
Citation: Hussaine, S.M.; Mu, L.

Intelligent Prediction of Maximum

Ground Settlement Induced by EPB

Shield Tunneling Using Automated

Machine Learning Techniques.

Mathematics 2022, 10, 4637. https://

doi.org/10.3390/math10244637

Academic Editors: Danial

Jahed Armaghani, Hadi Khabbaz,

Manoj Khandelwal, Niaz

Muhammad Shahani and Ramesh

Murlidhar Bhatawdekar

Received: 11 October 2022

Accepted: 1 December 2022

Published: 7 December 2022

Corrected: 12 April 2023

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Intelligent Prediction of Maximum Ground Settlement
Induced by EPB Shield Tunneling Using Automated Machine
Learning Techniques
Syed Mujtaba Hussaine 1 and Linlong Mu 2,*

1 College of Civil Engineering, Tongji University, Shanghai 200092, China
2 Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China
* Correspondence: mulinlong@tongji.edu.cn; Tel.: +86-21-65982005

Abstract: Predicting the maximum ground subsidence (Smax) in the construction of soil pressure
balanced shield tunnel, particularly on soft foundation soils, is essential for safe operation and to
minimize the possible risk of damage in urban areas. Although some research has been done, this
issue has not been solved because of its complexity and many other influencing factors. Due to the
increasing accuracy of machine learning (ML) in predicting surface deformation of shield tunneling
and the development of automated machine learning (AutoML) technology. In the study, different
ML prediction models were constructed using an open source AutoML framework. The prediction
model was trained by the dataset, which contains 14 input parameters and an output (i.e., Smax).
Different AutoML frameworks were employed to compare their validities and efficiencies. The
performance of the model is estimated by contrasting the prediction accuracy parameters, including
root mean square error (RMSE), mean absolute error (MAE) and determinant coefficient (R2).With a
coefficient of determination (R2) of 0.808, MAE of 3.7, and RMSE of 5.2 on the testing dataset, the best
prediction model i.e., extra tree regressor showed better performance, proving that our model has
advantages in predicting Smax. Furthermore, the SHAP analysis reveal that the soil type (ST), torque
(To), cover depth (H), groundwater level (GW), and tunneling deviation have a significant effect on
Smax compared to other model inputs.

Keywords: maximum surface settlement; tunneling; auto machine learning; feature selection; shapley
additive explanations (SHAP) analysis

MSC: 65Z05

1. Introduction

With the acceleration of urban construction, the construction of subway networks
has become one of the most practical methods to alleviate traffic jam and shortages of
land resources [1–5]. These excavation systems are generally built as twin tunnels and the
excavation is carried out through soft soils or weak rocks at shallow depths. For urban
subway tunnels, the shield tunneling method (especially the earth pressure balance (EPB)
shield tunneling) is one of the most widely used construction methods due to its little
impact on the surrounding environment. The advantages of less influence and a high
degree of mechanization are widely applied to the actual engineering projects. However, in
weak strata, the shield tunneling method can still cause a lot of land subsidence [6,7]. The
surface subsidence mechanism [8,9] and development process caused by shield tunneling is
complex, which can be seen in Figure 1, including (1) preemptive settlement; (2) settlement
in front of excavation; (3) settling during propulsion; (4) shield tail gap settlement; and
(5) subsequent settlement. Each stage’s surface subsidence involves geological conditions,
shield parameters, on-site construction, and other factors. Predicting surface deforma-
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tion during the shield construction process reasonably and accurately has always been a
problematic issue in research.
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Figure 1. Schematic diagram of longitudinal settlement caused by shield tunneling. 
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tlement induced by shield excavation [14,15]. 

In the analytical method, it is difficult for simplified computational models to accu-
rately account for the complex interactions between shield and soil, which affects the ap-
plication of the analytical method in practical engineering problems [16]. Compared with 
empirical and analytical methods, numerical simulation methods can simulate the dy-
namic construction process of shield tunnels and comprehensively consider the interac-
tion between tunnel construction and soil layers [17]. However, calculating the numerical 
model is time-consuming, and the constitutive model is difficult to accurately simulate 
the response of the soil layer on the macroscopic scale [2,18,19]. 

In shield tunneling, which is a dynamic process, the tunneling parameters and geo-
logical parameters change in real-time, and the surface subsidence due to shield excava-
tion can be predicted in real-time. The parameter adjustment plan can be given to guide 
the shield tunneling in an absolute sense. In the construction process, traditional methods 
are difficult to achieve in this regard. Machine learning algorithms have developed rap-
idly in recent years and are gradually being applied in geotechnical engineering due to 
their nonlinear solid fitting capabilities and the simultaneous consideration of the influ-
ence of multiple parameters [20]. Because machine algorithms can obtain accurate results 
quickly, machine learning algorithms provide new ideas for intelligently controlling the 
shield tunneling process. Regarding the prediction of surface subsidence caused by shield 
tunneling, the widely used machine learning algorithms include artificial neural networks 
(ANN) and support vector machines (SVM). Recent research shows that ML methods 
have great application prospects in analyzing complex geotechnical problems, such as de-
formation caused by landslide [21,22] and underground soil structure interaction caused 
by tunnel excavation [23]. In early investigations, Shi et al. [24] used the artificial neural 
network method (ANNs) to calculate the maximum ground settlement due to shield tun-
neling accurately. In addition, the same method is also used to calculate the width of the 
settlement tank induced by shield excavation. Suwansawat et al. [25] systematically ex-
pounded the application of artificial neural network method in earth pressure balance 
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The ground settlement caused by shield tunneling, apart from empirical, traditional
theoretical calculations, numerical simulations, and other research methods, has been
analyzed [10,11]. The empirical formula [12,13] describes the general ground subsidence
caused by shield tunneling because the geological conditions in different regions are quite
different, and the numerical value of the parameters varies widely. However, the empirical
models adopted in engineering often ignore the influence of parameters used to adjust
the settlement during shield tunneling. Therefore, the accuracy of surface subsidence
prediction based on the empirical formula method is unacceptable. Due to the limitations
of empirical methods, many studies have proposed analytical methods to estimate the
settlement induced by shield excavation [14,15].

