizing a backpropagation strategy. However, the
applied PID control approaches do not take into account the system constraints. In [11],
a sliding mood control (SMC) is also employed with AVs in different environmental con-
ditions. The applied SMC has a lot of challenges in practical implementation due to its
chattering issue. In [12], a least square algorithm is utilized with the PID controller for
AV path planning and following. Although, the PID controller cannot overcome some
challenges of the steering angle control, especially during road curvature fluctuations.
Another methodology of AV control is a nonlinear controller based on artificial intelligence
(AI) algorithms. In [13], a fuzzy logic (FL) approach is utilized to improve the car follow-
ing system, and it is employed with AVs moving on highways for getting a safe traffic
stream. The FL-modified algorithm is also formulated with a path-following algorithm
for underwater AVs in [14]. Another work introduces an FL control strategy for a mobile
robot in order to track several paths [15]. However, the utilized FL control method is
very complex as it needs high-capability microprocessing for implementation practically.
In [16], path planning is developed for AVs based on an artificial neural network (ANN)
approach. In addition, a modified ANN is employed in the AVs path following the system
in [17]. However, collecting a suitable dataset for ANN training, validation, and testing is
considered a complicated process as it represents a vital rule in NN performance. If the
dataset is not accurate enough, the accuracy of the NN will be ineffective. Thus, these
challenges open the chance to find and apply modern and effective control systems for
AV applications. The model predictive control (MPC) strategy is assessed as a successful
controller for various industrial systems [18–22]. However, the implementation of MPC
requires proper devices with high processing and fast operation. So, it becomes urgently
necessary to get a few parameters of MPC applicable to AVs to minimize the computational
burden, as it has huge control as well as long prediction periods [23]. The orthonormal
basis function, such as the Discrete-time Laguerre function (DTLF), can formulate the MPC
in an effective way to overcome the MPC-wide control and prediction horizons challenges
at different conditions. This DTLF can provide an MPC with fewer gains and minimizes
the computational load [24–26]. Thus, the gains of the developed MPC with DTLF require
proper tuning to enhance the system’s performance. Tuning the controller gains with AI
techniques represents an effective methodology that is better than conventional techniques
and trial-and-error methods [27]. There are a lot of AI algorithms utilized with autonomous
systems [28–30]. In [31,32], the domain factors of the path-planning strategy of AVs are
tuned based on a genetic algorithm (GA). Likewise, particle swarm optimization (PSO)
is used to tune the unknown factors instead of the conventional method for AV path
planning [33,34]. Tuning is performed for the FL parameters of AV based on the whale
optimization algorithm (WOA) [35]. In addition, a hybrid mesh adaptive direct search
algorithm with GA is developed for the optimization of the AV controller parameters in [36].
The developed AI techniques demonstrate effective methods for the controller gains tuning.
It can achieve better performance than the traditional conventional techniques. However,
these algorithms require more adjustable parameters and face a lot of challenges due to the
trapping in local optimal solutions.

This work proposes a new methodology for the tuning of the proposed developed
DTLF-MPC gains by a new intelligent algorithm named the Dandelion Optimizer (DO) [37].
This algorithm can provide good performance with few adjustable parameters as well as a
fast convergence rate [38]. The proposed DTLF-MPC based on the DO is compared with the
neural network (NNA) [39] and mayfly algorithm (MA) [40] as recent tuning algorithms.
Various road curvature scenarios and parameter uncertainty are carried out to prove the
performance of the formulated DTLF-MPC based on the intelligent DO technique. This
work’s new contributions can be listed as:

• Introducing a new low computational burden MPC for the steering angle control of
the AV considering vision system dynamics and uncertainty.
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• The proposed MPC is formulated based on an orthonormal basis function named
DTLF to overcome the long control and prediction horizon implementation.

• The gains of the proposed developed DTLF-based MPC are adjusted by a recent smart
algorithm called a DO instead of traditional and conventional techniques.

• A new figure of demerit objective function is created to improve the performance
of the AV and cover the minimization of the overshoot and settling time within the
lateral deviations simultaneously.

• The developed DTLF-MPC based on the DO is compared with different algorithms in
the literature.

• The effectiveness of the proposed technique is tested under different road fluctuations
and vision system uncertainty.

The remaining parts of this paper are organized as follows: Section 2 demonstrates
the AV system state space modeling based on the vision system. Section 3 describes the
formulations of the proposed DTLF-MPC for AVs. Section 4 introduces artificial intelligence-
based optimality. The results and discussions of the proposed design for the vehicle system
controller are discussed in Section 5. Finally, the paper’s conclusions are presented in
Section 6.

2. AV Modeling

The state-space form is utilized in this section to describe the AVs with vision system
dynamics. As shown in Figure 1, the front and the rear wheels are gathered to describe the
AV model as a bicycle system, where v stands for the AV velocity represented by the lateral
velocity ‘vy’ in the y-direction and the longitudinal velocity ‘vx’ in the x-direction, while
δf stands for the steering angle of the front wheel. The distance from the center of gravity
(CoG) to the front and rear wheels is described by lf and lr, respectively.
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Figure 1. The AV schematic (a) internal representation (b) a bicycle model.

