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Abstract: Identifying parameters in photovoltaic (PV) cell and module models is one of the primary
challenges of the simulation and design of photovoltaic systems. Metaheuristic algorithms can
find near-optimal solutions within a reasonable time for such challenging real-world optimization
problems. Control parameters must be adjusted with many existing algorithms, making them
difficult to use. In real-world problems, many of these algorithms must be combined or hybridized,
which results in more complex and time-consuming algorithms. This paper presents a new artificial
parameter-less optimization algorithm (APLO) for parameter estimation of PV models. New mutation
operators are designed in the proposed algorithm. APLO’s exploitation phase is enhanced by each
individual searching for the best solution in this updating operator. Moreover, the current best, the
old best, and the individual’s current position are utilized in the differential term of the mutation
operator to assist the exploration phase and control the convergence speed. The algorithm uses a
random step length based on a normal distribution to ensure population diversity. We present the
results of a comparative study using APLO and well-known existing parameter-less meta-heuristic
algorithms such as grey wolf optimization, the salp swarm algorithm, JAYA, teaching-learning
based optimization, colliding body optimization, as well as three major parameter-based algorithms
such as differential evolution, genetic algorithm, and particle swarm optimization to estimate the
parameters of PV the modules. The results revealed that the proposed algorithm could provide
excellent exploration–exploitation balance and consistency during the iterations. Furthermore, the
APLO algorithm shows high reliability and accuracy in identifying the parameters of PV cell models.

Keywords: solar cells; photovoltaic modeling; metaheuristic algorithm; global optimization; power
system management; renewable energy

MSC: 68T20; 90C26

1. Introduction
1.1. Background

Because of solar energy’s outstanding environmental, technical, and economic prop-
erties, increasing the integration of solar photovoltaic systems with electric utilities is
inevitable [1]. Solar radiation is abundant in most areas of the world. These systems can be
used for energy generation, enabling customers to invest quickly in their electrical systems.
Photovoltaic (PV) systems convert solar energy into electricity. Solar energy’s potential
for generating electricity depends on various factors, including temperature and solar
radiation [2,3]. Therefore, it is vital to assess how PV systems perform in operation to be
modeled, managed, and optimized for future operations [4].
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The inherent characteristics of PV cells give rise to a nonlinear power–voltage (P–V)
curve, which is highly influenced by the environment. Ideally, a PV panel should operate
at maximum efficiency at the peak of the curve. A proper maximum power point tracking
(MPPT) technique enables PV systems to be used more efficiently in different environmental
conditions, requiring accurate and reliable data regarding PV parameters [5,6]. Unknown
parameters are the most significant contributors to PV models. It is, therefore, crucial to
identify the model’s unknown parameters early using a feasible optimization algorithm,
regardless of the model used. Accordingly, a robust optimization algorithm to accurately
estimate the parameters of PV models and track the maximum power point under different
conditions is urgent.

1.2. Related Works

Generally, solar PV systems can be optimized using deterministic and metaheuristic
algorithms. Due to their reliance on gradient information and sensitivity to initial points,
deterministic algorithms are unreliable. Moreover, because of their nonlinearity, these
classical algorithms also have trouble capturing local optima in the nonconvex space the
equivalent PV circuits created. The result may be an inaccurate estimation of parameters
and, consequently, a failure to track the maximum power point [7–9].

Metaheuristic optimization techniques are considered modern and straightforward
alternatives to deterministic algorithms. In general, metaheuristic algorithms fall into two
main categories: single-solution-based and multiple-solution-based algorithms [10]. It is
understood that the former algorithm uses an iterative process to achieve a superior solution
by starting with a randomly selected candidate solution and moving and improving it in
a promising search space iteratively. A common single-solution metaheuristic algorithm
is simulation annealing (SA) [11]. Multiple-solution algorithms employ several random
solutions to enhance their performance.

In classifications of population-based metaheuristic algorithms, evolutionary algo-
rithms, physics algorithms, chemistry algorithms, and swarm-based algorithms are all
included [10,12]. Based on evolution in nature, evolutionary-based metaheuristic algo-
rithms move populations based on improvements and movements. The physics-based
metaheuristic algorithm enhances the initial population through search space by using
principles established based on the physics’ lows, such as mechanics, relativity, gravity,
electrodynamics, electromagnetism, and optics. A chemical reaction and molecule charac-
teristics are utilized to develop chemistry-based algorithms. Living organisms, including
birds, ants, swarms, schools, and so on, are modeled using swarm-based algorithms. Some
known population-based metaheuristic algorithms are introduced in Table 1.

Table 1. The classification of population-based metaheuristic algorithms.

Category Most Popular Algorithms and Abbreviations

Evolutionary-based

Genetic algorithm (GA) [13]
Evolutionary programming (EP) [14]

Genetic programming (GP) [15]
Biogeography-based optimizer (BBO) [16]

Differential evolution (DE) [17]
Evolutionary strategy (ES)

Physics-based

Gravitational Ssearch Algorithm (GSA) [18]
Charged system search (CSS) [19]

River formation dynamics algorithm (RFDA) [20]
Big bang–big crunch (BB-BC) [21]
Extremal optimization (EO) [22]

Galaxy-based search algorithm (GBSA) [23]
Central force optimization (CFO) [24]

Ray optimization (RO) [25]
Water cycle algorithm (WCA) [26]
Intelligent water drops (IWD) [27]

Chaos optimization algorithm (COA) [28]
Electromagnetism-like mechanism (EM) [29]
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Table 1. Cont.

Category Most Popular Algorithms and Abbreviations

Chemistry-based
Artificial chemical reaction optimization algorithm (ACROA) [30]

Artificial chemical process (ACP) [31]
Gases Brownian motion optimization (GBMO) [32]

Swarm-based

Particle swarm optimization (PSO) [33]
Cuckoo search (CS) [34]

Ant lion optimizer (ALO) [35]
Bees algorithm (BA) [36]

Shuffled frog-leaping algorithm (SFLA) [37]
Bat algorithm (BA) [38]

Moth–flame optimization (MFO) [39]
Bacterial foraging algorithm (BFA) [40]

Krill herd (KH) [41]
Whale optimization algorithm (WOA) [42]

Ant colony algorithms (ACO) [43]
Grey wolf optimizer (GWO) [44]

Firefly algorithm (FA) [45]
Artificial bee colony (ABC) [46]

Fruit fly optimization algorithm (FOA) [47]
Glowworm swarm optimization (GSO) [48]

Unlike deterministic algorithms, metaheuristic algorithms find near-optimal solutions
within reasonable time for challenging real-world optimization problems. As a result, many
optimization problems in science and engineering have been solved thanks to easy imple-
mentation and efficiency (see sample [49–54]). Hence, researchers have been motivated to
develop successful algorithms inspired by natural and artificial processes, to solve complex
optimization problems.

In recent years, metaheuristic algorithms have been used to optimize PV systems
more accurately and flexibly. The development of parameterless metaheuristic algorithms
for optimal parameter identification of solar PV cells has been the subject of considerable
research. For example, for the extraction of parameters from PV cell-based single and
double diode models [55], the salp swarm algorithms (SSA) were used. The JAYA algorithm
was developed by Rao [56] as a powerful heuristic for solving optimization problems. It
has been demonstrated by [57] that JAYA can be used to estimate PV cell and module
parameters based on performance-guided criteria. Through a chaotic learning process,
ref. [58] proposed an improved JAYA algorithm (IJAYA) to find PV model parameters
reliably and accurately. In Ref. [59], TLBO was numerically simulated interactively and
applied to various solar cells. TLBO was improved and simplified by [60] using an elite
strategy and a local search to identify the parameters of the solar PV cells. GOTLBO
(generalized oppositional TLBO) was derived from generalized opposition-based learning
and was employed to identify solar cell models’ parameters [61]. The modified salp swarm
algorithm (MSSA) has been used as an efficient metaheuristic for identifying PV model
parameters [62]. However, according to the results of this modification, sufficient robust
solutions haven’t been achieved for all PV models.

Examples of metaheuristic algorithms with control parameters for optimal parameter
estimation of PV cells include DE, GA, and PSO. An estimation method for solar PV
module parameters based on penalized differential evolution (P-DE) was proposed by [63].
Adding new scaling factors and crossover rates to adaptive DE improved the parameter
estimation [64]. The genetic algorithm was utilized by [65] to determine solar cells’ I-
V characteristics. PSOs have been successfully applied in some modified and hybrid
forms to identify the parameters of solar cells. For instance, the chaotic heterogeneous
comprehensive learning particle swarm optimizer was proposed by [66] for dynamic
and static PV models’ parameter identification. In Ref. [67], the flexible particle swarm
optimizer was presented for parameter extraction of different PV models. A classified
perturbation mutation-based particle swarm optimization was introduced by [68]. In
Ref. [69], a niche particle swarm optimization in parallel computing was proposed and
applied to identify the unknown parameters of PV cells. A fractional chaotic ensemble
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particle swarm optimizer was utilized for estimating the parameters of three models of PV
cells [70]. Exploitation and exploration phases were balanced effectively to mitigate the
premature convergence associated with PSO [71]. A variation of opposition-based GOA
(OBGOA) has been proposed by [72] to identify the electrical parameters of various PV
models. A modified spotted hyena optimization algorithm MSHOA was proposed by [73]
to boost the optimal solution’s performance through an accelerated function. In Ref. [74], a
hybrid optimization algorithm called hARS-PS was presented that uses adaptive rat swarm
optimization (ARSO) and pattern search (PS) to extract PV parameters.