In the analytical method, it is difficult for simplified computational models to ac-
curately account for the complex interactions between shield and soil, which affects the
application of the analytical method in practical engineering problems [16]. Compared
with empirical and analytical methods, numerical simulation methods can simulate the
dynamic construction process of shield tunnels and comprehensively consider the interac-
tion between tunnel construction and soil layers [17]. However, calculating the numerical
model is time-consuming, and the constitutive model is difficult to accurately simulate the
response of the soil layer on the macroscopic scale [2,18,19].

In shield tunneling, which is a dynamic process, the tunneling parameters and geolog-
ical parameters change in real-time, and the surface subsidence due to shield excavation
can be predicted in real-time. The parameter adjustment plan can be given to guide the
shield tunneling in an absolute sense. In the construction process, traditional methods are
difficult to achieve in this regard. Machine learning algorithms have developed rapidly
in recent years and are gradually being applied in geotechnical engineering due to their
nonlinear solid fitting capabilities and the simultaneous consideration of the influence of
multiple parameters [20]. Because machine algorithms can obtain accurate results quickly,
machine learning algorithms provide new ideas for intelligently controlling the shield tun-
neling process. Regarding the prediction of surface subsidence caused by shield tunneling,
the widely used machine learning algorithms include artificial neural networks (ANN)
and support vector machines (SVM). Recent research shows that ML methods have great
application prospects in analyzing complex geotechnical problems, such as deformation
caused by landslide [21,22] and underground soil structure interaction caused by tunnel
excavation [23]. In early investigations, Shi et al. [24] used the artificial neural network
method (ANNs) to calculate the maximum ground settlement due to shield tunneling accu-
rately. In addition, the same method is also used to calculate the width of the settlement
tank induced by shield excavation. Suwansawat et al. [25] systematically expounded the
application of artificial neural network method in earth pressure balance shield tunnel
based on a substantial amount of measured engineering data. Santos et al. [26] obtained
the correlation between the excavation parameters and the ground subsidence based on
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the artificial neural network model, which fits the actual theoretical results. Many studies
have combined a variety of optimization methods, for instance, genetic algorithms, particle
swarm algorithms, with ANNs to optimize the accuracy of the prediction model [27,28].

However, a significant challenge in using ANN is to determine the optimal network
framework [29]. In addition, due to its complex nature, the output from an ANN model is
usually inexplicable; therefore, complicated ML models such as ANN are often referred
to as a “black box” model. Zhang et al. [30] accurately predicted the development law of
the ground subsidence due to shield excavation by integrating the wavelet function and
the support vector machine algorithm. The study of machine learning methods to predict
ground subsidence caused by shield tunneling is shown in Table 1.

Table 1. Development and Application of Machine Learning Algorithms in Shield Tunnels.

Related Literature Method Output Parameters Data Points

Shi (1998) [24] BP Sc, Si, Sf 356
Suwansawat (2006) [31] BP G 49

Santos (2008) [26] BP G 81
Darabi (2012) [32] BP G 53

Pourtaghi (2012) [33] Wavelet, BP G 49
Ahangari (2015) [28] ANFIS, GEP G 53

Zhou (2016) [34] RF G 66
Bouayad (2017) [27] ANFIS G 95

Zhang (2017) [30] LSSVM G 55
Note: G = surface subsidence; Sc = Surface subsidence when passing through the monitoring section; Si = Surface
subsidence after the completion of the monitoring section segment assembly; Sf = Surface subsidence after stabilization.

Random Forest (RF) is another integrated ML algorithm that can process a large
amount of data in a short time. The final prediction result integrates multiple embedded
calculation results with high accuracy and is used to calculate the settlement caused by
shield tunnel construction [34]. Shao et al. [35] optimized the ANN model through the
particle swarm optimization (PSO) method and founded the optimum transfer speed of
the screw conveyor to ensure the safety of the tunnel face. In order to guarantee the
tunneling efficiency of the shield tunneling machine, Armaghani et al. [36] proposed the
use of PSO-ANN and the Imperial Competitive Algorithm (ICA)-ANN method to estimate
the tunnel speed of the shield tunneling facility. At the same time, the method of PSO-SVM
is also applied to calculate and improve the tunnel parameters of the shield machine during
the tunnel construction. At the same time, the method of PSO-SVM is also applied to
calculate and improve the tunnel parameters of the shield machine during the tunnel
construction [37]. However, there are many new machine learning algorithms at this stage,
and the prediction performance of different algorithms is different.

Although abundant highly effective studies have been introduced above, there is still
a lack of research on performance differences of different machine learning algorithms in
predicting the maximum ground subsidence due to shield tunneling; secondly, the current
research mainly focuses on the final output results, and there is a lack of research on the
correlation between input and output parameters. Therefore, constructing an interpretable
ML model can reveal the connection between input and output parameters, thereby helping
engineering designers to make the best decisions to ensure that soil settlement is limited
within the expected range throughout the construction process. At present, a feature
selection method, that is, the Pearson correlation method, has been used to detect and
control the influencing parameters of the surface settlement caused by the tunnel excavation
process. But the defect of this method is that it can only consider the linear relationship
between two parameters, while ignoring the influence of feature interaction between
parameters [6]. So academia began to use explainable artificial intelligence (XAI) to study
this problem. It allows humans to understand the output of complex ML models [38].
The Shapley Additive Interpretation (SHAP) proposed by [39], is one such XAI-based
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algorithm. The SHAP method can measure how each input feature affects the dependent
variable (output).

Owing to the importance of predicting settlements due to shield tunneling in geotech-
nical engineering, more and more people are trying to use machine learning algorithms to
build predictive models that can accurately estimate influencing variables. Currently, select-
ing a suitable model requires the process of sample characterization, parameter fine-tuning,
and configuration comparison. These steps are complicated and difficult for non-experts in
machine learning to follow. For this reason, the research of automatic machine learning
(AutoML) has attracted more and more attention. The advantage of AutoML is that it
can automatically match the most suitable model and hyperparameters on the basis of
complex datasets, thus simplifying the process of selecting the best model and optimize
the performance of the model. On the whole, the structure of our study is organized as
follows. Firstly, the database and data pre-processing methods we utilize are explained.
Secondly, this study compares the differences of two feature selection methods (Pearson
correlation and SHAP algorithm) in analyzing the same project datasets collected from
two EPB tunnel projects completed in Hangzhou, China. The SHAP algorithm is applied
to analyze the impact of the input feature parameters on the overall prediction results.
In the end, considering the advantages of AutoML, based on the AutoML method, this
research uses the PyCaret [40], a low-code machine learning library to construct a shield
tunnel prediction model based on monitored data. Subsequently, a comparative analysis of
various types of developed ML methods was accomplished to evaluate their performance
and select the best-performing model in this problem, and remarkable conclusions are
ultimately summarized.