The vision system provides the information related to the road as seen in Figure 2;
here yL represents the lateral variation. The distance between the object and the road
centerline point is described by the radius RL. KL stands for the road fluctuation, which
is represented by the road radius reciprocal as ‘KL = 1/RL’. The angle within the road
tangent and the orientation of AV is represented by εL. The look-ahead vision system
distance is represented as L. The AV model in the state form is represented by the following
dynamic equations [41,42]:

•
xm = Acxm + Bcu + Ecw (1)

y = ccxm (2)

where,

xm =
[
vy

•
φ yL εL

]T
, u = δ f , w = KL, y = yL,

Ac =


− a1

mvx

−mv2
x+a2

mvx
0 0

a2
Iψvx

− a3
Iψvx

0 0
−1 −L 0 vx
0 −1 0 0

,

Bc =
[
b1 b2 0 0

]T ,

Ec =
[
0 0 0 vx

]T ,

Cc =
[
0 0 1 0

]
,

a1 = c f + cr, a2 = crlr − c f l f ,

a3 = l2
f c f + l2

r cr, b1 =
c f
m , b2 =

l f c f
Iψ

,

where
•
φ stands for the yaw variation of AV. While cf, cr stands for the front and rear

tires cornering stiffness sequentially. The AV mass and its inertia are described by m and
Iψ, respectively.
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Figure 2. The vision dynamics graphical representation (a) 3-D schematic, (b) single line description.

3. The Proposed Hybrid DTLF-MPC Formulation for AVs

The main target of the MPC is focused on finding the best control moves by adjusting
the control rate ‘∆u’ within a certain control horizon ‘M’ according to the AV lateral
deviation within a certain prediction horizon ‘P’. Figure 3a shows the past and current
values responsible for the future output signal prediction. These output signals are used to
choose the right moves by the control unit, as in Figure 3b.
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The traditional MPC has the ability to predict certain points for the variations of
movements ‘∆u’ for control horizon ‘M’ within this range 1 ≤ M ≤ P. However, the
traditional MPC considers that ‘∆u = 0’ for the remaining points of P. The rate of control
signal ∆u still has small values in some cases, which mean the failure of the hypothesis
of the traditional MPC [24–26]. This inconsistency can be tackled by giving M and P the
same value, but this solution causes a huge number of calculations that require a special
microcontroller with high processing for practical implementation. This paper tackles this
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problem by formulating the MPC based on DTLF, which is able to describe the control
moves with fewer coefficients that guarantee low calculational burden as follows [23,24]:

∆u(ki + k) =
N

∑
j=1

cj(ki)lj(k) = L(k)Tη (3)

whereas ki and k stand for the indexes of the current and future control moves, respectively.
At the same time, N stands for the number of Laguerre expansion terms. The jth Laguerre
function factors are described by lj and cj coefficients.

To describe the MPC control moves based on DTLF, a vector of Laguerre functions
is defined as L(k)T = [l1(k), l2(k), . . . , lN(k)] with certain factors η = [c1, c2, . . . , cN]T. These
factors are employed to get the proper path that can represent the control moves. The
relation within Laguerre terms can be defined in the below formulations [23,24]:

L(k + 1) = Al L(k) (4)

as

Al =


z 0 0 . . . 0

1− z2 a 0 · · · 0
−z
(
1− z2) 1− z2 z . . . 0

...
...

...
...

...
(−z)N−1(1− z2) (

1− z2)(−z)N−3 · · · 1− z2 z


L(0)T =

√
1− z2

[
1 −z z2 . . . (−z)N−1

]
where z stands for the pole of the DTLF network transfer function. The system stability
can be confirmed by choosing ‘z’ within [0, 1]. The formulation of DTLF with the dynamic
state-space model is defined in the following equation [23,24]:

x(ki + m) = Amx(ki) +
m−1

∑
i=0

Am−i−1B∆u(ki + i) (5)

y(ki + m) = CAmx(ki) +
m−1

∑
i=0

CAm−i−1B∆u(ki + i) (6)

where x(ki) represents the system’s initial state, ∆u represents the control signal move
variation. m stands for the sampling time. According to (5) and (6), the control signal is
described depending on DTLF. L(i)Tη can be utilized rather than ∆u(ki + i), and the dynamic
system representation can be defined based on L(i)Tη as follows:

x(ki + m) = Amx(ki) +
m−1

∑
i=0

Am−i−1BL(i)Tη (7)

y(ki + m) = CAmx(ki) +
m−1

∑
i=0

CAm−i−1BL(i)Tη (8)

From the previous description of the dynamic system, it is clear that the new system
replaces ∆u, which exists in the main system, and it becomes a function in DTLF ‘η’ vector.
However, there is a problem facing the controller. It is the tuning of the DTLF ‘η’ vector for
providing proper control moves. This problem can be tackled by obtaining the minimum
value of the following cost function [23,24]:

J =
P

∑
m=1

x(ki + m)TQx(ki + m) + ηT Rη (9)
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where Q and R are weighting vectors that balance the minimization of the error and the
control effort, whereas Q = q× CTC, C is the output matrix of the AV while R = r× IN×N ,
IN×N is a unit diagonal matrix form with N × N dimension, N is the number of Laguerre
expansion terms. q and r are unknown factors that require fine-tuning to minimize the
lateral deviation. This paper utilizes the proposed intelligent DO in order to optimize the
factors q and r. Furthermore, the proposed DO technique not only adjusts the weights but
also the hybrid DTLF-MPC other factors, which includes the MPC sample time ‘Ts’ as well
as ‘NP’, ‘N’, and ‘z’.

The following paragraph explains how to represent the vehicle model with the objec-
tive function in (9) step by step.