1.3. Motivation

Estimating the parameters of PV systems has been widely done using metaheuristic
algorithms. Nonetheless, researchers must develop algorithms that efficiently take ad-
vantage of these two factors. The first issue with most metaheuristic algorithms in PV
system optimization is determining their particular control parameters. For instance, DE
needs the crossover probability and scaling factor, and GA needs crossover and mutation
rates. In PSO, the inertia weight and cognitive parameters should be defined. Choosing
an incorrect parameter set can distract the user from the main problem and disrupt the
algorithms. A parameter-free algorithm, such as TLBO, JAYA, SSA, colliding bodies opti-
mization (CBO), and GWO, makes optimization more effortless and efficient by avoiding
adjusting parameters. Note that a parameter-less algorithm in this paper must only deter-
mine standard parameters, including the number of iterations (or function evaluations)
and initial population size.

Secondly, no single algorithm can solve all optimization problems, according to
Wolpert and Macready’s “No Free Lunch” theorem [75]. Since the theorem was pub-
lished 30 years ago, researchers have significantly improved metaheuristic algorithms and
developed new ones. Nevertheless, many articles related to improving the performance of
these original algorithms show their weakness in effectively and reliably detecting the pa-
rameters of different photovoltaic models. Consequently, developing new ideas that result
in simple and efficient metaheuristic algorithms without requiring additional parameter
settings and modifications for practical optimization problems is necessary.

1.4. Contribution

For the reasons outlined above, this paper proposes a metaheuristic algorithm called
APLO for the parameter estimation of PV models. The algorithm is efficient and straight-
forward. In each iteration of the algorithm, each individual is updated using the current
best, last best, and individual’s current solutions. The individual moves to a new position
if a better solution is obtained or remains unchanged. The process is iterated until all indi-
viduals converge on the best solution or a specified criterion is reached. The performance
of the proposed APLO for the problems of optimal parameters estimation of PV models is
evaluated and compared with five well-known parameterless metaheuristic algorithms,
i.e., TLBO, JAYA, SSA, CBO, GWO, and three conventional algorithms such as DE, GA, and
PSO. Moreover, in some cases, the related results are also reported from the literature and
are compared.

The main contributions of this paper are:

• A novel, simple, and efficient parameterless optimization algorithm is proposed;
• For parameter estimation of PV models, APLO is tested in a series of experiments;
• High accuracy and reliability in finding the PV models’ unknown parameters;
• Reasonable performance of the proposed algorithm compared with other original,

improved, and hybrid metaheuristic algorithms.

1.5. Paper Structure

The remainder of the paper is organized as follows. The mathematical formulation
of the proposed APLO algorithm is presented in Section 2. Detailed descriptions of the
single-diode, double-diode, and PV module models are presented in Section 3. Section 4
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simulates and evaluates the results of the experiment. Lastly, Section 5 summarizes some
concluding remarks.

2. APLO Algorithm
2.1. Mathematical Model

The main steps of the proposed APLO algorithm are mathematically described in
this section.

2.1.1. Initialization

In most metaheuristic algorithms, an initial population is randomly generated. Then,
this population is improved in the problem’s solution space during the iterative process
using a proper evolutionary mechanism. APLO is an artificial population-based meta-
heuristic algorithm that follows the general procedure of evolutionary algorithms such
as the DE algorithm. The population consists of npop individuals, which ith individual
is represented by Pi(t) = [Pi,1(t), . . . , Pi,D(t)]|i = 1, 2, . . . , npop at iteration t. The initial
population can be created as follows:

Pi,j(t) = pmin,j + rand.
(

pmax,j − pmin,j
)
; ∀t = 1, ∀i = 1, 2, . . . , npop; ∀j = 1, 2, . . . , D (1)

where pmin,j and pmax, j define the lower and upper bounds of the problem’s decision
variable j. rand is a uniform distribution value, and D is the dimension of the problem.

2.1.2. Search Operator

After generating the initial population, they are committed to searching around the
current best, PB(t), using the mean knowledge obtained from the last best, PL(t), to find a
better solution. Therefore, for each individual i, the new position of its arbitrary elements,
i.e., Yi, Pi,j(t + 1), is updated using the following equation:

Pi,j(t + 1) = PB,j(t) +
r1,i

r2,i

(
PB,j(t)−

PL,j(t) + Pi,j(t)
2

)
; ∀i = 1, 2, . . . , npop; ∀j ∈ Yi (2)

where r1, and r2 are chosen randomly from the normal distribution function. The random
value r1/r2 is the main factor for balancing the exploration and exploitation phases of the
proposed APLO algorithm. An example of this random value over the 1000 iterations is
shown in Figure 1. Large values cause Pi(t + 1) to leave a feasible space for the problem.
Hence, by applying restrictions related to each variable’s upper and lower bounds, the
violent variables are replaced by new feasible solutions. This preserves diversity in the
population during the algorithm process. Thus, it helps the algorithm to search the solutions
globally (exploitation phase). In contrast, small random values assist the algorithm in
searching locally around the current best solution, helping the exploration phase. It is
worth mentioning that an important factor in creating stable behavior in the proposed
algorithm is that the updating operation is applied only to a part of the variables of
each individual.
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Figure 1. A sample of random value over 1000 iterations.

A representative example of updating the equation in 2D space is shown in Figure 2.
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Figure 2. A schematic of position updating in the APLO algorithm.

Some elements of the test vector may exceed their allowed range. Various algorithms
may be used to face this challenge. In this article, a simple algorithm is considered for it,
such that every element of the new vector that is out of the lower or upper range is replaced
with a random value as follows:

Pi,j(t + 1) = pmin,j + rand.
(

pmax,j − pmin,j
)
; if Pi,j(t + 1) < pmin,j

Pi,j(t + 1) = pmin,j + rand.
(

pmax,j − pmin,j
)
; if Pi,j(t + 1) < pmin,j

(3)
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This algorithm can effectively create diverse solutions during the algorithm process. In
addition, random long steps created by r1/r2 can contribute to this feature of the algorithm
and thus prevent its premature convergence.

2.1.3. Selection

The selection mechanism choices the better solution from the old position Pi(t) and
the newly generated position Pi(t + 1) based on their fitness values, i.e., f (.). Hence, for
instance, the following selection operator is utilized for the minimization problem:

Pi(t + 1) =
{

Pi(t + 1); if f (Pi(t + 1)) < f (Pi(t))
Pi(t); else.

(4)

PB(t) and PL(t) continually are updated after each function evaluation. The procedure
above continues until the termination conditions are met.

The flowchart of the proposed APLO algorithm is outlined in Figure 3, and the
pseudocode of the APLO algorithm (Algorithm 1) is defined as follows:

Algorithm 1: The pseudo-code of APLO

Input: MaxIter , npop
Output: the best solution

1: Initialize the npop population randomly using Equation (1)
2: Calculate the fitness values of all individuals
3: Determine the current best and last best solutions
4: t← 1
5: While t < Max Iter do
6: for i = 1 : npop do
7: Update some arbitrary elements of individual i using Equations (2) and (3)
8: Calculate the fitness of individual i
9: Accept the updated solution if it is better than the old one using Equation (4)
10: Update the last best and current best solutions
11: t← t + 1
12: end
13: end

2.2. Algorithm Complexity

An algorithm’s complexity plays a vital role in assessing its performance. As with all
metaheuristic algorithms, APLO requires O(n× npop) times to initialize each population
time, where n indicates the number of objective functions and npop represents the number
of populations. Every algorithm has anO(Max Iter× f c) complexity, where Max Iter is the
predefined maximum number of iterations. For a given problem, f c represents the complexity
of the evaluation function. Simulating the entire process would requireO(N). Accordingly,
the algorithm has a computational complexity ofO(N×Max Iter× f c× n× npop).



Mathematics 2022, 10, 4617 8 of 32Mathematics 2022, 10, x FOR PEER REVIEW 8 of 34 
 

 

Start

Calculate the fitness of all search agents

Initiate algorithm parameters 

Save the  current best and last best solutions

Update some arbitrary elements of search agent i 
position based on  Equations  )2  ( and  )3 (

Check the violations

Evaluate the fitness of individual i

t=t+1t>MaxIter?