2. Establishment of Surface Deformation Database for Shield Tunneling
2.1. Project Overview

The dataset used in this research was collected from two metro line tunneling projects
in Hangzhou, China [41]. As shown in Figure 2, metro line two (project-1) was excavated
from Gucui station to Xueyuan station, while metro line six (project-2) was excavated
from Shangpu station to Heshan Road station. Figure 3 outlines the construction plan
implemented during the excavation of Projects 1 and 2. The twin tunnels excavated for
Project 1 (de-noted as downlink and uplink in Figure 3a) were initiated in January 2016 and
completed in June 2016. The twin tunnels considered in Project 2 (namely, the left and right
tunnels in Figure 3b) commenced on 15 April 2017, and were completed on 15 October
2017. The downlink of Project 1 and both tunnels in Project 2 were excavated using two
“Shichuandao” type EPB shield machines. In contrast, the “Kawasaki” EPB shield was
used to excavate the uplink of Project 1. The inner diameter of each twin tunnel in both
projects was 5.5 m, while the outer diameter was 6.2 m. The total excavation length of the
twin tunnels for Project 1 was 1950 m, and that for Project 2 was 2486 m. Note to avoid any
effect of secondary disturbance due to the second excavation; this analysis only considered
the data from the first excavation of each project (i.e., downlink in Project 1 and left tunnel
in Project 2).

2.2. Engineering Geology

To determine the geological conditions at the proposed site, the construction unit
conducted comprehensive field and laboratory testing. The cross-sectional geological
profile of the tunnel section observed in Projects 1 and 2 is shown in Figure 4, which shows
the main soil layers of the site, including soil fill (mixed soil and pure soil), sandy silt, silty
sandy silt, sandy silt, silt, boulders1, silty silt, silty clay, and boulders 2 observed at a depth
of around 30 m. From Figure 4a, it can be seen that Project 1 started excavation from the
downlink route, covering a depth of 10.6 m to 18.7 m. The soil layer of this route is mainly
muddy silty clay and muddy clay. Project 2 is excavated from the left line and covers a
depth of 9 m to 16.6 m, passing through sandy silt and silt layers, as shown in Figure 4b.
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Figure 4. Cross-sectional geological profiles for (a) Project 1 and (b) Project 2 (unit: m) (Kannan-
gara et al., 2022) [41].

Based on the Chinese National Standard (CNS) GB/T50123-1999 (standard for soil test
methods) [42], the laboratory tests was carried out to measure the physical and mechanical
properties of the soil layers of the project 1 and project 2, as shown in Table 2. The shear
strength parameters (i.e., c andϕ) of the soil can be measured through a series of direct shear
tests. The direct shear tests require the soil samples to be pre-consolidated for 24 hours and
sheared rapidly (0.8–1.2 mm/min) under undrained conditions. The average groundwater
levels of Project 1 and Project 2 were −2.14 m and −1.8 m, respectively. It is worth noting
that the groundwater levels remained stable during excavation.

Table 2. Soil physical properties of projects (1 and 2) [41].

Project Soil Type γ (kN/m3) ϕ◦ c (kPa) Gs e

1 Miscellaneous fill (18)
Pure fill (18.5)
Clay 1 18.2 10 12 2.74 1.095

Muddy clay 17.6 13 10 2.73 1.247
Muddy silty clay 17.6 14 10 2.72 1.218

Muddy clay with silt 17.5 14 11 2.72 1.22
Muddy silty clay with silt 18.1 18 12 2.71 1.067

Silty clay 17.6 14 12 2.73 1.204
Clay 2 17.4 12 15 2.74 1.243

Sandy silty clay 20.2 22 14 2.69 0.608
Completely weathered rock

2 Miscellaneous fill (18)
Pure fill (17.5)

Silt with sand 19.4 26 8 2.69 0.768
Sandy silt with silt 19.5 28 5.5 2.69 0.742

Sandy silt 19.7 29 4.5 2.68 0.706
Silty sand 19.7 31.5 4 2.68 0.687
Boulder 1 36 5

Silty clay with silt 17.1 13 14 2.71 1.283
Silty clay 20.1 21 28 2.71 0.66
Boulder 2 40 6

Note: γ is the unit weight of soil, ϕ is the soil internal frictional angle, c is the cohesion of the soil, Gs is the specific
gravity, and e is the void ratio. Data within round brackets are the empirical values.
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2.3. Preliminary Selection of Input Parameters

Previous studies discovered that in the shield tunneling process, the main factors affect-
ing the surface deformation could be roughly divided into three categories [31,43]: (1) tun-
nel geometric parameters (such as tunnel burial depth, shield diameter, section form,
etc. [44,45]; (2) stratum parameters (such as cover soil type, face soil type, soil compres-
sive modulus, elastic modulus, cohesion, internal friction angle, groundwater level, etc.);
(3) shield construction parameters (shield thrust, advanced rate, shield attitude, cutter
head torque, thrust, jack pressure, horizontal deviation (front), vertical deviation (front),
horizontal deviation (back), vertical deviation (back) [46], grouting pressure, grouting
volume, etc.). The 14 input features by their respective categories and the target variable
(i.e., Smax) as shown in Table 3 are considered for the analysis.

Table 3. List of input features and target variable considered for analysis [41].

Category Parameters Symbol Unit

Tunnel geometry Cover depth H m
Geological conditions Soil type a ST -

Groundwater level GW m
Shield operational parameters Face pressure (top) FPt kPa

Face pressure (center) b FPc kPa
Advance rate AR mm/min
Pitching angle PA ◦

Thrust Th kN
Torque To kN m

Jack pressure JP kPa
Horizontal deviation (front) HDf mm

Vertical deviation (front) VDf mm
Horizontal deviation (back) HDb mm

Vertical deviation (back) VDb mm
Target variable Maximum surface settlement Smax mm

a Categorical feature. b Computed by taking the average of face pressures recorded at left and right positions.