Step 1 Determine how to get the controller law depending on the objective function
decreasing in (9)
recall (7):

x(ki + m) = Amx(ki) +
m−1

∑
i=0

Am−i−1BL(i)Tη = Amx(ki) + Ψ(m)Tη (10)

as, Ψ(m)T =
m−1
∑

i=0
Am−i−1BL(i)T , the following equation can be obtained by substituting

(10) into (9):

J = ηT
(

∑P
m=1 Ψ(m)QΨ(m)T + R

)
η + 2ηT

(
∑P

m=1 Ψ(m)QAm + R
)

x(ki)

+
P
∑

m=1
x(ki)

T(AT)mQAmx(ki)
(11)

The partial derivative is taken to get optimal η which minimizes Equation (11),
as follows:

∂J
∂η

= 2

(
P

∑
m=1

Ψ(m)QΨ(m)T + R

)
η + 2

(
P

∑
m=1

Ψ(m)QAm + R

)
x(ki) = 0 (12)

By Solving (12):

η = −(
P

∑
m=1

Ψ(m)QΨ(m)T + R)−1(
P

∑
m=1

Ψ(m)QAm)x(ki) (13)

By applying the receding horizon criteria, the following equation describes the
control low

∆u(ki) = L(0)Tη (14)

The control low can be represented as a function in the feedback signals:

∆u(ki) = −Kmpcx(ki) (15)

where,

Kmpc = L(0)T((
P

∑
m=1

Ψ(m)QΨ(m)T + R)−1(
P

∑
m=1

Ψ(m)QAm)) (16)

x(ki) = [∆xm(ki)
T y] (17)

Step 2 Determine how to obtain the AV augment model by including an embed-
ded integrator.
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The AV dynamic equations in (1) and (2) can be converted to a discrete space model
by a sample time “Ts” as shown in the following equations:

xm(k + 1) = Amxm(k) + Bmu(k) + Emw(k) (18)

y(k) = Cmxm(k) (19)

The following description can be true too:

xm(k) = Amxm(k− 1) + Bmu(k− 1) + Emw(k− 1) (20)

By knowing ∆xm(k) = xm(k) − xm(k − 1), ∆u(k) = u(k) − u(k − 1), and
ε(k) = w(k)− w(k− 1), so, (20) can be subtracted from (18) to obtain,

∆xm(k + 1) = Am∆xm(k) + Bm∆u(k) + Emε(k) (21)

∆y(k + 1) = Cm∆xm(k + 1) = Cm Am∆xm(k) + CmBm∆u(k) + CmEmε(k) (22)

where ∆y(k + 1) = y(k + 1)− y(k).
Then, the new state variables can be defined as x(k) = [∆xm(k) y(k)]T the new

state-space form for the AV, including the embedded and known as augment model can be
described as:[

∆xm(k + 1)
y(k + 1)

]
=

[
Am 0T

m
Cm Am Ig×g

][
∆xm(k)

y(k)

]
+

[
Bm

CmBm

]
∆u(k) +

[
Em

CmEm

]
ε(k) (23)

y(k) =
[
0m Ig×g

][∆xm(k)
y(k)

]
(24)

where, g is the output’s number, Ig×g represents the unity vector with g× g dimension, 0m
represents a zero matrix with g× n1 dimension. n1 represents the state variables number.
To simplify the formulation of (23) and (24) equations can be described as follows:

x(k + 1) = Ax(k) + B∆u(k) + Eε(k) (25)

y(k) = Cx(k) (26)

where the control move ∆u(k) is determined according to (15).

4. Artificial Intelligence-Based Optimality

Currently, artificial intelligence (AI) techniques are applied to solve many optimiza-
tion challenges [43,44]. To improve the performance of the optimization techniques, AI
strategies are devoted to obtaining the unknown factors depending on increasing or de-
creasing certain one or multiple objective functions [45,46]. The objective function can be
created based on the system variables and targets [47,48]. The AI strategies are applied to
obtain the best values of the gains within a certain range, taking into account the system
constraints. It becomes urgently necessary to apply AI techniques because of the increasing
AV system dimensions and tasks, which causes more complicated optimization issues. AI
algorithms are considered intelligent solvers in many control and planning applications [49].
These techniques provide sufficient performance which exceeds the performance of the
conventional method [49], but the huge number of adjusting parameters is considered the
challenge which faces AI algorithm utilization in many applications. In this paper, a new
AI technique named the DO is proposed to enhance the system performance with fewer
adjusting parameters and it can provide sufficient results without trapping in local optima.
The suggested DO technique is described in the following subsection.
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In this work, a dandelion optimizer (DO) is utilized to formulate a new simplified MPC
with fewer computational parameters. The dandelion optimizer is a technique utilized to
simulate the dandelion seeds’ flying journey step-by-step from raising, descending, and
landing steps, taking into account the weather changes. This algorithm is confirmed and
tested according to the CEC2017 international standard benchmark functions [37]. The
dandelion is considered one of the perennial herbs due to its simple structure, its length
does not exceed 20 cm, and its flower consists of hundreds of hairs attached to small and
lightweight seeds, which makes it easy to spread in the wind as it carries the seeds after
its ripening season. Thanks to the crested hairs, movement parlance occurs, which makes
the seeds scatter in different areas, and strong winds can carry them for tens of kilometers.
So the weather condition and the wind speed are considered the main effective factors in
dandelion seed spread. During the seed spread, three steps occur; the first step is the rising
stage. The weather must be sunny and windy for this step to occur. The second step is the
descending stage, then the landing stage. These three steps explain the modeling process of
the dandelion seeds’ behavior in DO. In DO, each dandelion seed is considered a candidate
solution with the population represented as [37]:

population =
x1

1 . . . xDim
1

. . . . . . . . .
x1

pop . . . xDim
pop

(27)

where Dim is the variable dimension and pop represents the population size. Initially, the
candidate positions are created randomly within the lower bound (LB) and the upper
bound (UB) for the optimization problem, and ith individual xi is represented as:

xi = rand× (UB− LB) + LB (28)

where i the index of the candidate solution and it has an integer between 1 and pop, while
rand denotes a randomly distributed function that has values between [0, 1]. LB and UB
are presented as LB = [lb1, . . . , lbDim] and UB = [ub1, . . . , ubDim]. The initial elite xelite
mathematical representation can be described as follows [37]:

xelite = x( f ind( fbest == f (xi)) (29)

where fbest = min( f (xi) and find () give equal two indexes. After the initialization, the
rising process is described by considering the wind speeds in the clear days has a lognormal
distribution function as ln Y ∼ N