Print the best solution

No

End

Set t=1

Set i=1

Accept the updated solution if it is better than the 
old one using Equation  )4 (

Generate the initial population using 
Equation  )1 (

i > npop?

i=i+1

NoYes

Yes

Update the last best and current best 
solutions

 
Figure 3. Flowchart of APLO algorithm. 

2.2. Algorithm Complexity 
An algorithm’s complexity plays a vital role in assessing its performance. As with all 

metaheuristic algorithms, APLO requires 𝒪(𝑛 × 𝑛𝑝𝑜𝑝) times to initialize each population 
time, where 𝑛 indicates the number of objective functions and 𝑛𝑝𝑜𝑝 represents the num-
ber of populations. Every algorithm has an 𝒪(𝑀𝑎𝑥_𝐼𝑡𝑒𝑟 × 𝑓𝑐)  complexity, where 𝑀𝑎𝑥_𝐼𝑡𝑒𝑟 is the predefined maximum number of iterations. For a given problem, 𝑓𝑐 rep-
resents the complexity of the evaluation function. Simulating the entire process would 
require 𝒪(𝑁) . Accordingly, the algorithm has a computational complexity of 𝒪(𝑁 ×𝑀𝑎𝑥_𝐼𝑡𝑒𝑟 × 𝑓𝑐 × 𝑛 × 𝑛𝑝𝑜𝑝). 

Figure 3. Flowchart of APLO algorithm.

3. The Problem of PV Models’ Parameter Extraction

This section introduces three standard models of photovoltaic cells, i.e., SDM, DDM,
and PV module models. Then, the mathematical model of the problem of finding the
optimal parameters of these three PV models is expressed.

3.1. Single-Diode Model (SDM)

PV systems must be mathematically modeled, considering their practicalities to show
their real-time characteristics. PV arrays can be modeled from their basic unit, which is
the cell. Due to its simplicity and ease of implementation, the SDM is popular. A parallel
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resistor, a series resistor, a diode, and a current source make up the equivalent circuit for
the single diode model, as shown in Figure 4. To determine the output current, IPV , the
following formula can be used [65]:

IPV = Iph − (Ish + Id) (5)

where the photogenerated, the diode, and the shunt resistor currents, respectively, are
represented by Iph, Id, and Ish. Shockley’s equation and Kirchhoff’s voltage law (KVL) can
be used to calculate Id and Ish as follows:

Id = Isd

[
exp

(
VPV + Rs IPV

mv

)
− 1
]

(6)

Ish =
VPV + Rs IPV

Rsh
(7)

where Isd indicates the diode reverse saturation current; IPV denotes the cell output voltage;
Rsh and Rs represent the shunt and series resistances, respectively; moreover, the non-
physical diode ideality factor is defined by m. v in Equation (6) is the junction thermal
voltage that can be expressed as follows:

v =
kT
q

(8)
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Boltzmann’s constant, k, is 1.8865033× 10−23 J/K, T is junction temperature, and q
is electron charge (1.60217646× 10−19 C). The output current IPV can be expressed in the
following manner by combining Equations (5)–(8):

IPV = Iph −
VPV + Rs IPV

Rsh
− Isd

[
exp

(
VPV + Rs IPV

mv

)
− 1
]

(9)

The single-diode model requires the identification of five unknown parameters, that
includes Iph, Isd, Rsh, Rs, and m.

3.2. Double Diode Model (DDM)

In SDM, recombination current is ignored in the depletion region despite being widely
used to simulate PV cells [37]. DDM solves this problem by having three components:
a photo-generated current source, a shunt resistance, two rectifying diodes, and a series
resistance, as shown in Figure 5.
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As a result of KCL, the output current IPV in DDM can be calculated as follows:

IPV = Iph − (Ish + Id2 + Id1) (10)

As shown in Figure 4, Id1 is the current flowing through the first diode (D1), and Id2
is the current flowing through the second diode (D2). It is also possible to express the
magnitude of these currents in terms of the Shockley diode equation as follows:

Id1 = Isd,1

[
exp

(
VPV + Rs IPV

m1v

)
− 1
]

(11)

Id2 = Isd,2

[
exp

(
VPV + Rs IPV

m2v

)
− 1
]

(12)

There are two ideality factors for diodes, m1 and m2, as well as diffusion and saturation
currents, Isd,1 and Isd,2, respectively. Hence, Equation (10) can be rewritten as follows by
substituting Equations (7), (11) and (12):

IPV = Iph −
VPV + Rs IPV

Rsh
− Isd,2

[
exp

(
VPV + Rs IPV

m2v

)
− 1
]
− Isd,1

[
exp

(
VPV + Rs IPV

m1v

)
− 1
]

(13)

Compared to SDM, DDM requires more parameters to be identified, i.e., Iph, Isd,2, Isd,1,
Rsh, Rs, m1, and m2.

3.3. PV Module Model

Multiple PV cells are arranged parallel or in series in PV modules to increase current
and voltage. The equivalent circuit model of the PV module is shown in Figure 6. The PV
module model output current can be calculated as follows:

IPV = Np Iph −
VPV +

[
Ns/Np

]
Rs IPV[

Ns/Np
]
Rsh

− Np Isd

[
exp

(
VPV +

[
Ns/Np

]
Rs IPV

mv

)
− 1

]
(14)

where Np represents the number of solar cells in parallel and Ns represents the number of
solar cells in series. The PV module has five unknown parameters, similar to the SDM (Iph,
Isd, Rsh, Rs, and m).
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3.4. Problem Formulation of PV Models’ Parameters Extraction

Based on measurements of I-V from actual PV cells and PV modules, mathematical
models for PV models aim to estimate unknown parameters with remarkable accuracy.
Experimental and built I-V data differences are commonly minimized with an optimization
technique. It is, therefore, common to consider the minimization of root mean square
error (RMSE) between the estimated current (IPV,n) and experiment current ( ÎPV,n) as an
objective function:

Minimize RMSE =

(
1
N

N

∑
n=1

(
ÎPV,n − IPV,n

)2
)1/2

(15)

S.t.
Iph ≤ Iph ≤ Iph (16)

Rs ≤ Rs ≤ Rs (17)

Rsh ≤ Rsh ≤ Rsh (18)

Isd ≤ Isd ≤ Isd (19)

m ≤ m ≤ m (20)

Isd ≤ Isd,i ≤ Isd (21)

m ≤ mi ≤ m (22)

where N is the number of experimental data. ÎPV,n and IPV,n are the nth measured samples
and the calculated value of PV output current based on each model. Constraints (16)–(20)
indicate the upper and lower limits on the decision variables (unknown parameters) for
the SDM and PV module model. Constraints (16)–(18), (21) and (22) indicate the upper and
lower limits on the decision variables for the DDM.

In Equation (15), the estimated PV output current at each measured sample n can be
calculated using Equations (23)–(25) for SDM, DDM, and PV module models, respectively.

IPV,n = Iph −
V̂PV,n + Rs ÎPV,n

Rsh
− Isd

[
exp

(
V̂PV,n + Rs ÎPV,n

mv

)
− 1

]
(23)

IPV,n = Iph −
V̂PV,n + Rs ÎPV,n

Rsh
− Isd,2

[
exp

(
V̂PV,n + Rs ÎPV,n

m1v

)
− 1

]
− Isd,1

[
exp

(
V̂PV,n + Rs ÎPV,n

m2v

)
− 1

]
(24)

IPV,n = Np Iph −
V̂PV,n +

[
Ns/Np

]
Rs ÎPV,n[

Ns/Np
]
Rsh

− Np Isd

[
exp

(
V̂PV,n +

[
Ns/Np

]
Rs ÎPV,n

mv

)
− 1

]
(25)

4. Experimental Results

In this section, we evaluate APLO’s effectiveness for parameter estimation with three
types of PV models: SDM (Ns = Np = 1), DDM (Ns = 1, Np = 2), and the PV module
(Ns = 36, Np = 1). As a standard experiment for SDM and DDM, current–voltage data
were collected on silicon solar cells with a diameter of 57 mm (R.T.C. France) [76]. The PV
cell characteristics are as follows: Voc = 0.5728 V, Isc = 0.7603 A, Vm = 0.4507 V, and
Im = 0.6894 A. In addition, a PV module (Photo Watt-PWP 201) with 36 polycrystalline
PV cells is used under 1000 W/m2 irradiance [76]. This PV module’s characteristics are
as follows: Voc = 16.778 V, Isc = 1.030 A, Vm = 12.649 V, and Im = 0.912 A. A wide
range of algorithms has been developed to estimate the parameters of PV models based
on experimental data. Table 2 provides the minimum and maximum limits for PV model
parameters [58].
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Table 2. Parameters’ upper and lower ranges.