In order to observe the ground subsidence, an optical level (Suguang DS05, China,
accuracy 0.5 mm/km) and an electronic level (Trimble DINI 03, USA, 0.3 mm/km) were
used to measure the site subsidence. Surface settlements were measured twice daily, once
at 8:00 a.m. and again at 4:00 p.m. The allowable values for the surface settlement and
uplift were set at 35 mm and 10 mm, respectively.

Since the specifications of the entire tunnel are the same, the burial depth and diameter
of the tunnel (D) are constantly changing. Considering that the buried depth and diameter
of the tunnel will affect the development model of the stratum subsidence and the size
of the final settlement during the shield tunnel process [31,47], these two parameters are
selected as the only geometric parameters. Since the tunnels in this study were constructed
by shield tunneling, their outer diameters are the same, both are 6.2 m, the influence of
parameter D can be ignored.

Geological parameters include the depth of groundwater (GW) level, and physical
and mechanical properties of rock and soil. In machine learning algorithms, the geological
parameters need to be quantified. The physical and mechanical properties of the rock
and soil layer, along with the thickness and location of the soil layer, will influence the
subsidence induced by shield tunnel. Commonly used is the direct input of the soil layer c,
ϕ value [28,30], or directly using numbers to indicate the type of soil layer (ST) [35]. The
soil types mainly traversed during the EPB shield excavation for the two projects in this
study were “silty clay” and “silt sand”. For the convenience of description, they are coded
as 0 and 1 respectively.

In this study, a total of 11 shield operating parameters were considered as the input
features of the model. The four operational parameters, i.e., thrust, torque, tunneling
rate, and jack pressure, affect the degree of disturbance to the stratum during the shield
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tunneling process [48]. The soil pressure will affect the stability of the tunnel face [49,50].
Project 2 uses the “Ishikawa” EPB shield. In order to measure the surface pressure during
its working process, three earth pressure gauges were installed on the top, left and right
sides of the shield machine [51]. The “face pressure (top)” and “face pressure (center)” are
used as input parameters to analyze the effect of face pressure on the settlement caused by
excavation. The shield machine must advance strictly along the design route (DTA) during
the working process. The attitude and position of the shield machine are described by
vertical deviation (front), horizontal deviation (front), vertical deviation (back), horizontal
deviation (back), rolling angle, and pitch angle [52]. The pitch and rolling angles describe
the attitude of the shield machine relative to the horizontal and vertical axes, respectively.
For each parameter taken into account in the dataset, the corresponding symbol and its
unit are displayed in Table 3. It is to be noted that the data preparation process were carried
out as recommended by kannangara et. al. [41] and the data is further refined as explained
in Section 2.4 below.

2.4. Data Pre-Processing

A major problem of machine learning prediction models is that the learning curve is
difficult to converge. In order to improve the probability of curve convergence, the data
set must be preprocessed to reduce data inconsistency [53]. In the cause of probe critical
information from the shield-soil interplay for surface subsidence prediction, a total of
264 data samples were collected, which were further divided into two subsets to evaluate a
model’s generalization ability. Randomly select 80% of the samples in the constructed data
sample library as the training and testing set of the model (211 observations per feature).
It should be noted that the test set must be referred to evaluate the model’s behavior.
The remaining 20% (53 data samples) have been retained from the basic dataset to be
adopted for predictions, the data should not be confused with a training/test segmentation.
According to the 264 surface subsidence measurement data chosen in this study, the input
and output data of first 25 points are shown in Table 4. The limits of mentioned parameters
to construct the predictive models for all 264 data samples, including average, standard
deviation (Std.), maximum (Max.), minimum (Min.) and three percentiles (75%, 50%, and
25%) are summarized in Table 5.

Table 4. Dataset samples used for creating intelligent model.

No. Ring H
(m) ST GW

(m)
FPt

(kPa)
FPc

(kPa)
AR

(mm/min)
PA
(◦)

Th
(kN)

To
(kN/m)

JP
(kPa)

HD
(mm)

VDF
(mm)

HD
(mm)

VDB
(mm)

Smax
(mm)

1 5 9.03 1 1.46 40 95 0 −0.1 9345 1937 8700 −34 53 27 −53 4.65
2 9 9.05 1 1.57 0 70 7 −0.22 27,124 1305 24,600 −63 −67 5 −55 5.52
3 14 9.07 1 1.68 80 140 31 0 19,986 2310 17,700 −80 −43 −23 −62 40.11
4 18 9.09 1 1.79 110 180 59 −0.1 16,804 1965 4700 −78 −43 −46 −48 8.8
5 22 9.1 1 1.9 110 180 45 −0.2 20,275 1937 18,500 −49 −31 −62 −44 8.76
6 26 9.13 1 2.01 120 190 32 −0.2 17,478 2529 16,075 −37 −17 −54 42 18.67
7 30 9.25 1 2.12 110 180 34 −0.6 18,907 2289 null −31 −45 −37 −15 16.16
8 34 9.36 1 2.22 110 195 30 −0.77 17,459 2567 16,200 −32 −46 −29 −21 6.45
9 39 null 1 2.33 120 190 42 −0.7 19,564 2036 18,050 −15 −65 −20 −51 2.41
10 43 9.6 1 2.44 110 170 29 −0.7 null 2874 18,250 −8 −53 −13 −57 3.18
11 51 9.83 1 2.66 130 205 36 −1 19,344 2853 17,800 −1 −55 5 −46 1.58
12 55 9.94 1 2.49 130 205 48 −1 19,726 2153 18,000 1 −58 17 −55 7.61
13 59 10.04 1 2.33 130 205 41 −1 17,758 2250 16,300 14 −47 16 −49 10.12
14 64 10.14 1 2.16 130 200 38 −1 18,297 2778 16,900 −18 −45 −8 −44 11.77
15 68 10.24 1 2 130 205 38 −1.1 18,597 2657 16,975 4 −35 7 −31 12.97
16 72 10.34 1 1.84 120 190 35 −1.2 18,693 2278 17,225 −18 −39 16 −13 15.45
17 76 10.43 1 1.67 130 205 46 −1.2 17,618 2095 15,750 −42 −44 −5 −14 21.3
18 80 10.53 1 1.51 130 200 45 null 17,885 1953 15,775 −31 −47 −29 −19 16.11
19 84 null 1 1.34 130 200 43 −1.1 18,490 2567 16,900 −15 −47 −30 −33 11.6
20 89 10.73 1 1.21 140 205 44 −1.1 18,923 2049 17,400 −18 −39 −16 −32 14.35
21 50 10.91 0 112.0 60 160 51 −1.33 10,655 481 9500 13 −55 10 −4 12.1
22 55 11.05 0 240.0 50 170 50 −1.42 11,270 506 10,100 29 −48 42 2 16.7
23 85 11.89 0 12.2 50 190 62 −1.49 10,307 518 9100 4 −87 17 −31 26.9
24 90 12.03 0 11.9 60 215 63 −1.17 10,703 522 9525 21 −69 35 −60 28.5
25 100 12.31 0 32.4 40 170 57 −1.31 12,307 569 10,875 −22 −66 47 −40 40.2
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Table 5. Descriptive statistical description of the dataset used.