(
µ, σ2). This distribution function allows more distri-

bution for the random numbers around the Y-axis. In addition, the wind, the dandelion
spread, and the speed can be utilized to update the new candidate solutions, which are
formulated as follows [37]:

xt+1 = xt + α ∗ vx ∗ vy ∗ ln Y ∗ (xs − xt) (30)

where, xs and xt represent a randomly selected position and dandelion seed position at
the current iteration t, respectively. The randomly generated position is determined as
follows [37]:

xs = rand(1, Dim) ∗ (UB− LB) + LB (31)

The lognormal distribution is defined by ln Y according to µ = 0 and σ2 = 1, and the
following equation can describe it [37]:

ln Y =

 1
y
√

2π
exp

[
− 1

2σ2 (ln y)2
]

y ≥ 0

0 y < 0
(32)



Mathematics 2022, 10, 4539 11 of 21

where y stands to the standard normal distribution within (0, 1). In the DO algorithm, an
adaptive factor ‘α’ is utilized to control the length of the search process during the total
number of iterations T and it is defined as follows [37]:

α = rand ∗
(

1
T2 t2 − 2

T
t + 1

)
(33)

On rainy days, where k stands to regulate the search in the local domain of the
dandelion. The search domain is defined as follows [37]:

xt+1 = xt ∗ k, k = 1− rand ∗ q (34)

q =
1

T2 − 2T + 1
t2 − 2

T2 − 2T + 1
t + 1 +

1
T2 − 2T + 1

(35)

After the rising process, the descending stage starts to enhance the exploration of the
DO. The moving of the dandelions trajectory is described based on Brownian motion, the
position is updated after the rising stage by utilizing the information of the average as
follows [37]:

xt+1 = xt − α ∗ βt ∗ (xmean−t − α ∗ βt ∗ xt) (36)

where βt is a random factor determined based on the standard normal distribution and it
describes the Brownian motion. While xmean−t stands for the population average position
in ith iteration. After descending, the landing of the dandelion seed starts as follows [37]:

xt+1 = xelite + levy(λ) ∗ α ∗ (xelite − xt ∗ σ) (37)

where, xelite is the dandelion seed’s optimal position during the ith iteration. levy(λ) is the
levy flight function which is calculated by the next equation [37]:

levy(λ) = s× w× σ

|t| 1
B

(38)

where B is defined randomly within [0, 2]. S is a constant equal to 0.01. w and t are random
numbers within [0, 1] and σ is calculated as follows [37]:

σ =

 Γ(1 + B)× sin
(

πB
2

)
Γ
(

1+B
2

)
× B× 2(

B+1
2 )

 (39)

Finally, the DO carries out the optimization process based on the above three stages
in each iteration and arranges the solutions in descending order according to the fitness
value from top to bottom. The agent that has the minimum fitness value represents the elite
agent for the next generation of the population. Then, agents’ solutions are arranged to
initialize the population for the next iteration. The optimization process is carried out until
achieving the stopping condition and then brings out the best solution. The optimization
process of the DO is summarized by the flowchart in Figure 4.



Mathematics 2022, 10, 4539 12 of 21Mathematics 2022, 10, x FOR PEER REVIEW 12 of 22 
 

 

 
Figure 4. The flowchart of the proposed DO. 

5. Results and Discussion 
This section demonstrates the DO utilization with the proposed developed DTLF‒

MPC technique to adjust the gains and improve the AV performance. The main require-
ment to improve AV performance and diminish the lateral deviation is achieved by ad-
justing the steering angle of the AV in order to decrease the steady state error ‘ESS’ de-
creasing, settling time ‘ts’, and lateral deviation maximum overshoot ‘MO’. This work pro-
vides a new figure of demerit (FoD) cost function that tackles the minimization of ‘ESS’, 
‘ts’, and ‘MO’ of the lateral deviation simultaneously (Section 5 of the revised manuscript.) 
When the value of the FOD decreases, this means that the minimization of ‘ESS’, ‘ts’, and 
‘MO’ of the lateral deviation decreases simultaneously. The formulation of the FoD cost 
function is described as follows [50,51]:  𝐹𝑜𝐷 = (1 − 𝑒ିఌ)(𝑀௢ + 𝐸ௌௌ) + 𝑒ିఌ × 𝑡௦ (40)

where 𝜀 represents an adjusting factor used for balancing the minimization of FoD two 
parts as “(1 − 𝑒ିఌ)(𝑀௢ + 𝐸ௌௌ)” concentrate on the minimization of ‘Ess’ and ‘Mo’. While 
this section “𝑒ିఌ × 𝑡௦” focuses on decreasing ‘ts’. This work considers that 𝜀 equal to 0.7. 
This value satisfies the balance and decreasing of the cost function two parts because at 𝜀 = 0.7 the values of the weighting on the two parts are equal (1 − 𝑒ି଴.଻) ≅ 𝑒ି଴.଻. 

Figure 4. The flowchart of the proposed DO.