Model
Parameters’ Limits

Iph (A) Iph (A) Isd (µA) Isd (µA) m m Rs (Ω) Rs (Ω) Rsh (Ω) Rsh (Ω)

SDM 0 1 0 1 1 2 0 0.5 0 100
DDM 0 1 0 1 1 2 0 0.5 0 100

PV module 0 2 0 50 1 50 0 2 0 2000

Moreover, eight well-known algorithms, including DE [17], GA [13], PSO [33], the
original parameterless algorithms such as GWO [44], TLBO [77], JAYA [56], SSA [78],
CBO [79], are selected to validate and verify the effectiveness of APLO. It is assumed
that the population size and the maximum number of iterations are set to 50 and 1000
(i.e., 50,000 evaluations of each function), respectively. The other parameters of the algo-
rithm are maintained as they were in the original literature. To perform the statistical
analysis, each algorithm is run 30 times independently in MATLAB 2021b.

4.1. Exploration and Exploitation Analysis

One of the effective factors in creating a balance between exploration and exploitation
is ensuring sufficient diversity among individuals. This can prevent an algorithm from
getting trapped in locally optimal solutions and result in a better solution. In this section,
some experiments are performed to evaluate the exploration–exploitation and diversity in
the nine applied metaheuristics on the SDM problem. The percentage of exploration and
exploitation, visualizing the two abilities and population diversity in the individuals of the
competitive algorithms through the iterations, is shown in Figures 7 and 8, respectively.
These numerical measures are calculated based on the procedure reported in [80].
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It can be observed from Figure 7 that, in GWO and SSA algorithms, unlike other algo-
rithms, the percentage of exploration during iterations is much higher than the exploitation.
This is evidenced by Figure 9, where the average values of the exploration-exploitation
in these two algorithms are 72%:28% and 83%:17%, respectively. As a result, these two
algorithms are explorative. Moreover, regarding population diversity, SSA exhibits the
highest values during the iterations (see Figure 8). GWO gives the second-highest diver-
sity among the applied algorithms. In contrast, the most exploitation and most minor
exploration capabilities are provided by CBO and GA, with mean values of 97% and 3%,
respectively. This is further evidenced by the diversity measures illustrated in Figure 8.
These two algorithms couldn’t provide good diversity throughout the iterations. Hence,
premature convergence is the main weakness of these algorithms.
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Moreover, all algorithms except SSA and GWO, as shown in Figure 7, are explorative
at the beginning. After a few iterations, they were threatened as exploitative algorithms.
Additionally, the diversity of the population in these algorithms is high initially. After a
few iterations, it drops and remains approximately consistent.

The exploration–exploitation and diversity measurements alone cannot show the su-
periority of an algorithm in solving an optimization problem compared to other algorithms.
A better understanding of this goal can be gained by analyzing the characteristic of con-
vergence of these algorithms as shown in Figure 10. The exploration–exploitation balance
of 18%:82% in APLO provides the best convergence performance. The final best solution
obtained by the proposed algorithm is 9.86 × 10−4, while the best solution obtained by
the TLBO algorithm is 1.20 × 10−3. TLBO can provide an exploration–exploitation ratio
of 17%:83%, which is very close to the proposed algorithm. The explorative algorithms
perform the worst performance, i.e., SSA and GWO, which fall into the local optimal after a
few iterations.

4.2. Population Size Analysis

The performance of the metaheuristics in solving specific optimization problems can
be affected by the population size. Six different populations of 10, 20, 30, 40, 50, and 60
are evaluated for our algorithm while solving the SDM, DDM, and PV module models’
parameter identification. The APLO algorithm was run 30 times for each population size
independently, and the stop criteria were set at 50,000 function evaluations. The statistical
results of this experiment in terms of minimum (Min), average (Mean), maximum (Max),
and standard deviation (SD) are summarized in Table 3. Moreover, a Freidman rank test is
also applied to compare the algorithm’s performance in different cases of the population
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size. As can be seen form Table 3, the best-suited population size on SDM and DDM
problems is npop = 40, with mean rank in Freidman of 2.433 and 3.1, respectively. While
the population size of 50 exhibits the best when solving the PV module problem with a
mean rank of 3.1. Overall, from the last row of Table 3, the sum of Freidman tests over
three PV models indicates that the population size of 40 results in the best performance to
solve these problems. The population size of 30 and 50 are the second-best and third-best
options. However, to perform a fair comparison with other state-of-the-art algorithms, the
population size of 50 is adapted in the following sections.
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Table 3. Statistical analysis of population size on the performance of APLO for different PV models
(the significant values are bolded).

Problem Measure npop = 10 npop = 20 npop = 30 npop = 40 npop = 50 npop = 60

SDM

Min 9.860219 × 10−4 9.860219 × 10−4 9.860219 × 10−4 9.860219 × 10−4 9.860219 × 10−4 9.860219 × 10−4

Mean 9.860219 × 10−4 9.860219 × 10−4 9.860219 × 10−4 9.860219 × 10−4 9.860219 × 10−4 9.860219 × 10−4

Max 9.860219 × 10−4 9.860219 × 10−4 9.860219 × 10−4 9.860219 × 10−4 9.860219 × 10−4 9.860219 × 10−4

SD 4.905627 × 10−12 4.149942 × 10−16 8.666882 × 10−17 1.126621 × 10−16 9.397154 × 10−17 8.574883 × 10−17

Mean rank in Freidman 5.96667 3.61667 2.73333 2.43333 3.1 3.15
Sum rank Freidman 179 108.5 82 73 93 94.5

DDM

Min 9.829117 × 10−4 9.826894 × 10−4 9.824958 × 10−4 9.824849 × 10−4 9.827377 × 10−4 9.857074 × 10−4

Mean 1.008130 × 10−3 1.006467 × 10−3 1.003314 × 10−3 1.011153 × 10−3 1.013609 × 10−3 1.022566 × 10−3

Max 1.191914 × 10−3 1.131532 × 10−3 1.191268 × 10−3 1.402166 × 10−3 1.338409 × 10−3 1.189575 × 10−3

SD 4.099853 × 10−5 3.637408 × 10−5 4.636394 × 10−5 7.838701 × 10−5 7.170668 × 10−5 5.765975 × 10−5

Mean rank in Freidman 3.93333 3.43333 3.16667 3.1 3.23333 4.13333
Sum rank Freidman 118 103 95 93 97 124

PV
module

Min 9.825837 × 10−4 9.825044 × 10−4 9.825115 × 10−4 9.827521 × 10−4 9.832545 × 10−4 9.825992 × 10−4

Mean 4.845660 × 10−3 9.993596 × 10−4 9.966059 × 10−4 1.001461 × 10−3 1.011433 × 10−3 1.029418 × 10−3

Max 1.149226 × 10−1 1.060000 × 10−3 1.051849 × 10−3 1.132161 × 10−3 1.225400 × 10−3 1.445858 × 10−3

SD 2.079038 × 10−2 2.217082 × 10−5 1.878370 × 10−5 3.269111 × 10−5 5.876697 × 10−5 9.490092 × 10−5

Mean rank in Freidman 4.66667 3.23333 3.13333 3.3 3.1 3.56667
Sum rank Freidman 140 97 94 99 93 107

Sum
rank

Mean rank in Freidman 14.56667 10.28333 9.03333 8.83333 9.43333 10.85
Sum rank Freidman 437 308.5 271 265 283 325.5

4.3. Results of Parameter Extraction Based on SDM

In order to investigate the silicon solar cell model developed by RTC France, we
analyzed it using SDM. We solved it competitively using nine individual algorithms.
Statistics over 30 runs are shown in Figure 11, along with the min, mean, max and SD in
Table 4. The bolded values indicate the best results among the applied algorithms.
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Table 4. The statistical results of RMSE for SDM (the significant values are bolded).

Algorithm Min Mean Max SD Significance

APLO 9.860218778914× 10−4 9.860218778916× 10−4 9.860218778922× 10−4 1.599419351161× 10−16

CBO 1.148573645374 × 10−3 7.208263932384 × 10−3 8.576997450439 × 10−3 1.645251727229 × 10−3 †
DE 5.548414731899 × 10−3 6.915313985034 × 10−3 7.850952678115 × 10−3 6.541614750785 × 10−4 †
GA 3.817138390879 × 10−3 6.837349221993 × 10−2 8.169353790970 × 10−2 1.780787047086 × 10−2 †

GWO 1.158182213682 × 10−2 2.158244241773 × 10−1 2.228964974584 × 10−1 3.857526966905 × 10−2 †
JAYA 1.782507253178 × 10−3 4.846317911802 × 10−3 9.666422102947 × 10−3 1.496853195820 × 10−3 †
PSO 9.869017992242 × 10−4 2.588954874116 × 10−3 4.826880699904 × 10−3 1.103903013051 × 10−3 †
SSA 2.228658847342 × 10−1 2.230928389927 × 10−1 2.239170090380 × 10−1 2.800981095230 × 10−4 †

TLBO 9.887536713543 × 10−4 3.863042069493 × 10−3 8.677457995748 × 10−3 2.079581847494 × 10−3 †

† Indicates APLO has a significant advantage over its competitor when Wilcoxon’s rank sum test is performed at
5% confidence.