Parameter
Count Count Mean Count Std. Count Min. Count 25% Count 50% Count 75% Count Max. Count

H 264 14.5 2.7 9.03 11.98 15.07 16.71 18.70
ST 264 0.52 0.5 0 0 1 1 1
GW 264 1.96 0.6 0.36 1.63 1.93 2.40 3.18
FPt 264 122.6 62.12 0 70 110 182.5 230
FPc 264 232.3 37 70 205 240 260 310
AR 264 58.40 11.76 0 53 60 66 80
PA 264 −0.09 0.78 −1.49 −0.77 −0.20 0.38 1.37
Th 264 19,592.6 4404.27 0 17,194.0 19,331.0 23,280.0 27433.0
To 264 1537.85 956.04 0 569.75 19,210.0 2481.5 3180
JP 264 17,862.2 3992.54 25 15,750.0 17,850.0 21,131.25 24950.0
HDf 264 −8.74 23.70 −80 −22.25 −12 2.25 69
VDf 264 −47.14 39.57 −125 −76 −48 −14 36
HDb 264 22.97 25.57 −62 8 23 39.25 107
VDb 264 −25.07 35.80 −126 −51 −26 −4 54
Smax 264 20.87 12.48 1.58 11.225 16.95 28082 55.30

For data cleansing, the shield parameters obtained from the shield site often contain
many invalid data and cannot be used directly, so the data must be cleaned. PyCaret by
default utilizes the drop_duplicates () function for the cleaning process, which includes the
removal of nulls and outlier rejection. Table 6 lists the data samples obtained after cleansing.
We performed all analyses using the default settings; for example, the test/hold-out set was
80/20, with 10-fold cross-validation for model comparison. The preprocessing methods
that were employed are discussed next.

Table 6. Cleaned dataset samples used for creating intelligent model.

No. Ring H
(m) ST GW

(m)
FPt

(kPa)
FPc

(kPa)
AR

(mm/min)
PA
(◦)

Th
(kN)

To
(kN/m)

JP
(kPa)

HD
(mm)

VDF
(mm)

HD
(mm)

VDB
(mm)

Smax
(mm)

1 5 9.03 1 1.46 40 95 0 −0.1 9345 1937 8700 −34 53 27 −53 4.65
2 9 9.05 1 1.57 0 70 7 −0.2 27,124 1305 24,600 −63 −67 5 −55 5.52
3 14 9.07 1 1.68 80 140 31 0 19,986 2310 17,700 −80 −43 −23 −62 40.11
4 18 9.09 1 1.79 110 180 59 −0.1 16,804 1965 4700 −78 −43 −46 −48 8.8
5 22 9.1 1 1.9 110 180 45 −0.2 20,275 1937 18,500 −49 −31 −62 −44 8.76
6 26 9.13 1 2.01 120 190 32 −0.2 17,478 2529 16,075 −37 −17 −54 −42 18.67
7 30 9.25 1 2.12 110 180 34 −0.6 18,907 2289 17,950 −31 −45 −37 −15 16.16
8 34 9.36 1 2.22 110 195 30 −0.77 17,459 2567 16,200 −32 −46 −29 −21 6.45
9 39 9.48 1 2.33 120 190 42 −0.7 19,564 2036 18,050 −15 −65 −20 −51 2.41

10 43 9.6 1 2.44 110 170 29 −0.7 19,778 2874 18,250 −8 −53 −13 −57 3.18
11 51 9.83 1 2.66 130 205 36 −1 19,344 2853 17,800 −1 −55 5 −46 1.58
12 55 9.94 1 2.49 130 205 48 −1 19,726 2153 18,000 1 −58 17 −55 7.61
13 59 10.04 1 2.33 130 205 41 −1 17,758 2250 16,300 14 −47 16 −49 10.12
14 64 10.14 1 2.16 130 200 38 −1 18,297 2778 16,900 −18 −45 −8 −44 11.77
15 68 10.24 1 2 130 205 38 −1.1 18,597 2657 16,975 4 −35 7 −31 12.97
16 72 10.34 1 1.84 120 190 35 −1.2 18,693 2278 17,225 −18 −39 16 −13 15.45
17 76 10.43 1 1.67 130 205 46 −1.2 17,618 2095 15,750 −42 −44 −5 −14 21.3
18 80 10.53 1 1.51 130 200 45 −1.2 17,885 1953 15,775 −31 −47 −29 −19 16.11
19 84 10.63 1 1.34 130 200 43 −1.1 18,490 2567 16,900 −15 −47 −30 −33 11.6
20 89 10.73 1 1.21 140 205 44 −1.1 18,923 2049 17,400 −18 −39 −16 −32 14.35
21 50 10.91 0 112.0 60 160 51 −1.33 10,655 481 9500 13 −55 10 −4 12.1
22 55 11.05 0 240.0 50 170 50 −1.42 11,270 506 10,100 29 −48 42 2 16.7
23 85 11.89 0 12.2 50 190 62 −1.49 10,307 518 9100 4 −87 17 −31 26.9
24 90 12.03 0 11.9 60 215 63 −1.17 10,703 522 9525 21 −69 35 −60 28.5
25 100 12.31 0 32.4 40 170 57 −1.31 12,307 569 10,875 −22 −66 47 −40 40.2

2.4.1. Data Normalization

Cleaned data is often different and affects the result of machine learning. In order
to eliminate this influence and improve the convergence speed to a certain extent, it is
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necessary to normalize the data. In statistics, the more commonly used normalization
methods include dispersion standardization and Z-score standardization. Dispersion
standardization is widely used in deformation prediction, and its data normalization
interval may be different but mainly normalized to [−1, 1] or [0, 1]. For any parameter x,
the normalized value is given as:

Xnorm =
X − Xmin

Xmax − Xmin

(
Xmax − Xmin

)
+ Xmin (1)

In the formula, Xmax, Xmin is the maximum and minimum values of variable x, where
Xmax, Xmin is the maximum and minimum values of normalized variables X. For the
normalization process of measured data, we employed PyCaret, which uses the “Zscore”
function by default to normalize the data in the range of [0, 1].

