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conformal measure is referred to as a complete smooth metric measure space. This paper generalizes
some integral inequalities of the Hardy type to the setting of a complete non-compact smooth metric
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1. Introduction

A classical inequality due to Hardy [1] states that for any f ∈ C∞
0 (Rm)(m− p

p

)p ∫
Rm

| f (x)|p
|x|p dx ≤

∫
Rm
|∇ f (x)|pdx, (1)

where p ∈ (1, m) and ((m− p)/p)p is the best constant but never achieved. This class of
inequalities has found numerous applications in geometric analysis, spectral theory, partial
differential equations and so on. Owing to this, it has undergone several refinements,
generalization and extensions in recent years. For various proofs and different applications,
see [2–5], and for several extensions and generalizations, see [6–13] and the references
cited therein.

A particular application of the above Hardy inequality (1) to singular problems was
considered by García Azorero and Peral Alonso [4] in their study of the behavior of the
solution to the following nonlinear critical p-heat equation:

wt = ∆pw + Λ
|x|p wp−1, x ∈ Ω, t > 0,

w(x, 0) = h(x) ≥ 0, x ∈ Ω,
w(x, t) = 0, x ∈ Ω, t > 0,

(2)

where ∆p is the usual p-Laplacian, Ω is a bounded domain in Rm such that 0 ∈ Ω and p ∈
(0, m). Their work gave a relationship between Λ of (2) and the best constant ((m− p)/p)p

in the Hardy inequality (1). More precisely, suppose Λ > 0, then the above system (2) has
solutions for Λ ≤ Λm,p = ((m− p)/p)p and p > 2, while the solutions have finite time of
extinction for 1 < p < 2. There will be an instantaneous blow up for Λ > Λm,p and p > 2.
Thus, the best constant Λm,p is the cut-off point for the nonexistence of positive solutions.
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This problem was also studied by Aguilar Crespo and Peral Alonso [14] and Goldstein and
Kombe [15].

Recently, researchers have been more interested in studying Hardy inequalities in
curved spaces because of their potential applications in this setting too. In particular, the
first extension to the Riemannian setting was due to Carron [16], where the inequalities are
considered in the L2 setting for noncompact manifold M with certain geometric conditions
on the weight function. Carron’s form of Hardy inequalities reads as

(C + α− 1
2

)2 ∫
M

| f |2
ρ2−α

dv ≤
∫

M
ρα|∇ f |2dv

for all f ∈ C∞
0 (M\ρ−1{0}), α ∈ R, C + α > 1, while the positive weight function ρ

satisfying |∇ρ| = 1, ∆ρ ≥ C
ρ . Later, Kombe–Özaydin [17] (see also Kombe–Özaydin [18]

and Kombe–Yener [19]) extended Carron’s result to the general case 1 < p < ∞. In
these references, the authors proved several Hardy-type, Rellich-type and uncertainty
principle inequalities on manifolds satisfying certain geometric restrictions. Yang, Su and
Kong [20] applied the above ideas to obtain the following inequality of the Hardy type on
a noncompact manifold of the Riemannian metric with a negative sectional curvature for
m ≥ 3, 1 < p < m− α, α ∈ R:

cm,α,p

∫
M

| f |p
ρα+p dv ≤

∫
M

|∇ f |p
ρα

dv,

where f ∈ C∞
0 (M), |∇ρ| = 1, ∆ρ ≥ m−1

ρ and the constant cm,α,p = ((m− p− α)/p)p is
sharp. The integral inequalities described above have led to the derivation of Hardy-type,
Rellich-type and uncertainty principle inequalities in various settings, such as the Poincaré
model, Heisenberg groups, Cartan–Hadamard manifolds and so on [18,21,22]. Recently,
this class of inequalities was studied in a much more general setting [23,24] of metric
measure spaces, which may not possess a differentiable structure. More interestingly, a
pair of weight functions was introduced in [24], where the weights have to satisfy certain
compatibility conditions for the inequalities to hold true. In a related development, frank
efforts from different authors (e.g., [25–27]) yielded various Hardy-type inequalities on
Finslerian manifolds.