5. Results and Discussion

This section demonstrates the DO utilization with the proposed developed DTLF–
MPC technique to adjust the gains and improve the AV performance. The main requirement
to improve AV performance and diminish the lateral deviation is achieved by adjusting the
steering angle of the AV in order to decrease the steady state error ‘ESS’ decreasing, settling
time ‘ts’, and lateral deviation maximum overshoot ‘MO’. This work provides a new figure
of demerit (FoD) cost function that tackles the minimization of ‘ESS’, ‘ts’, and ‘MO’ of the
lateral deviation simultaneously (Section 5 of the revised manuscript.) When the value of
the FOD decreases, this means that the minimization of ‘ESS’, ‘ts’, and ‘MO’ of the lateral
deviation decreases simultaneously. The formulation of the FoD cost function is described
as follows [50,51]:

FoD =
(
1− e−ε

)
(Mo + ESS) + e−ε × ts (40)

where ε represents an adjusting factor used for balancing the minimization of FoD two
parts as “(1− e−ε)(Mo + ESS)” concentrate on the minimization of ‘Ess’ and ‘Mo’. While
this section “e−ε × ts” focuses on decreasing ‘ts’. This work considers that ε equal to 0.7.
This value satisfies the balance and decreasing of the cost function two parts because at
ε = 0.7 the values of the weighting on the two parts are equal

(
1− e−0.7) ∼= e−0.7.

The proposed DO is utilized for the tuning of the factors of the developed DTLF-
MPC to minimize the cost function in (40) as seen in Figure 5. Furthermore, the results of
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the DO are compared with NNA [39] and MA [40] to evaluate the system performance.
Figure 6 clarifies the optimization efforts of the utilized DO versus the NNA and MA for
the factors tuning the developed DTLF-MPC. In Figure 7, the values of the cost function
for all algorithms are described in the chart shapes for a clearer comparison between them.
Table 1 includes the developed DTLF-MPC gains, and the cost function value depends on
the utilized DO, NNA, and MA. Figures 6 and 7 and Table 1 clarify that the proposed DO
can achieve the minimum value for the cost function with a fast convergence rate compared
to NNA [39] and MA [40].
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Table 1. The tuned factors of the developed DTLF-MPC depending on the applied algorithms with
the corresponding cost function FoD value.

Tuned Factors
Ts a N NP r q FoD

Algorithm

NNA 0.01 0 7 100 0.01 8.7974 0.4829
MA 0.01 0.3735 6 40 0 0.6895 0.2466
The proposed DO 0.01 0.0952 6 6 0 1 0.2381
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The pseudo-code in Algorithm 1 demonstrates the steps of the DO for tuning the
developed DTLF-MPC gains. This developed method is tested with different road cur-
vatures, and takes into account the big and small road curvature changes. Moreover, the
proposed intelligent method is also tested with the uncertainties of the utilized system
parameters. The presented outputs can prove the high performance of the utilized control-
ler methodology.

Algorithm 1. The pseudo-code of the DO for tuning the developed DTLF-MPC gains

1: Initiate DO
2: Test the AV with the developed DTLF-MPC
3: Determine the cost function in (40)
4: while (t < T)
5: Perform the DO steps
6: Test the AV with the developed DTLF-MPC
7: Determine the cost function in (40)
8: Arrange the solutions based on the values of FoD
9: Choose the best value of FoD
10: Update the solution for the next step
11: end while
12: Stop

From Table 1 and Figures 6 and 7, the cost function values by the NNA and MA
with DTLF-MPC are bigger than the cost function value by the suggested DTLF-MPC
based on DO. Furthermore, the DO has a fast convergence rate compared to NAA and
MA algorithms. There are many testing scenarios executed based on realistic AV data,
as recorded in Table 2 [41], to prove the efficiency of the developed hybrid DTLF-MPC
with DO.

Table 2. The realistic data of the AV.

Symbol lf (m) lr (m) cf (N/rad) cr (N/rad) m (kg) Iψ (kg m2)

Value 1.22 1.62 2 × 60,000 2 × 60,000 1590 2920
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5.1. Step Disturbance Test Case

In this test case, the road curvature variation is carried out with step disturbance
equal to 0.3 m−1. Figure 8 presents the system lateral variation caused by this disturbance.
Figure 9 shows the ‘Mo’ and ‘ts’ values of the lateral output, which represent the output
performance indexes depending on each algorithm. In Table 3, the damping characteristics
of the lateral output, which is represented by ‘Mo’ and ‘ts’ are presented. The suggested
hybrid DTLF-MPC developed by the DO has the ability to decrease the lateral deviation
maximum overshoot with less value compared with the DTLF-MPC based on NNA and
MA sufficiently. Furthermore, the lateral variation settling time decays by utilizing the
developed DTLF-MPC based on the DO by 0.01979 s, less than 0.037 s and 0.09392 s by
the DTLF-MPC based on MA and NNA, respectively. In addition, Figure 8 shows that
the developed DO-based DTLF-MPC is able to provide high damping performance that is
better than the DTLF-MPC based on NNA and MA.
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Figure 8. The output response of the AV lateral deviation against 0.3 m−1 step disturbance in the
road curvature.

Table 3. The performance damping indexes including ‘Mo’ and ‘ts’ due to each technique.

NNA MA Proposed DO

MO% 56.93% 45.34% 45.33%
Ts (s) 0.09392 0.037 0.01979

5.2. Road Curvature Fluctuations Test Case

The second test case is performed to ensure that the performance of the formulated
system, depending on the developed DO and hybrid DTLF-MPC, is efficient against the
road curvature fluctuations challenge, especially in various disturbance cases as seen in
Figure 10. The AV lateral variation response by the developed DTLF-MPC based on DO,
NNA, and MA is presented in Figure 11. This figure clarifies that the response of the
AV with the utilization of developed DTLF-MPC based on DO, which has the ability to
damp the lateral deviation against the road curvature fluctuation with less ‘Mo’, ‘ts’, and
negligible steady state error compared with other techniques.
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5.3. Parameter Uncertainty Test