2.4.2. Cross-Validation Method

Building a machine learning model is mainly composed of 3 phases: training, testing,
and validation. The validation process mainly solves the problems of overfitting and
under fitting in machine learning. Machine learning validation methods primarily include
simple cross-validation (hold-out cross-validation), k-fold cross-validation, and leave-one-
out cross-validation [54]. In order to improve the generalization performance of the ML
model and overcome the deficiencies of data, k-fold cross-validation is the most popular
cross-validation method used in the model training phase [55,56]. In order to test the
performance of the entire prediction model more accurately, the original training data
set constructed is stochastically divided into k parts. For each calculation, k-1 subsets are
provided for training, and the remaining subset is used for verification. This procedure
is used to test the ability of the sub-models. Repeat the calculation k times so that each
sub-dataset can be used as a validation. Summarize and calculate the average ability of
k sub-models to measure the performance of the entire prediction model. The formula is
shown as follows:

T =
1
k ∑k

i=1 MSEi (2)

where, T = fitness function, MSEi = prediction error for the ith validation set. The perfor-
mance of the k-fold cross-validation method depends on the number of subsets. However,
fewer subsets cannot eliminate the problem of overfitting or underfitting, which will affect
the model’s accuracy. Too many subsets will significantly increase the model’s performance
computation time. Considering the limited amount of data in this study, in order to obtain
reliable results, we finally adopted the 10-fold cross-validation method.

3. Feature Selection

Feature selection plays a significant role in machine learning because it manually or
automatically chooses the input features that contribute significantly to the target variable.
It is a desirable step to consider when building an ML model [34]. After the primary
selection of input parameters in the surface deformation prediction of shield tunneling,
the model may still face the problem of having too many input parameters. In order
to avoid the dimensionality and the occurrence of overfitting and improve the model’s
accuracy, it is necessary to rely on feature selection for input parameter further filtering.
Tan et al. [57] used grey relational analysis and sorted them by the degree of relevance to
determine the main factor influencing the amount of deformation. Moreover, the commonly
used feature selection methods include Filter, Wrapper, the principal component analysis
method, Sobol sensitivity analysis [58], recursive feature elimination, the tree model-based
feature selection method, etc.

3.1. Analysis 1: Pearson Correlation Method

Feature selection methods are numerous and complex in predicting the surface de-
formation of shield tunnels. The linear correlation between the x and y variables can
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be measured by the Pearson correlation coefficient, whose formula is given in Equation
(3) [59].

r =
∑
(
Xi − X

)(
Yi − Y

)√(
Xi − X

)2(Yi − Y
)2

(3)

In the formula, r represents the Pearson correlation coefficient; Xi and Yi represent the
values of the X and Y variables in the sample respectively; X and Y are the average values
of the variable values.

The closer the absolute value of the correlation coefficient r is to 1, the stronger the
linear correlation between the variables. When r = 0, it means that there is no linear
correlation between the two variables. The correlation coefficient was calculated using the
corr(.) function provided in the Pandas library, and the results are listed in Figure 5. In this
study, the guidelines recommended by Zhang et al. [6], were used to select the characteristic
variables. From the calculation results of the correlation coefficient, it can be seen that
among the listed features, only ST is strongly linearly correlated with Smax (|r| = 0.63),
while FPt, Th, To, JP, and VDf are moderately correlated with Smax (|r| = 0.42~0.56).
In addition, the parameters H, AR, HDb, and VDb are weakly correlated with Smax
(|r| = 0.23~0.36), and the remaining characteristic variables GW, FPc, PA, and HDf show
very weak correlations with Smax (|r| < 0.19). In this analysis, the feature variables with
a medium correlation with the output variable Smax (|r| ≥ 0.4) are selected as effective
features for predicting Smax, and the rest of the input features are not used as effective
variables for prediction analysis due to small correlation coefficient and weak correlation.
There is some difficulty in using the Pearson correlation coefficient feature selection method
when a large number of analyzed features are poorly correlated with the predictor variables,
as shown in this study.
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3.2. Analysis 2: Shapley Additive Explanations (SHAP)

Although the machine learning model based on the ensemble algorithm has relatively
good performance, with the increase in model complexity, the interpretability of the model
is reduced, which makes the regression model a black-box model. To solve the challenge
of poor interpretability of the model, the SHAP framework is introduced to explain the
model results and to provide support for the reliability of the model results. SHAP (Shapley
additive explanations) is an interpretive framework proposed by Lundberg and Lee [39]
for interpreting black-box models. The SHAP method is widely used in coalition game
theory, which evaluates the degree of influence of input features on output parameters
through Shapley values [60]. The basic method is to calculate the contribution value of
each input feature and add the influence value of each feature to obtain the final prediction
of the model [61].

For an ensemble tree model, when doing a regression task, the model outputs a
probability value. SHAP can calculate the Shapley value to measure the influence value
of each input variables to the final prediction. Assume that g represents the explanatory
model, M represents the number of features, and z indicates whether the feature exists
(value 0 or 1); φ is the original value when all the inputs are absent, for each feature Shapley
value, the formula can be given as follows:

g(z)= ϕ0 + ∑M
i ϕizi (4)

For each feature, the SHAP value describes the expected change in model predictions
when conditioned on this feature. For each function, the SHAP value describes the feature’s
contribution to the overall prediction outcome to account for the distinction between the
average model calculation and the actual calculation. When i > 0; it shows that this feature
has an improving effect on the predicted value, and conversely when i < 0, it shows that
this feature reduces the contribution. The model importance given by the regressor model
only shows which input variable is essential but does not show how the variable influences
the calculation results. The most significant superiority of the SHAP model is that it can
show the influence of input variables in each data, as well as the positive or negative effect
of this influence on the final prediction result.