In [3] (see also [10]), the author started a program of obtaining inequalities of the
Hardy type associated to some quasi-linear elliptic differential operator of the form
Lp f := divL(|∇L f |p−2∇L f ), where p ∈ (1, ∞),∇L is a general vector field and div = −∇∗L,
negative adjoint of ∇L. In this program, which was built on the technique used in [11],
several specific examples of Lp are considered, such as Heisenberg–Greiner operators,
Grushin-type operators and sub-Laplacian on Carnot groups with respect to certain geo-
metric conditions. In general, the main achievement of this program can be roughly stated
as follows: for any positive weight function ρ : Ω→ R, p > 1 and f ∈ C1

0(Ω), it holds that

c
∫

Ω

|∇Lρ|p
ρp | f |pdx ≤

∫
Ω
|∇L f |pdx,

where −Lpρ ≥ 0 in the sense of distribution. This result generalizes some Euclidean cases,
where ρ is just a distance function [11,28]. More interestingly, this program yields the best
constant in several special cases [3,10]. The condition −Lpρ ≥ 0 helps in determining
that the best constant is never attained. The knowledge about regularity of solutions
to PDE involving the second-order elliptic operator helps to derive inequalities of the
Hardy typ with sharp constants [4,28]. In fact, the author in [28] generalized this result
to sub-Laplacian on the Heisenberg group, which is hypoelliptic, and p-Laplacian on
compact manifolds.

There are two natural questions waiting to be addressed:
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(i). Is it possible to generalize those Hardy-type inequalities described above to the
setting of complete smooth metric measure spaces with or without any constraint on the
potential function? (ii). How can we find these inequalities on a complete smooth metric
measure space endowed with a non-negative Bakry–Émery Ricci tensor?

These questions are natural and there are evidence that they are not trivial. For exam-
ples, Myers’ compactness, Bishop–Gromov’s volume comparison and Cheeger–Gromoll’s
splitting theorems of Riemannian manifolds do not hold trivially for the Bakry–Émery
Ricci tensor bounded from below [29]. The author [30] gave a description of the sharp
uncertainty principle on complete Riemannian manifolds of non-negative Ricci curvature
and proved that such a manifold should be isometric to Euclidean space.

The main goal of this paper on one hand is to answer the first question in affirmative
by performing analysis on some differential equations involving Witten–Laplacian and
Witten p-Laplacian. This generalization is not trivial, as it involves a careful consideration of
properties of the potential function and the choice of input data such that special conditions
would not be required on the potential function.

It is convenient at this point to give brief descriptions of smooth metric measure spaces
and Witten–Laplacian (see [31] for detail discussion and [32] for another application). Let
M be a Riemannian manifold with Riemannian metric gM, a smooth potential (weight)
function defined as φ : M→ R and the volume element induced by gM as dv . A smooth
metric measure space is defined by M = (M, gM, e−φdv), where the measure e−φdv is a
conformal transformation of the measure induced by metric gM. Associated with M are a
symmetric self-adjoint elliptic differential operator, called Witten–Laplacian, defined by

L := ∆M − 〈∇φ,∇·〉M

and the popularly called Bakry–Émery Ricci tensor, Ricφ
M, defined by

Ricφ
M = RicM + Hessφ,

where ∆M, ∇, 〈·, ·〉M, RicM and Hessφ denote the Laplace–Beltrami operator, gradient,
inner product on (M, gM), Ricci tensor of M and Hessian of function φ, respectively. The
symmetric property and self-adjointness of L yield the integration by parts formula∫

M
(L f )he−φdv = −

∫
M
〈∇ f ,∇h〉Me−φdv =

∫
M

f (Lh)e−φdv

for all f , h ∈ C∞
0 (M). The subscript M will be dropped in the sequel and henceforth, ∆M,

〈·, ·〉M, etc., would respectively be written as ∆, 〈·, ·〉, etc. Given a function u ∈ C2(M) and
p ∈ [1, ∞), Witten p-Laplacian is defined by

Lpu := divφ(e−φ|∇u|p−2∇u) = ∆pu− |∇u|p−2〈∇φ,∇u〉,

where divφ := eφdiv, div is the divergence operator, the adjoint of gradient for the L2-norm
induced by the metric on the space of differential forms (divφ will be called weighted
divergence operator) and ∆p is the so-called p-Laplacian, a degenerate quasilinear elliptic
operator. Note that Lp coincides with the Witten–Laplacian when p = 2 and the usual
p-Laplacian when φ is a constant.