The system parameter uncertainty caused by the measuring devices’ errors is con-
sidered a big obstacle to satisfying sufficient performance. In this test case, a ±5 m/s
uncertainty in the AV velocity as well as ±5 m change in look-ahead vision distance of the
vision system are created to confirm the robustness of the developed DTLF-MPC based
on the DO in case of parameter uncertainty. As shown in Figures 12 and 13, the output
response of AV lateral deviation by developed DTLF-MPC based on the DO has the best
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damping performance against the parameter uncertainty compared with the DTLF-MPC
based on NNA and MA. Notice that the AV has a steady-state error in the case of the
DTLF-MPC based on NNA, as seen in Figure 12.
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6. Conclusions

This work introduces a developed MPC with DTLF for the controlling the AV to reduce
the calculational burden of the traditional MPC as well as tackle the issues of long prediction
and control horizons. Besides, a new intelligent algorithm is performed for tuning the
factors of the developed MPC with DTLF depending on a recent tuning algorithm named a
DO instead of the conventional methods. The performance developed MPC with DTLF
based on the DO is evaluated and compared with other techniques, including NNA and MA
algorithms. Various test cases, including road curvature fluctuations, velocity variation, and
vision system uncertainty are created to confirm the effectiveness of the developed MPC
with DTLF. The output results prove the success of the developed hybrid DTLF-MPC with
the DO to reduce the AV lateral deviations versus the road curvature fluctuations and the
vision system uncertainty with less overshoot, around 0.4533 and settling time of around
0.01979 s compared with other algorithms. Additionally, the presented methodology
provides a promising way for reducing the calculational burden of traditional MPC control,
which is applicable to many industrial applications in the near future.



Mathematics 2022, 10, 4539 19 of 21

Author Contributions: Conceptualization, S.B. and S.-F.S.; Data curation, S.B.; Formal analysis,
S.-F.S. and M.E.; Funding acquisition, M.E.; Investigation, S.-F.S. and M.E.; Methodology, S.B.,
S.-F.S. and M.E.; Software, S.B.; Supervision, S.-F.S.; Visualization, S.B.; Writing—original draft, S.B.;
Writing—review & editing, S.-F.S. and M.E. All authors have read and agreed to the published version
of the manuscript.

Funding: This work is supported by the Ministry of Science and Technology (MOST) of Taiwan,
(grant number: MOST 110-2222-E-011-013).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhang, S.; Markos, C.; James, J.Q. Autonomous Vehicle Intelligent System: Joint Ride-Sharing and Parcel Delivery Strategy. IEEE

Trans. Intell. Transp. Syst. 2022, 23, 18466–18477. [CrossRef]
2. Khalid, M.; Awais, M.; Singh, N.; Khan, S.; Raza, M.; Malik, Q.B.; Imran, M. Autonomous transportation in emergency healthcare

services: Framework, challenges, and future work. IEEE Internet Things Mag. 2021, 4, 28–33. [CrossRef]
3. Marzbani, H.; Khayyam, H.; To, C.N.; Quoc, Ð.V.; Jazar, R.N. Autonomous vehicles: Autodriver algorithm and vehicle dynamics.

IEEE Trans. Veh. Technol. 2019, 68, 3201–3211. [CrossRef]
4. Nam, H.; Choi, W.; Ahn, C. Model predictive control for evasive steering of an autonomous vehicle. Int. J. Automot. Technol. 2019,

20, 1033–1042. [CrossRef]
5. Hernandez-Sanchez, A.; Poznyak, A.; Chairez, I. Robust proportional–integral control of submersible autonomous robotized

vehicles by backstepping-averaged sub-gradient sliding mode control. Ocean. Eng. 2022, 263, 112196. [CrossRef]
6. Hernandez-Sanchez, A.; Chairez, I.; Poznyak, A.; Andrianova, O. Dynamic Motion Backstepping Control of Underwater

Autonomous Vehicle Based on Averaged Sub-gradient Integral Sliding Mode Method. J. Intell. Robot. Syst. 2021, 103, 48.
[CrossRef]

7. Miglani, A.; Kumar, N. Deep learning models for traffic flow prediction in autonomous vehicles: A review, solutions, and
challenges. Veh. Commun. 2019, 20, 100184. [CrossRef]

8. Aksjonov, A.; Nedoma, P.; Vodovozov, V.; Petlenkov, E.; Herrmann, M. Detection and evaluation of driver distraction using
machine learning and fuzzy logic. IEEE Trans. Intell. Transp. Syst. 2018, 20, 2048–2059. [CrossRef]

9. Nie, L.; Guan, J.; Lu, C.; Zheng, H.; Yin, Z. Longitudinal speed control of autonomous vehicle based on a self-adaptive PID of
radial basis function neural network. IET Intell. Transp. Syst. 2018, 12, 485–494. [CrossRef]

10. Han, X.; Zhang, X.; Du, Y.; Cheng, G. Design of Autonomous Vehicle Controller Based on BP-PID. In IOP Conference Series: Earth
and Environmental Science; IOP Publishing: Bristol, UK, 2019; Volume 234, p. 012097.

11. Nurhadi, H.; Apriliani, E.; Herlambang, T.; Adzkiya, D. Sliding mode control design for autonomous surface vehicle motion
under the influence of environmental factor. Int. J. Electr. Comput. Eng. 2020, 10, 4789. [CrossRef]

12. Rout, R.; Subudhi, B. Inverse optimal self-tuning PID control design for an autonomous underwater vehicle. Int. J. Syst. Sci. 2017,
48, 367–375. [CrossRef]

13. González, L.; Martí, E.; Calvo, I.; Ruiz, A.; Pérez, J. Towards risk estimation in automated vehicles using fuzzy logic. In
International Conference on Computer Safety, Reliability, and Security; Springer: Cham, Switzerland, 2018; pp. 278–289.