Figure 6 is a summary graph of SHAP features, which analyzes factors affecting
surface deformation according to feature importance.
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As shown in Figure 6 the soil type (ST), Torque (To) cover depth (H), ground water
level (GW), and other characteristics have a significant effect on the model. The most
important feature of SHAP that affects settlement prediction is the soil type (ST). Therefore,
silty clay with a higher positive SHAP value has a greater influence on the mod-el output
result than silty sand. Torque (To) and Cover depth (H) in the current model (ET) also
have a significant impact on predicting Smax. Positive SHAP values are observed when
Torque values are low, while negative SHAP values are observed when Torque values are
high, which means that a smaller torque will induce greater surface settlement. In the same
way, it can be seen that when H is larger, the corresponding SHAP value is positive, which
means that the output value of the prediction model will increase.

The SHAP values for PA, VDB, AR, JP, HDB, and HDF mainly converge near zero.
The zero SHAP value stands that there is no effect on the model’s calculation. To better
understand the dependency of each feature in the model’s output a simplified version of
the above plot is shown in Figure 7. It can be found that in the current model, ST, To, H,
GW, and VDF are the most important features in predicting Smax, while the importance of
other features is less in comparison to ST.
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Figure 7. Feature Importance by SHAP Values of designed ET model.

Figure 8 shows the SHAP dependency graph between features ST, H, and GW, which
have a high impact on the model and are selected to draw the SHAP feature dependency
graph, where the third axis of the dependency graph is the categorical variable. Figure 8a,
shows the correlation data of silty clay (labeled 0, represented by blue dots) and silty sand
(labeled 1, represented by red dots). It can be found that the EPB operates at low VDf values
while traversing the silty clay formation in Project 1, and calculates a large negative SHAP
value. Conversely, when the TBM was operating at high VDf values while traversing the
silty sand formation in Project 2, a large positive SHAP value was calculated.
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Figure 8b shows how the SHAP value increases and then decreases as the GW value
increases. Similarly, Figure 8c shows that SHAP values for H are primarily close to 0,
corresponding to FPt, which means that the cover depth (H) has zero impact on the model’s
output Smax when sufficient face pressure is present. Also, as the FPt values decrease at
greater depths (>12 m), the Smax increases, indicating a larger positive SHAP value for H.

Therefore, as with analysis 1 and analysis 2, five variables (i.e. ST, To, H, GW, and
VDF) were considered important for predicting tunnelling-induced settlements and are
selected as final input parameters for building a ML models.

4. Research Methodology

Despite the numerous research conducted in the past, it is essential to carry on with
the ongoing efforts of developing newer and faster machine learning techniques that are
more effective and can also be developed and deployed with ease. In this analysis, three
commonly used statistical evaluation parameters, i.e., coefficient of determination (R2),
mean absolute error (MAE), and root mean square error (RMSE), were used to evalu-



Mathematics 2022, 10, 4637 15 of 25

ate the accuracy of the calculation results generated by the intelligent method, as given
by equations.

R2 = 1 −
∑N

i=1

(
yact

i − ypred
i

)2

∑N
i=1

(
yact

i − yact
i

) (5)

MAE =

(
1
n

)
∑N

i=1

∣∣∣yact
i − ypred

i

∣∣∣ (6)

RMSE =

√(
1
N

)
∑N

i=1

(
yact

i − ypred
i

)
2 (7)

where yi
act signifies the measured value of the ith output feature, yi

pred is the predicted value
of the ith output feature, and N is the number of data in the dataset. MAE, RMSE, and R2

represent the average value, standard deviation, and correlation degree of the difference
between the measured value and the predicted value, respectively.

4.1. Machine Learning Techniques

A new Python library (PyCaret) [40], offers a majority of machine learning techniques
to construct a new prediction model. 21 ML algorithms were optimized through a com-
prehensive search of multiple ML methods, bypassing the whole dataset to the regression
module of PyCaret (2.3.10), which divides the dataset into train and testing sets of 80%
(211) and 20% (53) records, respectively, by calling the ‘setup’ function. 20% of the samples
(53 data) are reserved from the original data set to demonstrate the predictive effect of
the predict_model() function. This process is independent of the train/test phase, since
this particular split is done to simulate a real engineering environment. Another reason
for this approach is that these 53 samples are not available when doing machine learning
model building. In order to analyze and calculate the relationship between multiple input
variables and output variable when using machine learning methods to build prediction
models, regression analysis algorithms are often adopted [62,63]. Regression analysis
statistics method determines the distribution relationship of data through known datasets,
measures the contribution of input features to output features, and has been widely verified
in ML methods [64,65]. Regression method can be used for making predictions on continu-
ous data (time-series) in ML, especially when the regression relationship line of variables
does not pass through the origin, regression analysis is more accurate. In addition, with
the development of mathematical statistics theory, ML algorithm is often used in nonlinear
regression estimation. Table 7 lists the regression estimators and other algorithms that were
used in this study [40].

After performing the feature selection methods using analysis 1 and 2 as discussed in
Section 3, all the models from the available machine learning libraries and frameworks were
trained on datasets containing the selected features from Pearson correlation method and
SHAP algorithm. Based on their R2 values, the top five models were selected for further
optimization. The hyperparameter adjustment method is used to improve the R2 value of
the selected model. Furthermore, tuned models were trained using 10-fold cross-validation
to use all of the samples as training and testing, as the number of samples in the database is
not enough. All of the tuned models were ensembled. Ensemble modeling is a technique in
which various models are built to predict an output variable. This is accomplished through
the use of various modeling methods or samples of training databases. The aggregated
model then summarizes the predictions for each submodel, resulting in a single eventual
prediction for the unknown data. The method of ensemble model can effectively reduce
the generalization error of calculation, provided that the sub models built in the process
of ensemble model are independent and diversified. The two most common methods
in ensemble learning are bagging and boosting [66,67]. Stacking [68] is also a type of
ensemble learning where predictions from multiple models are used as input features for
a meta-model that predicts the final outcome. After the ensemble technique, the best of
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all the models were calculated and selected using the AutoML function, improving the R2

value before determining the model for saving.