A glance at the results of Table 4 and the boxplots provided in Figure 11 reveals that
the proposed algorithm can achieve better statistical results than other algorithms. For
example, the value of the best solution found by the proposed algorithm is 9.860218× 10−4,
while the best solution of the following algorithm, PSO, is 9.86901 × 10−4. TLBO algorithm
achieves the solutions close to PSO. Also, from the perspective of the robustness of the
solutions, as shown in Figure 6 and the standard deviation of Table 4, the superiority of
the proposed algorithm over other competitive algorithms is visible. The SSA algorithm is
shown to have the worst performance among the applied algorithms. As shown in the last
column of Table 4, the proposed algorithm demonstrates superiority over other algorithms
when compared using Wilcoxon’s rank sum test at a 5% confidence level.

Furthermore, Table 5 contains the best-estimated parameters obtained by APLO and
other applied algorithms. As a result of these optimal parameters obtained by APLO,
the estimated and measured values of current and power, as well as their individual
absolute errors (IAEs), are shown in Figure 7. APLO’s simulation provides I-V and P-V
characteristics that are highly similar to those of standard data. Figure 12 shows, for
instance, that the IAEA of the current range from 2.51× 10−3 to 8.77× 10−5, while the
IAEA of the power range from 1.46× 10−3 to 1.97× 10−6, demonstrating that the APLO
estimates are highly accurate.
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Table 5. The best-identified parameters for SDM using the competitor algorithms (the significant
values are bolded).

Algorithm Iph (A) Isd (µA) Rsh (Ω) Rs (Ω) m RMSE

APLO 0.7607755 0.3230208 53.71852400 0.0363771 1.4811855 9.8602188 × 10−4

CBO 0.7606365 0.4391837 63.84687986 0.0351273 1.5127669 1.1485736 × 10−3

DE 0.7633840 3.5631230 100.0000000 0.0239090 1.7708080 5.5484140 × 10−3

GA 0.7617908 1.8232161 99.99992736 0.0280509 1.6792031 3.8171384 × 10−3

GWO 0.7666861 0.8134494 14.69565125 0.0273766 1.5871288 1.1581822 × 10−2

JAYA 0.7593010 0.5978732 100.0000000 0.0341035 1.5456857 1.7825073 × 10−3

PSO 0.7607664 0.3301579 54.31031901 0.0362896 1.4833891 9.8690180 × 10−4

SSA 0.8361982 0.0000000 1.155093333 0.0000000 2.0000000 2.2286588 × 10−1

TLBO 0.7607049 0.3314945 54.98791923 0.0362715 1.4837785 9.8875367 × 10−4
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Figure 12. Measured and calculated data of the RTC France silicon solar cell based on SDM by APLO.

4.4. Results of Parameter Extraction Based on DDM

Based on DDM, nine algorithms are used to solve the silicon solar cell model of RTC
France. The summary of the statistical results over 30 runs can be found in Figure 13
and Table 6. Among the applied algorithms, the most desirable values are highlighted
in bold. As seen in Table 6 and the boxplot provided in Figure 8, the proposed approach
outperforms its competitors in terms of statistical results. For example, the value of the
best solution found by the proposed algorithm is 9.83065 × 10−4, while the value of the
best solution found by the second-best algorithm, i.e., PSO, is 9.84872 × 10−4. As shown in
Figure 13 and the fifth column of Table 6, the proposed algorithm has an advantage over
other competitive algorithms from a robustness standpoint. Despite this, the DE and SSA
show reasonable robustness but fail to find optimal solutions since they fall into the local
optimum at every run. A comparison of Table 6 reveals that the SSA has the least effective
performance. Moreover, Table 6 demonstrates the superiority of the proposed algorithm
over the other algorithms based on a pairwise comparison using Wilcoxon’s rank sum test
at a 5% confidence level.
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Figure 13. Boxplot comparison of different algorithms for DDM.

Table 6. Statistical results of algorithms for parameter extraction of DDM (the significant values
are bolded).

Algorithm Min Mean Max SD Significance

APLO 9.830657938188 × 10−4 1.019874828873 × 10−3 1.342343716280 × 10−3 7.797062995961 × 10−5

CBO 6.445682677224 × 10−3 7.474969722257 × 10−3 8.275185158026 × 10−3 5.353607495130 × 10−4 †
DE 6.761178531429 × 10−3 8.130913835822 × 10−3 9.217501072530 × 10−3 6.044793459888 × 10−4 †
GA 1.048914576651 × 10−3 4.277390976996 × 10−2 9.079203590158 × 10−2 3.753851916526 × 10−2 †

GWO 7.723436258756 × 10−3 1.804748010930 × 10−1 2.228793281927 × 10−1 8.624502969932 × 10−2 †
JAYA 2.798207817458 × 10−3 5.479908398673 × 10−3 9.234026428131 × 10−3 1.396786107898 × 10−3 †
PSO 9.848728345415 × 10−4 2.231732852337 × 10−3 3.903661545904 × 10−3 9.893579067548 × 10−4 †
SSA 2.228624210303 × 10−1 2.234264679038 × 10−1 2.243772831227 × 10−1 5.008454232877 × 10−4 †

TLBO 1.006361630316 × 10−3 6.071268460472 × 10−3 1.954518527698 × 10−2 4.166155543866 × 10−3 †

† Indicates APLO has a significant advantage over its competitor when Wilcoxon’s rank sum test is performed at
5% confidence.

Furthermore, Table 7 shows the best-estimated parameters for DDM from APLO and
other algorithms. Figure 9 shows the calculated and measured values of current and power
based on these optimal parameters. According to APLO’s simulation, the I-V and P–V
characteristics are highly similar to those in the measured data. Figure 14 shows the high
accuracy of the estimated parameters by APLO for DDM. It shows the maximum IAE index
of current equaling 0.0025 and the maximum IAE of power equaling 0.0015.

Table 7. The best-identified parameters for DDM using the competitor algorithms (the significant
values are bolded).

Algorithm Iph (A) Isd,1 (µA) Isd,2 (µA) Rs (Ω) Rsh (Ω) m1 m2 RMSE

APLO 0.7607757 0.4697911 0.260965779 0.0365807 54.90462780 1.9999641 1.4631485 9.8306579382 × 10−4

CBO 0.7638870 0.2435162 8.040615602 0.0234448 99.98225374 1.5364664 2.0000000 6.4456826772 × 10−3

DE 0.7649050 1.7098070 4.76602770 0.0232610 99.99999000 1.7290370 1.9867510 6.7611785310 × 10−3

GA 0.7605798 0.3884531 0.00000000 0.0356448 60.42384229 1.4999794 1.4754131 1.0489145767 × 10−3

GWO 0.7706357 0.1571963 0.00000000 0.0418987 30.38296958 1.4107497 1.6747318 7.7234362588 × 10−3

JAYA 0.7573180 0.0556882 0.315224634 0.0356605 100.0000000 1.4777275 1.4979513 2.7982078175 × 10−3

PSO 0.7607795 0.2957504 0.145254462 0.0364617 53.99735415 1.4738147 1.9298906 9.8487283454 × 10−4

SSA 0.8377229 0.0000000 0.000000000 0.0000000 1.145114681 1.0000000 2.0000000 2.2286242103 × 10−1

TLBO 0.7606820 0.3543379 0.332865555 0.0360861 56.648982886 1.4906829 1.0000000 1.0063616303 × 10−3
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Figure 14. Measured and calculated data of the RTC France silicon solar cell based on DDM by APLO.

4.5. PV Module Model-Based Photo Watt-PWP 201

This section uses the PV module model to model the Photo Watt-PWP 201 solar cell.
In contrast, nine algorithms are used to solve the model. Based on 30 runs of this model,
Figure 15 and Table 8 illustrate the statistical results of these algorithms. Figure 15 provides
box plots showing how the proposed algorithm outperforms other competitor algorithms in
terms of statistical performance. In this study, the APLO algorithm provided the best RMSE
at 2.42507486809× 10−3, followed by PSO at 2.47057268706× 10−3. Based on the SD results
in the fifth column of Table 8, the proposed algorithm appears more reliable than other
competitive algorithms. DE obtained the second-best SD value, 7.13076666106 × 10−4,
while APLO obtained the best SD value, 5.96208271747 × 10−17.

Table 8. Statistical results of algorithms for parameter extraction of PV module (the significant values
are bolded).