14. Xiang, X.; Yu, C.; Zhang, Q. Robust fuzzy 3D path following for autonomous underwater vehicle subject to uncertainties. Comput.
Oper. Res. 2017, 84, 165–177. [CrossRef]

15. Mac Thi, T.; Copot, C.; De Keyser, R.; Tran, T.D.; Vu, T. MIMO fuzzy control for autonomous mobile robot. J. Autom. Control. Eng.
2016, 4, 65–70. [CrossRef]

16. Sung, I.; Choi, B.; Nielsen, P. On the training of a neural network for online path planning with offline path planning algorithms.
Int. J. Inf. Manag. 2021, 57, 102142. [CrossRef]

17. Peng, Z.; Wang, J. Output-feedback path-following control of autonomous underwater vehicles based on an extended state
observer and projection neural networks. IEEE Trans. Syst. Man Cybern. Syst. 2017, 48, 535–544. [CrossRef]

18. Du, X.; Htet, K.K.K.; Tan, K.K. Development of a genetic-algorithm-based nonlinear model predictive control scheme on velocity
and steering of autonomous vehicles. IEEE Trans. Ind. Electron. 2016, 63, 6970–6977. [CrossRef]

19. Kabzan, J.; Hewing, L.; Liniger, A.; Zeilinger, M.N. Learning-based model predictive control for autonomous racing. IEEE Robot.
Autom. Lett. 2019, 4, 3363–3370. [CrossRef]

20. Asgari, J.; Borrelli, F.; Tseng, H.E. Discussion on: “Hybrid Parameter-varying Model Predictive Control for Autonomous Vehicle
Steering”. Eur. J. Control. 2008, 14, 432–434.

21. Cui, Q.; Ding, R.; Zhou, B.; Wu, X. Path-tracking of an autonomous vehicle via model predictive control and nonlinear filtering.
Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2018, 232, 1237–1252. [CrossRef]

http://doi.org/10.1109/TITS.2022.3162609
http://doi.org/10.1109/IOTM.0011.2000076
http://doi.org/10.1109/TVT.2019.2895297
http://doi.org/10.1007/s12239-019-0097-5
http://doi.org/10.1016/j.oceaneng.2022.112196
http://doi.org/10.1007/s10846-021-01466-3
http://doi.org/10.1016/j.vehcom.2019.100184
http://doi.org/10.1109/TITS.2018.2857222
http://doi.org/10.1049/iet-its.2016.0293
http://doi.org/10.11591/ijece.v10i5.pp4789-4797
http://doi.org/10.1080/00207721.2016.1186238
http://doi.org/10.1016/j.cor.2016.09.017
http://doi.org/10.12720/joace.4.1.65-70
http://doi.org/10.1016/j.ijinfomgt.2020.102142
http://doi.org/10.1109/TSMC.2017.2697447
http://doi.org/10.1109/TIE.2016.2585079
http://doi.org/10.1109/LRA.2019.2926677
http://doi.org/10.1177/0954407017728199


Mathematics 2022, 10, 4539 20 of 21

22. Koga, A.; Okuda, H.; Tazaki, Y.; Suzuki, T.; Haraguchi, K.; Kang, Z. Realization of different driving characteristics for autonomous
vehicle by using model predictive control. In Proceedings of the 2016 IEEE Intelligent Vehicles Symposium (IV), Gothenburg,
Sweden, 19–22 June 2016; pp. 722–728.

23. Zheng, Y.; Zhou, J.; Xu, Y.; Zhang, Y.; Qian, Z. A distributed model predictive control-based load frequency control scheme for
multi-area interconnected power system using discrete-time Laguerre functions. ISA Trans. 2017, 68, 127–140. [CrossRef]

24. Wang, L. Model Predictive Control System Design and Implementation Using MATLAB®; Springer Science Business Media:
Berlin/Heidelberg, Germany, 2019.

25. Dileep, K.; Krishnan, S.; Jose, A. Vehicular adaptive cruise control using Laguerre functions model predictive control. Int. J. Eng.
Technol. 2018, 10, 1719–1730.

26. Abdullah, M.; Rossiter, J.A.; Haber, R. Development of constrained predictive functional control using Laguerre function-based
prediction. IFAC-PapersOnLine 2017, 50, 10705–10710. [CrossRef]

27. Joseph, S.B.; Dada, E.G.; Abidemi, A.; Oyewola, D.O.; Khammas, B.M. Metaheuristic algorithms for PID controller parameters
tuning: Review, approaches and open problems. Heliyon 2022, 8, e09399.

28. Fotis, G.P.; Ekonomou, L.; Maris, T.I.; Liatsis, P. Development of an artificial neural network software tool for the assessment of
the electromagnetic field radiating by electrostatic discharges. IET Sci. Meas. Technol. 2007, 1, 261–269. [CrossRef]

29. Winfield, A.F.; Michael, K.; Pitt, J.; Evers, V. Machine ethics: The design and governance of ethical AI and autonomous systems
[scanning the issue]. Proc. IEEE 2019, 107, 509–517. [CrossRef]

30. Fotis, G.; Vita, V.; Ekonomou, L. Machine learning techniques for the prediction of the magnetic and electric field of electrostatic
discharges. Electronics 2022, 11, 1858. [CrossRef]

31. Sarkar, R.; Barman, D.; Chowdhury, N. Domain knowledge based genetic algorithms for mobile robot path planning having
single and multiple targets. J. King Saud Univ. Comput. Inf. Sci. 2020, 34, 4269–4283. [CrossRef]

32. Li, Y.; Huang, Z.; Xie, Y. Research status of mobile robot path planning based on genetic algorithm. In Journal of Physics: Conference
Series; IOP Publishing: Bristol, UK, 2020; Volume 1544, p. 012021.