In the references cited above, inequalities of the Hardy type have been specialized
to the setting of hyperbolic manifolds and Cartan–Hadamard manifolds with several ex-
amples. There are few papers in the literature devoted to deriving these inequalities on
non-negatively Ricci curved spaces and smooth metric measure spaces, even though there
have been considerable efforts in extending them to the Riemannian setting. In [33], the
authors showed that a metric measure space satisfying an inequality of the Hardy type and
volume doubling condition has exactly m-dimensional (m ≥ 3) volume growth. Applica-
tion of this is that a complete non-compact M with a non-negative Bakry–Émery tensor
satisfying Hardy-type inequalities with the best constant is not far to the Euclidean space
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of the same dimension. This agrees with [34] where the same results were established for a
complete non-compact Riemannian manifold with a non-negative Ricci tensor. Recently,
there was another attempt made by the authors in [35], where they extended some inequal-
ities derived in [5] to the setting of smooth metric measure spaces. While in reprint [36],
the authors adopted this approach on a closed (compact without boundary) pointed space
with a non-negative Bakry–Émery Ricci tensor.Recently, many interesting papers have
been written related to symmetry, molecular cluster geometry analysis, submanifold theory,
singularity theory, eigen problems, etc. [37–39]. In our following works, we are going to
study inequalities of the Hardy type for different queries and further improve the results in
this paper, combined with the technics and results in [37–39].

The remaining part of this paper is as follows. Hardy-type inequalities and its improve-
ment related to the Witten–Laplacian are discussed in Section 2. Hardy–Poincaré inequality
and the Heisenberg–Pauli–Weyl uncertainty principle are also discussed. In Section 3, some
integral inequalities related to Witten p-Laplacian are discussed via D’Ambrosio’s program.

2. Hardy-Type Inequalities Related to Witten–Laplacian

Let M be a smooth metric measure space of dimension m > 1 as described above. The
first result in this section is the following.

Theorem 1. Let a complete non-compact be M, and denote a non-negative function on M by ρ
satisfying |∇ρ| = 1 and Lρ ≥ C

ρ + V, where C > 0 is a constant and V is a continuous function,
in the distribution sense. Then the following inequality∫

M
ρα|∇ f |pe−φdv ≥ (Aα,p)

p
∫

M

| f |p
ρp−α e−φdv + (Aα,p)

p−1
∫

M
V
| f |p

ρp−α−1 e−φdv (3)

holds for any f ∈ C∞
0 (M\ρ−1{0}), p ∈ (1, ∞),Aα,p = (C + 1 + α− p)/p with C + 1 + α > p.

Proof. Let f = ρβg, where β < 0 is to be chosen later and g ∈ C∞
0 (M). Then

|∇ f |p = |∇(ρβg)|p = |βρβ−1g∇ρ + ρβ∇g|p.

Applying the following elementary inequality with ζ1, ζ2 ∈ Rm

|ζ1 + ζ2|p ≥ |ζ1|p + p|ζ1|p−2〈ζ1, ζ2〉

which is known to be valid for all p ∈ (1, ∞) [6,18]. Then (with |∇ρ| = 1),

|∇ f |p ≥ |β|pρ(β−1)p|g|p + p|β|p−2βρ(β−1)(p−1)+β|g|p−2g〈∇ρ,∇g〉. (4)

Multiplying (4) by ρα and then integrating by parts with respect to the measure e−φdv gives∫
M

ρα|∇ f |pe−φdv ≥ |β|p
∫

M
ρβp−p+α|g|pe−φdv

− |β|p−2β

βp− p + α + 2

∫
M

L(ρβp−p+α+2)|g|pe−φdv.
(5)

By an elementary differentiation, note that we obtain

L(ρβp−p+α+2) = ∆(ρβp−p+α+2)− 〈∇(ρβp−p+α+2),∇φ〉
= (βp− p + α + 2)[(βp− p + α + 1)ρβp−p+α + ρβp−p+α+1Lρ].
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Therefore, (5) becomes the following inequality (by using the condition Lρ ≥ C
ρ + V with

β < 0), then we have∫
M

ρα|∇ f |pe−φdv ≥ |β|p
∫

M
ρβp−p+α|g|pe−φdv

− |β|p−2β(βp− p + α + 1)
∫

M
ρβp−p+α|g|pe−φdv

− |β|p−2β
∫

M
ρβp−p+α+1Lρ|g|pe−φdv

≥ |β|p
∫

M
ρβp−p+α|g|pe−φdv

− |β|p−2β(βp− p + α + 1 + C)
∫

M
ρβp−p+α|g|pe−φdv

− |β|p−2β
∫

M
Vρβp−p+α+1|g|pe−φdv.

Now choosing β = −(α + C + 1− p)/p and using g = ρ−β f , we arrive at∫
M

ρα|∇ f |pe−φdv ≥
(α + C + 1− p

p

)p ∫
M

ρα−p| f |pe−φdv

+
(α + C + 1− p

p

)p−1 ∫
M

Vρα−p+1| f |pe−φdv,

(6)

which is the required inequality.