Algorithm Min Mean Max SD Significance

APLO 2.42507486809 × 10−3 2.42507486810 × 10−3 2.42507486810 × 10−3 5.96208271747 × 10−17

CBO 2.59323307598 × 10−3 9.58546210390 × 10−3 1.44726212656 × 10−2 1.62949321579 × 10−3 †
DE 6.67237575292 × 10−3 7.74335013025 × 10−3 9.59388984237 × 10−3 7.13076666106 × 10−4 †
GA 5.22983393188 × 10−3 1.72642387255 × 10−1 3.51706994835 × 10−1 1.17731216363 × 10−1 †

GWO 9.30534798242 × 10−3 3.03524536723 × 10−2 1.09058464220 × 10−1 2.40958661843 × 10−2 †
JAYA 3.42058453137 × 10−3 1.63022106280 × 10−2 7.64341081931 × 10−2 2.27085786595 × 10−2 †
PSO 2.47057268706 × 10−3 5.06269373279 × 10−3 6.76745897635 × 10−3 1.11580692510 × 10−3 †
SSA 5.36253332910 × 10−2 1.45064970492 × 10−1 2.75832201568 × 10−1 8.99178958837 × 10−2 †

TLBO 2.81460265874 × 10−3 4.17330355891 × 10−3 8.12934998713 × 10−3 1.16062006801 × 10−3 †

† Indicates APLO has a significant advantage over its competitor when Wilcoxon’s rank sum test is performed at
5% confidence.
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Figure 15. Boxplot comparison of different algorithms for PV module.

In contrast to other applied algorithms, this reasonable difference in SD indicates
that the APLO algorithm is significantly more robust than different algorithms. The GA
has the worst SD performance of the applied algorithms, and the SSA has the worst Min
value performance. Moreover, SSA exhibits the worst performance among all algorithms.
Table 8’s last column shows that the proposed algorithm is superior to other algorithms
when compared pairwise using Wilcoxon’s rank sum test at a 5% confidence level.

Further analysis of the best-estimated parameters of the PV module model generated
by APLO and other applied algorithms is presented in Table 9. The estimated and mea-
sured current and power, along with their IAE, are displayed in Figure 16 using these
optimal parameters. Based on the simulation results obtained by APLO, the I-V and P-V
characteristics are very similar to those measured. In this case, the IAE of current and
power are less than 0.006 and 0.0799, respectively. This demonstrates that the estimated
parameters by APLO for the PV module model are highly accurate.

Table 9. The best-identified parameters for PV module using the competitor algorithms (the signifi-
cant values are bolded).

Algorithm Iph Isd Rsh Rs m RMSE

APLO 1.0305143 3.48226289 27.2772845 0.0333686 1.3511916 2.4250749 × 10−3

CBO 1.0287009 4.84455139 42.7195703 0.0323866 1.3872184 2.5932331 × 10−3

DE 1.0306156 22.1690238 1999.99959 0.0264998 1.5826458 6.6723758 × 10−3

GA 1.0284036 15.1965837 1427.98876 0.0281702 1.5290681 5.2298339 × 10−3

GWO 1.0329527 14.2377500 798.639484 0.0271184 1.5191182 9.3053480 × 10−3

JAYA 1.0247885 7.90093672 2000.00000 0.0309492 1.4441778 3.4205845 × 10−3

PSO 1.0294489 4.11606748 33.9829867 0.0328684 1.3691868 2.4705727 × 10−3

SSA 1.1375146 50.0000000 1.64110086 0.0025254 1.7459220 5.3625333 × 10−2

TLBO 1.0288704 5.50233338 47.4894427 0.0318549 1.4016305 2.8146027 × 10−3
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Figure 16. Comparison between the measured and calculated data yielded by APLO for the PV
module model based on Photo Watt-PWP 201.

4.6. Comprehensive Comparison
4.6.1. Convergence Characteristics

A comparison of the convergence curves of different algorithms is shown in Figures 17–19
for SDM, DDM, and PV module models under the best run condition (e.g., achieving the
“Min” solution). When solving the SDM and PV module models, APLO, CBO, and GA
show the fastest convergence rates in the first 50 iterations. Unlike the proposed algorithm
(APLO), CBO, and GA come close to obtaining locally optimal solutions after iteration 200.
The convergence performance of CBO and GA is insufficient regarding DDM. PSO and APLO,
on the other hand, provide better convergence performance than other algorithms used for
DDM. However, APLO can converge to a better final solution than PSO in this model after
iteration 500. Within the first 500 iterations, the convergence speeds of GA and PSO for the PV
module model are faster than APLO. However, APLO can achieve a better final solution than
GA and PSO.

It appears that APLO offers an appropriate balance between exploration and ex-
ploitation based on the convergence curves for the three models. It should be noted that
this comparison is based on the convergence curves presented by the best runs of the
applied algorithms. On the other runs, other algorithms are more likely to get stuck in
local optimal points and exhibit significantly weaker convergence performance than the
proposed algorithm.
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Figure 19. Convergence curves of the competitor algorithms for the PV module model.

4.6.2. Computational Time

There is little difference between APLO, CBO, GWO, JAYA, and SSA regarding their
computational time when solving three models, as shown in Figures 20–22. They are
also faster than DE, GA, and PSO algorithms. The CBO offers minor computational costs,
whereas the TLBO is the most complex parameterless algorithm. It is necessary to teach and
learn at different times for each generation of TLBO, which results in two different function
evaluations (FEs) for each participant. TLBO is thus more expensive to compute in a single
generation than an algorithm with one FE per generation. Compared to parameterless
algorithms, GA, DE, and PSO require more computational time. PSO is ranked second in
this regard, and GA consumes the most time.
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Figure 20. CPU time comparison in solving parameter extraction of SDM by different algorithms
over 30 runs.
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Figure 21. CPU time comparison in solving parameter extraction of DDM by different algorithms
over 30 runs.
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Figure 22. CPU time comparison in solving parameter extraction of PV module model by different
algorithms over 30 runs.

4.6.3. Wilcoxon and Friedman Tests

Different algorithms are commonly tested for significant differences in results using
the Wilcoxon signed-rank test [13,50,52]. Based on 30 runs of each algorithm, Wilcoxon
signed-rank tests were performed. Tables 10–12 summarize the results.

In these tables, “mean_PRs”/”sum_PRs”/”N_PRs” and “mean_NRs”/”
sum_NRs”/”N_NRs”, respectively, indicate the mean/sum/number of ranks for the prob-
lem in which Algorithm I outperformed Algorithm II. The mean/sum/number of ranks for
the problem in which Algorithm II outperformed Algorithm I. p-values represent the degree
of significance, where a smaller value indicates a more significant difference. Based on the
comparison of all models considered in Table 13, it is evident that the proposed APLO differs
significantly from the compared algorithms.

Based on the Freidman test, APLO takes the top ranking for three models, demonstrat-
ing that the proposed algorithm is superior to those compared. PSO and TLBO rank second
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and third in average rankings, respectively. This algorithm offers a promising approach to
extracting accurate parameters for various solar cells. Aside from this, SSA ranks lowest.

Table 10. Wilcoxon ranks test results for SDM.

Algorithm I Algorithm II mena_NRs mean_PRs sum_NRs sum_PRs N_NRs N_PRs p-Value

APLO CBO 15.5 NaN 465 0 30 0 1.8627 × 10−9

APLO DE 15.5 NaN 465 0 30 0 1.8627 × 10−9

APLO GA 15.5 NaN 465 0 30 0 1.8627 × 10−9

APLO GWO 15.5 NaN 465 0 30 0 1.8627 × 10−9

APLO JAYA 15.5 NaN 465 0 30 0 1.8627 × 10−9

APLO PSO 15.5 NaN 465 0 30 0 1.8627 × 10−9

APLO SSA 15.5 NaN 465 0 30 0 1.8627 × 10−9

APLO TLBO 15.5 NaN 465 0 30 0 1.8627 × 10−9

CBO DE 17.1 15 120 345 7 23 1.9660 × 10−2

CBO GA 16.5 1.5 462 3 28 2 9.3132 × 10−9

CBO GWO 15.5 NaN 465 0 30 0 1.8627 × 10−9

CBO JAYA 7.0 17.2 35 430 5 25 7.9945 × 10−6

CBO PSO 2.0 16.5 4 461 2 28 1.3039 × 10−8

CBO SSA 15.5 NaN 465 0 30 0 1.8627 × 10−9

CBO TLBO 9.0 16.0 18 447 2 28 4.7125 × 10−7

DE GA 16.5 1.5 462 3 28 2 9.3132 × 10−9

DE GWO 15.5 NaN 465 0 30 0 1.8627 × 10−9

DE JAYA 13.5 15.6 27 438 2 28 2.3488 × 10−6

DE PSO NaN 15.5 0 465 0 30 1.8627 × 10−9

DE SSA 15.5 NaN 465 0 30 0 1.8627 × 10−9

DE TLBO 3.8 17.3 15 450 4 26 2.5518 × 10−7

GA GWO 16.0 1 464 1 29 1 3.7253 × 10−9

GA JAYA 1.0 16.0 1 464 1 29 3.7253 × 10−9

GA PSO NaN 15.5 0 465 0 30 1.8627 × 10−9

GA SSA 15.5 NaN 465 0 30 0 1.8627 × 10−9

GA TLBO NaN 15.5 0 465 0 30 1.8627 × 10−9

GWO JAYA NaN 15.5 0 465 0 30 1.8627 × 10−9

GWO PSO NaN 15.5 0 465 0 30 1.8627 × 10−9

GWO SSA 15.5 NaN 465 0 30 0 1.8627 × 10−9

GWO TLBO NaN 15.5 0 465 0 30 1.8627 × 10−9

JAYA PSO 2.5 16.4 5 460 2 28 1.8627 × 10−8

JAYA SSA 15.5 NaN 465 0 30 0 1.8627 × 10−9

JAYA TLBO 17.4 14.9 122 343 7 23 2.2100 × 10−2

PSO SSA 15.5 NaN 465 0 30 0 1.8627 × 10−9

PSO TLBO 17.7 11.2 353 112 20 10 1.2050 × 10−2

SSA TLBO NaN 15.5 0 465 0 30 1.8627 × 10−9

Table 11. Wilcoxon ranks test results for DDM.