33. Li, X.; Wu, D.; He, J.; Bashir, M.; Liping, M. An Improved Method of Particle Swarm Optimization for Path Planning of Mobile
Robot. J. Control Sci. Eng. 2020, 2020, 3857894. [CrossRef]

34. Zhang, L.; Zhang, Y.; Li, Y. Mobile Robot Path Planning Based on Improved Localized Particle Swarm Optimization. IEEE Sens. J.
2020, 21, 6962–6972. [CrossRef]

35. Manne, S.; Lydia, E.L.; Pustokhina, I.V.; Pustokhin, D.A.; Parvathy, V.S.; Shankar, K. An intelligent energy management and traffic
predictive model for autonomous vehicle systems. Soft Comput. 2021, 25, 11941–11953. [CrossRef]

36. Ma, H.; Li, S.; Zhang, E.; Lv, Z.; Hu, J.; Wei, X. Cooperative Autonomous Driving Oriented MEC-Aided 5G-V2X: Prototype
System Design, Field Tests and AI-Based Optimization Tools. IEEE Access 2020, 8, 54288–54302. [CrossRef]

37. Zhao, S.; Zhang, T.; Ma, S.; Chen, M. Dandelion Optimizer: A nature-inspired metaheuristic algorithm for engineering applications.
Eng. Appl. Artif. Intell. 2022, 114, 105075. [CrossRef]

38. Natarajan, E.; Markandan, K.; Sekar, S.M.; Varadaraju, K.; Nesappan, S.; Albert Selvaraj, A.D.; Franz, G. Drilling-Induced
Damages in Hybrid Carbon and Glass Fiber-Reinforced Composite Laminate and Optimized Drilling Parameters. J. Compos. Sci.
2022, 6, 310. [CrossRef]

39. Sadollah, A.; Sayyaadi, H.; Yadav, A. A dynamic metaheuristic optimization model inspired by biological nervous systems:
Neural network algorithm. Appl. Soft Comput. 2018, 71, 747–782. [CrossRef]

40. Zervoudakis, K.; Tsafarakis, S. A mayfly optimization algorithm. Comput. Ind. Eng. 2020, 145, 106559. [CrossRef]
41. Kosecka, J.; Blasi, R.; Taylor, C.J.; Malik, J. Vision-based lateral control of vehicles. In Proceedings of the Conference on Intelligent

Transportation Systems, Boston, MA, USA, 12 November 1997; pp. 900–905.
42. Kosecka, J.; Blasi, R.; Taylor, C.J.; Malik, J. A comparative study of vision-based lateral control strategies for autonomous highway

driving. In Proceedings of the IEEE International Conference on Robotics and Automation (Cat. No. 98CH36146), Leuven,
Belgium, 20 May 1998; Volume 3, pp. 1903–1908.

43. Goli, A.; Tirkolaee, E.B.; Aydin, N.S. Fuzzy integrated cell formation and production scheduling considering automated guided
vehicles and human factors. IEEE Trans. Fuzzy Syst. 2021, 29, 3686–3695. [CrossRef]

44. Elsisi, M. Optimal design of nonlinear model predictive controller based on new modified multitracker optimization algorithm.
Int. J. Intell. Syst. 2020, 35, 1857–1878. [CrossRef]

45. Fakhrzad, M.B.; Goodarzian, F. A new multi-objective mathematical model for a Citrus supply chain network design: Metaheuris-
tic algorithms. J. Optim. Ind. Eng. 2021, 14, 127–144.

46. Elsisi, M.; Mahmoud, K.; Lehtonen, M.; Darwish, M.M. An improved neural network algorithm to efficiently track various
trajectories of robot manipulator arms. IEEE Access 2021, 9, 11911–11920. [CrossRef]

47. Mokhtarzadeh, M.; Tavakkoli-Moghaddam, R.; Triki, C.; Rahimi, Y. A hybrid of clustering and meta-heuristic algorithms to solve
a p-mobile hub location–allocation problem with the depreciation cost of hub facilities. Eng. Appl. Artif. Intell. 2021, 98, 104121.
[CrossRef]

48. Singh, P.; Choudhary, S.K. Introduction: Optimization and Metaheuristics Algorithms. In Metaheuristic and Evolutionary Computa-
tion: Algorithms and Applications; Springer: Singapore, 2021; pp. 3–33.

49. Blondin, M.J. Optimization Algorithms in Control Systems. In Controller Tuning Optimization Methods for Multi-Constraints and
Nonlinear Systems; Springer: Cham, Switzerland, 2021; pp. 1–9.

http://doi.org/10.1016/j.isatra.2017.03.009
http://doi.org/10.1016/j.ifacol.2017.08.2222
http://doi.org/10.1049/iet-smt:20060137
http://doi.org/10.1109/JPROC.2019.2900622
http://doi.org/10.3390/electronics11121858
http://doi.org/10.1016/j.jksuci.2020.10.010
http://doi.org/10.1155/2020/3857894
http://doi.org/10.1109/JSEN.2020.3039275
http://doi.org/10.1007/s00500-021-05614-7
http://doi.org/10.1109/ACCESS.2020.2981463
http://doi.org/10.1016/j.engappai.2022.105075
http://doi.org/10.3390/jcs6100310
http://doi.org/10.1016/j.asoc.2018.07.039
http://doi.org/10.1016/j.cie.2020.106559
http://doi.org/10.1109/TFUZZ.2021.3053838
http://doi.org/10.1002/int.22275
http://doi.org/10.1109/ACCESS.2021.3051807
http://doi.org/10.1016/j.engappai.2020.104121


Mathematics 2022, 10, 4539 21 of 21

50. Gaing, Z.L. A particle Swarm optimization approach for optimum design of PID controller in AVR system. IEEE Trans. Energy
Convers. 2004, 19, 384–391. [CrossRef]
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