Remark 1. In the special case V ≡ 0, (6) becomes∫
M

ρα|∇ f |pe−φdv ≥ Ap
α,p

∫
M

ρα−p| f |pe−φdv (7)

with the same hypothesis as in Theorem 1. Inequality (7) was recently mentioned in [35] and proved
for the case Lρ ≤ C/ρ and p < C + α− 1. If φ was a constant (7) reduces to Kombe-Özaydin’s
result ([18] Theorem 2.1). In the integral inequalities (3) and (7), the left-hand side is allowed
to diverge.

The next result improves the inequality of Hardy-type on a bounded domain with
smooth boundary in M. It thereby generalizes a result in [17].

Theorem 2. Let M be as defined above and Ω ⊂ M be a bounded domain with smooth boundary.
Let ρ be a non-negative function on Ω and satisfying Lρ ≥ C

ρ , C > 0 and |∇ρ| = 1 in the
distribution sense. Then, there exists constant B = B(m, p, |Ω|) > 0, where |Ω| =

∫
M e−φdv is

the weighted volume of Ω, and the inequality

∫
Ω

ρα|∇ f |2e−φdv ≥ (Cα)
2
∫

Ω

f 2

ρ2−α
e−φdv + B

( ∫
Ω

ραp/2|∇ f |pe−φdv
)2/p

, (8)

where Cα := (C + α− 1)/2 holds for every compactly supported function f ∈ C∞
0 (Ω), α ∈ R,

p ∈ (1, 2), and C + α− 1 > 0.

Proof. Let h = ρβ, where β is a negative number. It is straightforward to see that (Picone’s
identity [40])

|∇ f |2 −
〈
∇
( f 2

h

)
,∇h

〉
=
∣∣∣∇ f − f

h
∇h
∣∣∣2.
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Then ∫
Ω
|∇ f |2 −

〈
∇
( f 2

h

)
,∇h

〉
ραe−φdv =

∫
Ω

ρα
∣∣∣∇ f − f

h
∇h
∣∣∣2e−φdv

≥ B1

( ∫
Ω

∣∣∣∇ f − f
h
∇h
∣∣∣pραp/2e−φdv

)2/p (9)

by the application of Jensen’s inequality with B1 = |Ω|1−2/p (see ([5] Equation (2.17)).
Obviously with the condition Lρ ≥ C

ρ and |∇ρ| = 1, one has

Lh = ∆ρβ − 〈∇ρβ,∇φ〉 ≤ β(β− 1 + C)ρβ−2. (10)

Hence, using integration by parts, (10) and the function h = ρβ, we obtain

∫
Ω
|∇ f |2−

〈
∇
( f 2

h

)
,∇h

〉
ραe−φdv

=
∫

Ω
|∇ f |2ραe−φdv−

∫
Ω
∇
( f 2

h

)
∇hραe−φdv

=
∫

Ω
|∇ f |2ραe−φdv +

∫
Ω

f 2

h

(
αρα−1∇ρ∇h + ραLh

)
e−φdv

≤
∫

Ω
|∇ f |2ραe−φdv +

∫
Ω

f 2

ρβ

(
αβρα+β−2 + β(β− 1 + C)ρα+β−2

)
e−φdv

=
∫

Ω
|∇ f |2ραe−φdv + β(α + β− 1 + C)

∫
Ω

ρα−2 f 2e−φdv.

Thus, (by combining the last inequality with (9)), we have∫
Ω
|∇ f |2ραe−φdv ≥ −β(α + β− 1 + C)

∫
Ω

ρα−2 f 2e−φdv.

+B1

( ∫
Ω

∣∣∣∇ f − f
h
∇h
∣∣∣pραp/2e−φdv

)2/p
.

(11)

Following the approach in [17] by using repeatedly the following elementary inequality for
η1, η2 ∈ Rm

c(p)|η2|p ≥ |η1 + η2|p − |η1|p− p|η2|p−2〈η1, η2〉, c(p) > 0, p ∈ (1, 2), (12)

Young inequality and Hardy inequality (6), we obtain∫
Ω

∣∣∣∇ f − f
h
∇h
∣∣∣pραp/2e−φdv ≥ B2

∫
Ω
|∇ f |pραp/2e−φdv. (13)

Putting (13) into (11), we obtain

∫
Ω
|∇ f |2ραe−φdv ≥ −β(α + β− 1 + C)

∫
Ω

f 2

ρ2−α
e−φdv + B

( ∫
Ω
|∇ f |pe−φdv

)2/p
.

We can then choose β = −C + α− 1
2

< 0 and obtain the required inequality at once.