Algorithm I Algorithm II mena_NRs mean_PRs sum_NRs sum_PRs N_NRs N_PRs p-Value

APLO CBO 15.5 NaN 465 0 30 0 1.8627 × 10−9

APLO DE 15.5 NaN 465 0 30 0 1.8627 × 10−9

APLO GA 15.5 NaN 465 0 30 0 1.8627 × 10−9

APLO GWO 15.5 NaN 465 0 30 0 1.8627 × 10−9

APLO JAYA 15.5 NaN 465 0 30 0 1.8627 × 10−9

APLO PSO 17.3 3.75 450 15 26 4 2.5518 × 10−7

APLO SSA 15.5 NaN 465 0 30 0 1.8627 × 10−9

APLO TLBO 16.0 1 464 1 29 1 3.7253 × 10−9

CBO DE 17.0 9.5 408 57 24 6 1.2334 × 10−4

CBO GA 18.8 9 375 90 20 10 2.5600 × 10−3

CBO GWO 16.0 1 464 1 29 1 3.7253 × 10−9

CBO JAYA 10.0 16.1 30 435 3 27 3.7905 × 10−6

CBO PSO NaN 15.5 0 465 0 30 1.8627 × 10−9

CBO SSA 15.5 NaN 465 0 30 0 1.8627 × 10−9

CBO TLBO 13.2 16.5 119 346 9 21 1.8530 × 10−2

DE GA 20.8 8.5 354 111 17 13 1.1300 × 10−2

DE GWO 16.0 1 464 1 29 1 3.7253 × 10−9
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Table 11. Cont.

Algorithm I Algorithm II mena_NRs mean_PRs sum_NRs sum_PRs N_NRs N_PRs p-Value

DE JAYA 4.5 16.3 9 456 2 28 6.1467 × 10−8

DE PSO NaN 15.5 0 465 0 30 1.8627 × 10−9

DE SSA 15.5 NaN 465 0 30 0 1.8627 × 10−9

DE TLBO 10.9 17.5 98 367 9 21 4.6600 × 10−3

GA GWO 16.2 5.5 454 11 28 2 1.0245 × 10−7

GA JAYA 11.3 16.0 34 431 3 27 6.9179 × 10−6

GA PSO 2.0 16.0 2 463 1 29 5.5879 × 10−9

GA SSA 15.5 NaN 465 0 30 0 1.8627 × 10−9

GA TLBO 8.7 17.2 52 413 6 24 7.0568 × 10−5

GWO JAYA NaN 15.5 0 465 0 30 1.8627 × 10−9

GWO PSO NaN 15.5 0 465 0 30 1.8627 × 10−9

GWO SSA 16.0 1 464 1 29 1 3.7253 × 10−9

GWO TLBO 2.0 16.0 2 463 1 29 5.5879 × 10−9

JAYA PSO NaN 15.5 0 465 0 30 1.8627 × 10−9

JAYA SSA 15.5 NaN 465 0 30 0 1.8627 × 10−9

JAYA TLBO 16.5 14.5 247 218 15 15 7.7657 × 10−1

PSO SSA 15.5 NaN 465 0 30 0 1.8627 × 10−9

PSO TLBO 16.8 7 437 28 26 4 2.7623 × 10−6

SSA TLBO NaN 15.5 0 465 0 30 1.8627 × 10−9

Table 12. Wilcoxon ranks test results for the PV module model.

Algorithm I Algorithm II mena_NRs mean_PRs sum_NRs sum_PRs N_NRs N_PRs p-Value

APLO CBO 15.5 NaN 465 0 30 0 1.86265 × 10−9

APLO DE 15.5 NaN 465 0 30 0 1.86265 × 10−9

APLO GA 15.5 NaN 465 0 30 0 1.86265 × 10−9

APLO GWO 15.5 NaN 465 0 30 0 1.86265 × 10−9

APLO JAYA 15.5 NaN 465 0 30 0 1.86265 × 10−9

APLO PSO 15.5 NaN 465 0 30 0 1.86265 × 10−9

APLO SSA 15.5 NaN 465 0 30 0 1.86265 × 10−9

APLO TLBO 15.5 NaN 465 0 30 0 1.86265 × 10−9

CBO DE 15.5 15.5 31 434 2 28 4.42192 × 10−6

CBO GA 16.21429 5.5 454 11 28 2 1.02446 × 10−7

CBO GWO 15.5 NaN 465 0 30 0 1.86265 × 10−9

CBO JAYA 23.71429 13 166 299 7 23 0.17719
CBO PSO 8 15.75862 8 457 1 29 4.65661 × 10−8

CBO SSA 15.5 NaN 465 0 30 0 1.86265 × 10−9

CBO TLBO 2 15.96552 2 463 1 29 5.58794 × 10−9

DE GA 16.5 1.5 462 3 28 2 9.31323 × 10−9

DE GWO 15.5 NaN 465 0 30 0 1.86265 × 10−9

DE JAYA 20.2 13.15 202 263 10 20 0.54253
DE PSO NaN 15.5 0 465 0 30 1.86265 × 10−9

DE SSA 15.5 NaN 465 0 30 0 1.86265 × 10−9

DE TLBO 1 16 1 464 1 29 3.72529 × 10−9

GA GWO 4.85714 18.73913 34 431 7 23 6.91786 × 10−6

GA JAYA 7.5 16.07143 15 450 2 28 2.55182 × 10−7

GA PSO 1 16 1 464 1 29 3.72529 × 10−9

GA SSA 12 19.5 192 273 16 14 0.41613
GA TLBO NaN 15.5 0 465 0 30 1.86265 × 10−9

GWO JAYA 20.33333 14.29167 122 343 6 24 0.0221
GWO PSO NaN 15.5 0 465 0 30 1.86265 × 10−9

GWO SSA 15.93103 3 462 3 29 1 9.31323 × 10−9

GWO TLBO NaN 15.5 0 465 0 30 1.86265 × 10−9

JAYA PSO 6.83333 17.66667 41 424 6 24 1.82446 × 10−5

JAYA SSA 16.5 1.5 462 3 28 2 9.31323 × 10−9

JAYA TLBO 8 16.33333 24 441 3 27 1.41934 × 10−6

PSO SSA 15.5 NaN 465 0 30 0 1.86265 × 10−9

PSO TLBO 12.25 16.68182 98 367 8 22 0.00466
SSA TLBO NaN 15.5 0 465 0 30 1.86265 × 10−9
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Table 13. Friedman ranks test results for three models (the significant values are bolded).

Algorithm
SDM DDM PV Module Model

Mean Rank Sum Rank Mean Rank Sum Rank Mean Rank Sum Rank

APLO 1.0000 30 1.1667 35 1.0000 30
CBO 5.5333 166 5.1667 155 5.7000 171
DE 5.1000 153 5.9000 177 4.7667 143
GA 6.8667 206 5.9667 179 8.0000 240

GWO 7.9667 239 7.8667 236 7.0667 212
JAYA 3.9667 119 3.7667 113 4.6000 138
PSO 2.4667 74 2.0333 61 3.0000 90
SSA 9.0000 270 8.9667 269 8.4333 253

TLBO 3.1000 93 4.1667 125 2.4333 73

4.6.4. Advantages and Disadvantages of Applied Algorithms

Based on the studies conducted so far, the advantages and disadvantages of the used
algorithms are compared from the global search ability, convergence speed, local entrap-
ment probability, exploration/exploitation capability, diversity of individuals, balancing in
exploration–exploitation, and computational time points of view. The summary of these
comparisons is represented in Table 14. As seen from this table, the proposed APLO shows
good performance. However, this algorithm is at the beginning of the way. It can still
be examined from different aspects and on various problems so that its challenges are
well-known and solved.

Table 14. Advantages and disadvantages of applied algorithms on optimal parameter extraction of
PV cell and module.