Setting α = 0 in Theorem 2, one can obtain the following easily.
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Corollary 1. With the assumptions of Theorem 2 it holds that

∫
Ω
|∇ f |2e−φdv ≥

(C− 1
2

)2 ∫
Ω

f 2

ρ2 e−φdv + B
( ∫

Ω
|∇ f |pe−φdv

)2/p
,

where C 6= 1.

The next result presents a new version of a Hardy–Poincaré-type inequality on M with
a distance function.

Theorem 3. Let M and ρ be as defined in Theorem 1. Then the following inequality∫
M

ρα+p|〈∇ρ,∇ f 〉|pe−φdv ≥ Ap
α

∫
M

ρα| f |pe−φdv +Ap−1
α

∫
M

Vρα+1| f |pe−φdv (14)

holds for any f ∈ C∞
0 (M\ρ−1{0}), p ∈ (1, ∞), Aα = (C + α + 1)/p with C + α + 1 > 0.

Proof. Using the conditions |∇ρ| = 1 and Lρ ≥ C
ρ + V, we have

divφ(e−φρ∇ρ) = eφdiv(e−φρ∇ρ) ≥ (1 + C + Vρ). (15)

Multiplying (15) by ρα| f |p, and integrating both sides over M gives

(1 + C)
∫

M
ρα| f |pe−φdv +

∫
M

Vρα+1| f |pe−φdv ≤
∫

M
div(e−φρ∇ρ)ρα| f |pdv

= −α
∫

M
ρα| f |pe−φdv− p

∫
M
| f |p−2 f ρα+1〈∇ρ,∇ f 〉e−φdv,

which implies

(1 + C + α)
∫

M
ρα| f |pe−φdv +

∫
M

Vρα+1| f |pe−φdv ≤ −p
∫

M
| f |p−2 f ρα+1〈∇ρ,∇ f 〉e−φdv. (16)

Using Hölder and Young inequalities implies

−p
∫

M
| f |p−2 f ρα+1〈∇ρ,∇ f 〉e−φdv

≤ p
( ∫

M
ρα| f |pe−φdv

) p−1
p
( ∫

M
ρα+p|〈∇ρ,∇ f 〉|pe−φdv

) 1
p

≤ (p− 1)

ε
p

p−1

∫
M

ρα| f |pe−φdv + εp
∫

M
ρα+p|〈∇ρ,∇ f 〉|pe−φdv

(17)

for any ε > 0 that will be determined later. Note that Young’s inequality applied to obtain
the second inequality in (17) can be described as follows: denoting

Φ :=
( ∫

M
ρα| f |pe−φdv

) p−1
p

and Ψ :=
( ∫

M
ρα+p|〈∇ρ,∇ f 〉|pe−φdv

) 1
p
,

then for any ε > 0

ΦΨ = εΦ
Ψ
ε
≤ 1

p
(εΦ)p +

1
q

(Ψ
ε

)q
with q =

p
p− 1

being the conjugate to p.

Hence, putting (16) and (17) together, we obtain∫
M

ρα+p|〈∇ρ,∇ f 〉|pe−φdv ≥ ε−p
(

1 + C + α− p− 1

ε
p

p−1

) ∫
M

ρα| f |pe−φdv

+ ε−p
∫

M
Vρα+1| f |pe−φdv.

(18)
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We can now choose ε =
( p

1 + C + α

) p−1
p

since the quantity ε 7−→ Υ(ε) := ε−p
(

1 +

C + α− p− 1

ε
p

p−1

)
attains its maximum at this point. It is not difficult to obtain the attained

maximum value: first and second derivatives of Υ(ε) are computed respectively, as

Υ′(ε) = −pε−(p+1)
(

1 + C + α− pε
− p

p−1
)

and

Υ′′(ε) = ε−(p+2)
[

p(p + 1)(1 + C + α)− p2(p + 1)(p− 1) + p3

p− 1
ε
− p

p−1
]
.

Clearly, the critical points of the function Υ(ε) are at ε1 = 0 and ε2 =
(

1+C+α
p

)− p−1
p

. Finding

the value of Υ′′(ε) at both ε1 and ε2, we obtain

Υ′′(ε1) = 0 and Υ′′(ε2) = −
p2

p− 1
(1 + C + α)

(1 + C + α

p

) (p+1)(p−1)
p ≤ 0.

Consequently, ε2 is the maximum point and obviously, the maximal value achieved is

max
ε

Υ(ε) = Υ(ε2) =
(1 + C + α

p

)p
. (19)

Finally, the required inequality can be determined by substituting (19) into (18) as follows:∫
M

ρα+p|〈∇ρ,∇ f 〉|pe−φdv ≥
(1 + C + α

p

)p ∫
M

ρα| f |pe−φdv

+
(1 + C + α

p

)p−1 ∫
M

Vρα+1| f |pe−φdv.

This completes the proof.

Remark 2. As suggested in [18], one can apply the Cauchy–Schwarz inequality to the quantity
|〈∇ρ,∇ f 〉| and replace α with α− p using the condition |∇ρ| = 1 to obtain (3) and (7) for the
special case V ≡ 0. Note that the case φ is a constant that was obtained in [18] (Theorem 2.1).

Heisenberg–Pauli–Weyl Uncertainty Principle on Smooth Metric Measure Spaces

Another application of our result is the derivation of Heisenberg–Pauli–Weyl uncer-
tainty principles on smooth metric measure space. Recall that the classical Heisenberg
uncertainty arising from quantum mechanics says that the position and momentum of a
given particle cannot be simultaneously determined.

Theorem 4. Let M and ρ be as defined before such that ρ satisfies |∇ρ| = 1 and Lρ ≥ C
ρ , C > 0,

in distribution sense. Then the following inequality( ∫
M

ρp| f |pe−φdv
)p/q( ∫

M
|∇ f |pe−φdv

)
≥ Dp

∫
M

| f |p
ρ2−p e−φdv (20)

holds for any compactly supported function f ∈ C∞
0 (M\ρ−1{0}), where 1/p + 1/q = 1, p ∈

(1, ∞), 0 < q ≤ p and Dp = ((C + p− 1)/p)p with C + p− 1 > 0.

Proof. Using the conditions |∇ρ| = 1 and Lρ ≥ C
ρ , we have

L(ρp) ≥ p(C + p− 1)ρp−2
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and then ∫
M

L(ρp)| f |pe−φdv ≥ p(C + p− 1)
∫

M
| f |pe−φdvρp−2. (21)

Applying integration by parts and Hölder’s inequality with conjugates p and q, we have∫
M

L(ρp)| f |pe−φdv = −p2
∫

M
(ρ f )p−1〈∇ρ,∇ f 〉e−φdv

≤ p2
∫

M
ρp−1| f |p−1|∇ρ||∇ f |e−φdv

≤ p2
(

ρp| f |pe−φdv
) p−1

p
(
|∇ f |pe−φdv

) 1
p
.

Substituting the last inequality into (21) directly yields(
ρp| f |pe−φdv

)p−1(
|∇ f |pe−φdv

)
≥
(C + p− 1

p

)p ∫
M

ρp−2| f |pe−φdv,

which is the required inequality.

3. Integral Inequalities Related to Witten p-LAPLACIAN

Let Ω ⊂ M. The first main theorem of this section is stated as follows.

Theorem 5. Given Ω ⊂ M and ρ ∈W1,p
0 (Ω), a non-negative function on Ω, satisfying |∇ρ| ∈

Lp−1
loc (Ω) and −Lpρ ≥ 0 on Ω in distribution sense, then ρ−p|∇ρ|p ∈ L1

loc(Ω) and

∫
Ω
|∇ f |pe−φdv ≥

( p− 1
p

)p ∫
Ω

| f |p
ρp |∇ρ|pe−φdv (22)

holds, where f is any non-negative function f ∈ C∞
0 (Ω).

The condition −Lpρ ≥ 0 says that ρ is weighted p-superharmonic in the sense that∫
Ω
|∇ρ|p−2〈∇ρ,∇ϕ〉e−φdv ≥ 0

for every test non-negative function ϕ ∈ C1
0(Ω). Suppose Ω is open in M and D1,p(Ω)

denotes the completion of C∞
0 (Ω) with respect to the norm ‖ f ‖D1,p =

( ∫
Ω |∇ f |pe−φdv

)1/p
.

Theorem 5 can be extended to the whole of M as a result of the embedding D1,p(M) ⊂
D1,p(Ω) see (Appendix A of [10]) .

Corollary 2. Let ρ ∈ W1,p
0 (M) be a non-negative function on M fulfilling the condition of

Theorem 5 such that D1,p(M) ⊂ D1,p(Ω). Then ρ−p|∇ρ|p ∈ L1
loc(M) and

∫
M
|∇ f |pe−φdv ≥

( p− 1
p

)p ∫
M

| f |p
ρp |∇ρ|pe−φdv (23)

holds, where f is any non-negative function in C∞
0 (M).