Algorithm Global Search
Ability

Convergence
Speed

Local Entrapment
Probability

Explorative/
Exploitative Diversity Exploration-Exploitation

Balance
Computational
Complexity

APLO High Medium Low Exploitative Adequate Good Low
CBO Low High Medium Exploitative Inadequate Medium Low
DE Low High High Exploitative Inadequate Medium High
GA Low High High Exploitative Inadequate Weak High

GWO Low High High Explorative High Weak Low
JAYA Medium Low Medium Exploitative Adequate Medium Low
PSO Medium Medium Medium Exploitative Adequate Medium High
SSA Low High High Explorative High Weak Medium

TLBO High Low Low Exploitative Adequate Good Medium

4.7. Comparison with the State-of-the-Art Algorithms

Several state-of-the-art improved and hybrid algorithms, including PGJAYA [57],
IJAYA [58], STLBO [60], GOTLBO [61], MSSA [62], hARS-PS [74], BLPSO [81], CLPSO [82],
TLABC [83], DE/BBO [84], and CMM-DE/BBO [85], are used to validate the performance
of the proposed APLO algorithm in identifying PV models’ parameters. Table 15 shows
the max, min, mean, and SD of the parameters identified by the algorithms on each model
corresponding to RMSE. Bold highlights indicate the best results. APLO yields the best
results for the single diode and PV module models in terms of max, min, mean, and SD.
It should be noted that PGJAYA and TLABC can only obtain the best results in terms
of Min for SDM. Moreover, PGJAYA, TLABC, STLBO, MSSA, and CMM-DE/BBO can
achieve the best solution in terms of the min value in calculating the parameters of the
PV module model. It should be noted that, the results of hARS-PS on SDM model seems
incorrectly reported in [74]. For DDM, hARS-PS is the best algorithm for all statistical
values. Regarding the Min value for this model, PGJAYA is the second-best, STLBO is
the third best, and IJAYA is the fourth-best algorithm. However, in terms of the mean,
max and SD, proposed APLO is the third-best algorithm. The results indicate that the
performance of the proposed basic algorithm is acceptable compared to other combined
and improved algorithms.
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Table 15. Statistic results of the APLO and state-of-the-art algorithms for three PV models (the
significant values are bolded).

SDM

Algorithm PGJAYA IJAYA STLBO GOTLBO TLABC MSSA
Min 9.8602 × 10−4 9.8603 × 10−4 9.8602 × 10−4 9.8856 × 10−4 9.8602 × 10−4 9.86 × 10−4

Mean 9.8602 × 10−4 9.9204 × 10−4 9.8607 × 10−4 1.0450 × 10−3 9.9417 × 10−4 9.86 × 10−4

Max 9.8603 × 10−4 1.0622 × 10−3 9.8655 × 10−4 1.2067 × 10−3 1.0308 × 10−3 9.87 × 10−4

SD 1.4485 × 10−9 1.4033 × 10−5 1.8602 × 10−5 5.0218 × 10−5 1.1896 × 10−5 3.01 × 10−7

Algorithm CLPSO BLPSO DE/BBO CMM-DE/BBO APLO hARS-PS
Min 9.9633 × 10−4 1.0272 × 10−3 9.9922 × 10−4 9.8605 × 10−4 9.8602 × 10−4 9.84 × 10−4

Mean 1.0581 × 10−3 1.3139 × 10−3 1.2948 × 10−3 1.0486 × 10−3 9.8602 × 10−4 9.85 × 10−4

Max 1.3196 × 10−3 1.7928 × 10−3 2.2258 × 10−3 1.3475 × 10−3 9.8602 × 10−4 9.87 × 10−4

SD 7.4854 × 10−5 2.1166 × 10−4 2.5074 × 10−4 8.1679 × 10−5 1.5994 × 10−16 3.01 × 10−7

DDM

Algorithm PGJAYA IJAYA STLBO GOTLBO TLABC MSSA
Min 9.8263 × 10−4 9.8293 × 10−4 9.8252 × 10−4 9.8742 × 10−4 1.0012 × 10−3 9.83 × 10−4

Mean 9.8582 × 10−4 1.0269 × 10−3 1.0585 × 10−3 1.1475 × 10−3 1.2116 × 10−3 9.94 × 10−4

Max 9.9499 × 10−4 1.4055 × 10−3 2.4480 × 10−3 1.3947 × 10−3 1.9826 × 10−3 9.99 × 10−4

SD 2.5375 × 10−6 9.8325 × 10−5 2.8978 × 10−4 1.1330 × 10−4 2.1100 × 10−4 1.49 × 10−6

Algorithm CLPSO BLPSO DE/BBO CMM-DE/BBO APLO hARS-PS
Min 9.9894 × 10−4 1.0628 × 10−3 1.0255 × 10−3 1.0088 × 10−3 9.8307 × 10−4 9.82 × 10−4

Mean 1.1458 × 10−3 1.4821 × 10−3 1.5571 × 10−3 1.5487 × 10−3 1.0199 × 10−3 9.84 × 10−4

Max 1.5494 × 10−3 1.7411 × 10−3 2.4042 × 10−3 2.0589 × 10−3 1.3423 × 10−3 9.87 × 10−4

SD 1.4367 × 10−4 1.7789 × 10−4 3.6297 × 10−4 2.9413 × 10−4 7.7971 × 10−5 1.45 × 10−7

PV Module Model

Algorithm PGJAYA IJAYA STLBO GOTLBO TLABC MSSA
Min 2.425075 × 10−3 2.425129 × 10−3 2.425075 × 10−3 2.426583 × 10−3 2.425075 × 10−3 2.42 × 10−3

Mean 2.425144 × 10−3 2.428855 × 10−3 2.055293 × 10−2 2.475386 × 10−3 2.425464 × 10−3 2.54 × 10−3

Max 2.426764 × 10−3 2.439269 × 10−3 2.742508 × 10−1 2.563849 × 10−3 2.428731 × 10−3 2.78 × 10−3

SD 3.071420 × 10−7 3.775523 × 10−6 6.896273 × 10−2 2.938836 × 10−5 8.746462 × 10−7 1.75 × 10−5

Algorithm CLPSO BLPSO DE/BBO CMM-DE/BBO APLO hARS-PS
Min 2.428064 × 10−3 2.425236 × 10−3 2.428255 × 10−3 2.425075 × 10−3 2.425075 × 10−3 2.42 × 10−3

Mean 2.454903 × 10−3 2.437873 × 10−3 2.461623 × 10−3 2.425175 × 10−3 2.425075 × 10−3 2.43 × 10−3

Max 2.543269 × 10−3 2.488348 × 10−3 2.525560 × 10−3 2.426796 × 10−3 2.425075 × 10−3 2.50 × 10−3

SD 2.580951 × 10−5 1.372409 × 10−5 2.925123 × 10−5 3.554783 × 10−7 5.962083 × 10−17 1.38 × 10−5

5. Conclusions and Future Directions

This paper proposed a novel parameterless algorithm to estimate parameters without
specifying any control parameters, called artificial parameterless optimization (APLO). As
part of the proposed APLO, a novel mutation operator was designed. To advance the explo-
ration phase of the APLO, this operator required all participants to move around the best
available solution. The current best, the old best, and the individual’s current position were
incorporated into the differential term of the mutation operator to assist the exploitation
phase and maintain convergence speed. Furthermore, a random multiplication term using
a normal distribution was proposed to ensure population diversity through the iteration
process of the algorithm. Comprehensive studies were established to evaluate the perfor-
mance of the proposed algorithm to estimate the parameters of the PV cells. The results
revealed that the proposed algorithm could provide an excellent exploration–exploitation
balance and consistency during the iterations. Two main factors were responsible for
this: (a) the endorsement of positive feedback from individuals who had already achieved
improvements, and (b) the presence of well-representative individuals ensured that the
entire population was consistent in its diversity.

In addition, some comparisons were made in terms of statistical analysis. Based
on the experimental parameter estimation results for the SDM, DDM, and PV module
models, the APLO algorithm was more accurate and reliable than other original and
well-known algorithms. A comparison of the calculated and standard data of the V-I and
P-V curves was also conducted to determine the accuracy of the estimated parameters
using the proposed algorithm. Moreover, the results indicated the proper performance of
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the proposed basic algorithm compared to other state-of-the-art combined and improved
algorithms. Regarding the four statistical metrics, the proposed algorithm outperforms
others for SDM and PV module models. Additionally, in the case of DDM, it showed good
performance compared to the comparative algorithms. However, the results can be further
improved by improving or combining the proposed algorithm with other algorithms.

Since APLO is simple and efficient, it can also be used to solve more complex engineer-
ing optimization problems. A modification of the APLO can also speed up convergence
and reduce computational costs. Moreover, we intend to develop binary and multiobjective
versions of APLO algorithms. Furthermore, APLO can be used to optimize support vector
machines or kernel extreme learning machines.
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