It is in order to make some notation at this point so as to follow the language of [3,10].
Let X ∈ L1

loc(Ω) be a vector field; obviously, for any smooth function φ, a weighted vector
field Xφ = e−φX can be defined such that Xφ ∈ L1

loc(Ω). Note that the distribution divφ(Xφ)
in the weak sense, via the weighted divergence, is defined by the following identity:∫

Ω
ϕdivφ(Xφ)e−φdv = −

∫
Ω
〈∇ϕ, X〉e−φdv, ∀ϕ ∈ C∞

0 (Ω). (24)
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Let hX ∈ L1
loc(Ω) be a positive function, then we say that hX ≤ divφ(Xφ) in the weak

sense if ∫
Ω

ϕhXe−φdv ≤
∫

Ω
ϕdivφ(Xφ)e−φdv ∀ϕ ∈ C∞

0 (Ω). (25)

By using Equations (24) and (25), and the direct differentiation one obtains for p > 1, then∫
Ω
|ϕ|phXe−φdv ≤

∫
Ω
|ϕ|pdivφ(e−φX)e−φdv = −p

∫
M
|ϕ|p−1〈∇ϕ, X〉e−φdv. (26)

Following the program of D’Ambrosio [3,10], the next lemma is fundamental in
proving Theorem 1. The proof of the lemma is also included for the sake of completeness.
Identities (25) and (26) play crucial roles in the proof.

Lemma 1. Suppose M is a complete non-compact smooth metric measure space. Let Ω ⊂ M
and X, Xφ ∈ L1

loc(Ω) be vector fields and hX ∈ L1
loc(Ω) be a non-negative function where (i)

hX ≤ divφ(e−φX), (ii) h1−p
X |Xφ|p ∈ L1

loc(Ω). Then the inequality

∫
Ω

|X|p

hp−1
X

|∇ f |pe−φdv ≥ p−p
∫

Ω
| f |phXe−φdv (27)

holds for any f ∈ C∞
0 (Ω).

Proof. Note that the RHS of (27) is finite since f ∈ C∞
0 (Ω). Now applying the identities (25)

and (26), then, the dominated convergence and the Hölder’s inequality imply∫
Ω
| f |phXe−φdv ≤

∫
Ω
| f |pdivφ(Xφ)e−φdv

= −p
∫

Ω
| f |p−2 f 〈∇ f , X〉e−φdv

≤ p
∫

Ω
| f |p−1h

p−1
p

X |X|h
− p−1

p
X |∇ f |e−φdv

≤ p
(
| f |phXe−φdv

) p−1
p
(

h1−p
X |X|p|∇ f |pe−φdv

) 1
p
.

The proof is concluded by raising both sides to the power of p and then collecting the like
quantities on one side.

Remark 3. Suppose one chooses hX = divφ(Xφ), then inequality (27) becomes

∫
Ω

|X|p
|divφ(Xφ)|p−1 |∇ f |pe−φdv ≥ p−p

∫
Ω
| f |pdivφ(Xφ)e−φdv. (28)

Define a function V in L1
loc(Ω) whose weak partial derivatives of order up to two are

in L1
loc(Ω) and LV ≥ 0. The choice Xφ = e−φ∇V implies

hX = divφ(Xφ) = eφdiv(e−φ∇V) = ∆V − 〈∇φ,∇V〉 = LV ≥ 0,

and then (28) yields ∫
Ω

|∇V|p
|LV|p−1 |∇ f |pe−φdv ≥ p−p

∫
Ω
| f |p|LV|e−φdv. (29)
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Another choice of a vector field Xφ = e−φ|∇V|p−2∇V, whenever LpV = divφ(e−φ|∇V|p−2∇V)

≥ 0, yields the following:

∫
Ω

|∇V|p(p−1)

|LpV|p−1 |∇ f |pe−φdv ≥ p−p
∫

Ω
| f |p|LpV|e−φdv. (30)

The above therefore extends the results in [9] to complete smooth metric measure
spaces. We obtain a replicate of results in [10] if the potential is constant or zero. Note that
one can derive from the last two expressions specific inequalities of the form∫

M
|∇ f |pe−φdv ≥ cp

∫
M

| f |p
ρp e−φdv (31)

with a sharp constant by choosing a suitable function V. For instance, a choice of

V :=


ρ2−p, 1 < p < 2
ln ρ, p = 2
−ρ2−p, 2 < p < m

while requiring LV ≥ C/ρ and |∇ρ| = 1 will yield (31) with constant cp = ((C+ 1− p)/p)p.
This is a special case of Theorem 5 (cf. inequality (7); see also [3,10]).

Proof of Theorem 5. In order to apply Lemma 1, define a vector field Xφ = −e−φρ1−p|∇ρ|p−2∇ρ

and a function hX = (p− 1)ρ−p|∇ρ|p. Let 0 < ε < 1 and ρε = ρ + ε. Obviously, since
1
ρε
≤ 1

ε and ρ ∈ W1,p
loc (Ω) one has that Xε

φ = −e−φρ
1−p
ε |∇ρε|p−2∇ρε ∈ L1

loc(Ω), hXε =

(p− 1)ρ−p
ε |∇ρε|p ∈ L1

loc(Ω) and h1−p
Xε |Xε

φ|p = (p− 1)1−p|e−φ|p ∈ L1
loc(Ω), which implies

that condition (ii) in Lemma 1 holds. Condition (i) of the Lemma is fulfilled, provided that
for every non-negative function ϕ ∈ C1

0(Ω)

(p− 1)
∫

Ω

|∇ρε|p

ρ
p
ε

ϕe−φdv ≤ −
∫

Ω
ϕdiv

( |∇ρε|p−2∇ρε

ρ
p−1
ε

)
e−φdv

=
∫

Ω

〈 |∇ρε|p−2∇ρε

ρ
p−1
ε

,∇ϕ
〉

e−φdv
(32)

holds. Note that the last inequality is equivalent to the condition −Lp(ρε) ≥ 0 in the sense
of distribution, that is, for ϕ ∈ C1

0(Ω)∫
M
|∇ρε|p−2〈∇ρε,∇ϕ〉e−φdv ≥ 0. (33)

Choosing ϕ := ρ
−(p−1)
ε ψ into (33), we obtain

0 ≤
∫

Ω

〈 |∇ρε|p−2∇ρε

ρ
p−1
ε

,∇ψ
〉

e−φdv− (p− 1)
∫

Ω

|∇ρε|p

ρ
p
ε

ψe−φdv,

which is the same as inequality (32) by replacing φ by ψ. Thus, to show that condition
(i) of Lemma 1 is fulfilled, it is enough to prove inequality (32). The proof of the identity
follows by mimicking the proof of identity (2.19) in [10]. Finally, the required inequality (22)
follows from the application of (27) in Lemma 1 and sending ε→ 0.

Lastly, in this section, we give two possible generalizations of Theorem 5. The first one
is due to [10] while the second is due to [3], the proofs of both are similar to the proof of
Theorem 5, depending on the choice of the vector field X viz-a-viz Xφ and function hX in
Lemma 1. The results are the following.
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Theorem 6. Let Ω and M be as defined in Theorem 5. For p ∈ (1, ∞), α ∈ R and ρ ∈W1,p
loc (Ω)

satisfying ρα−p|∇ρ|p, ρα ∈ L1
loc(Ω) and −tLp(ρ) ≥ 0, where t := (p− 1− α) 6= 0, on Ω in the

distribution sense. Then for any f ∈ C1
0(Ω), the inequality∫

M
ρα|∇ f |pe−φdv ≥ (Dα,p)

p
∫

Ω
ρα−p| f |p|∇ρ|pe−φdv (34)

holds on Ω, where Dα,p := (|p− 1− α|)/p.

Theorem 7. Let Ω and M be as defined in Theorem 5. For p ∈ (1, ∞), α, γ ∈ R, α 6= 0 and
ρ ∈ W1,p

loc (Ω) satisfying ρp+γ, ργ|∇ρ|p, ρ(α−1)(p−1)|∇ρ|p−1 ∈ L1
loc(Ω) and −Lp(tρα) ≥ 0,

where t := α[(α − 1)(p − 1) − (γ + 1)] ≥ 0, on Ω in the distribution sense. Then for any
f ∈ C1

0(Ω), the inequality∫
M

ρp+γ|∇ f |pe−φdv ≥ (Dα,γ,p)
p
∫

Ω
ργ| f |p|∇ρ|pe−φdv (35)

holds on Ω, where Dα,γ,p := t/p.

Brief Discussion on the Proof of the Last Two Results

For Theorem 6, one can argue as in [10] that by choosing the vector field X :=
−(p− 1− α)ρα+1−p|∇ρ|p−2∇ρ and function hX := (p− 1− α)2ρα−p|∇ρ|p and later ϕ =
ρ−(p−1−α)ψ ∈ C∞

0 (Ω), one will be able to apply Lemma 1.
Similarly for Theorem 7, one can define the vector field by X := −αργ+1|∇ρ|p−2∇ρ

and function hX := tργ|∇ρ|p, t = α[(α− 1)(p− 1)− (γ+ 1)] ≥ 0 and later the test function
ϕ = ρ−t/αψ, in order to be able to apply Lemma 1 as in [3].
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