Table 7. Introduction to various ML algorithms (regression estimators).

No. Estimator Description

1 Extra tree Regressor A regressor with multiple decision trees, which is highly randomized, is only used
in the ensemble methods.

2 Random Forest Regressor The algorithm establishes multiple decision trees by randomly sampling, and
obtains the overall regression prediction results by averaging the results of all trees.

3 Gradient Boosting Regressor An algorithm for combining multiple simple models into a composite model.

4 Light Gradient Boosting Machine The algorithm adopts a distributed gradient lifting framework based on decision
tree algorithm, which can solve the problems encountered by GBDT in massive data.

5 AdaBoost Regressor This algorithm trains different weak regressors for the same training set and
combines them to form a stronger final regressor.

6 Extreme gradient boosting The algorithm is optimized on the framework of GBDT, which is efficient, flexible
and portable.

7 K neighbors Regressor A simple algorithm for predicting the target value on all available cases based on a
similarity measure.

8 Decision Tree Regressor
A method of approximating the value of a discrete function. The induction
algorithm is used to generate readable rules and decision trees, and the decision is
used to analyze new data.

9 Support vector machine A generalized linear classifier for binary classification of data according to
supervised learning.

10 Bayesian Ridge A probability model for estimating regression problems.

11 Ridge Regression A biased estimation regression method dedicated to the analysis of collinearity data
is essentially an improved least squares estimation method.

12 CatBoost Regressor An algorithm based on symmetric decision tree, which can efficiently and
reasonably handle categorical features.

13 Linear Regression A linear approach that shows the relationship between a dependent variable and
one or more independent variables.

14 Least Angle Regression A statistical analysis method that uses regression analysis to determine the
quantitative relationship between multiple variables.

15 Huber Regressor A linear regression that replaces the loss function of MSE with huber loss.

16 Orthogonal Matching Pursuit A nonlinear adaptive algorithm using a super complete dictionary for
signal decomposition.

17 Elastic Net A linear regression model applied to multiple correlated features.

18 Lasso Regression A compressed estimate. It constructs a penalty function to obtain a more refined
model, which is a biased estimate for processing data with complex collinearity.

19 Passive aggressive Regressor Online learning algorithms for both classification and regression.

20 Random sample consensus An iterative method that estimates the parameters of a mathematical model from a
set of observed data containing outliers that do not affect the estimates.

21 Theil-Sen regressor A robust model for fitting straight lines in nonparametric statistics.

5. Results and Discussion

The experimental work was performed by employing a Python library (PyCaret). The
regression module of PyCaret is a supervised ML module that forecasts continuous values.
It has over 21 ML algorithms and various plots to analyze the model’s performance.

5.1. Experimental Design

Figure 9 depicts an experimental design flow diagram with seven major components:
data collection, data pre-processing (data cleaning, normalization, and cross-validation),
feature selection, hyper-parameter tuning, data partitioning, model development, model
selection, and future prediction.
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As described in Section 2.1, data from metro line tunneling projects in Hangzhou
for predicting tunnel-induced settlements were collected. Data were cleaned first, which
included the removal of nulls and outlier rejection. All the data are of integer datatype
and were normalized to [−1, 1] as discussed in Section 2.4.2 and then divided into training
and testing samples. As discussed in Section 3, feature selection methods using Pearson
correlation and SHAP were applied to find relevant features. Five features (i.e. ST, To,
H, GW, and VDF) were considered important for predicting Smax, and were selected as
final input parameters for building ML models. ML models were then developed with
21 ML estimators, as explained in Section 4.1, and performance was recorded based on
the MAE, RMSE, and R2 values the results that were obtained are presented in Table 8.
Among the 21 developed ML models, the best five models were selected: the extra tree
regressor, Random Forest Regressor, AdaBoost Regressor, Light Gradient Boosting Machine,
and Gradient Boosting Regressor. All the best five selected models were then subjected
to hyper-parameter tuning to maximize the model’s performance without overfitting by
using the tune_model function, which will automatically tune the hyper-parameters of
a model using a random grid search on a pre-defined search space. Furthermore, the
10-fold cross-validation technique is utilized for a dynamic partitioning of data and for
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improving the tuned model’s performance. The tuned models were then ensemble which
is well known in improving the stability and accuracy of regression models (primarily tree-
based) using various ensemble techniques; these include Bagging, Boosting, and Stacking.
Table 8 presents the results obtained after adopting the corresponding techniques. Finally,
forecasting was performed through the best-selected model (i.e., the extra trees regressor
model). The model was also validated with unseen data for predictions to check the
robustness of the model and it was found to be satisfactory.

Table 8. Statistical values of the 21 developed ML prediction models on Training and Test set.

No. Model
MAE R2 RMSE MAE R2 RMSE

Training Training Training Test Test Test

1 Extra tree Regressor 3.7 0.891 4.5 3.8 0.791 5.5
2 Random Forest Regressor 4.2 0.857 5.0 4.3 0.753 6.1
3 Gradient Boosting Regressor 4.3 0.846 5.1 3.8 0.788 5.6
4 Light Gradient Boosting Machine 4.5 0.826 5.5 3.97 0.762 6.0
5 AdaBoost Regressor 4.4 0.834 5.2 5 0.736 6.4
6 Extreme gradient boosting 4.3 0.845 5.2 5.1 0.742 6.41
7 K neighbors Regressor 4.28 0.831 5.5 4.76 0.732 6.48
8 Decision Tree Regressor 4.7 0.691 5.5 5.67 0.599 8.0
9 Support vector machine 4.7 0.655 5.6 5.82 0.582 8.0
10 Bayesian Ridge 7.54 0.603 8.46 7.1 0.47 9.02
11 Ridge Regression 7.59 0.602 8.48 6.80 0.51 8.74
12 CatBoost Regressor 7.62 0.592 8.52 6.72 0.55 8.77
13 Linear Regression 7.70 0.57 8.76 6.76 0.50 8.82
14 Least Angle Regression 7.70 0.57 8.76 6.76 0.51 8.82
15 Huber Regressor 7.57 0.57 8.73 6.61 0.51 8.73
16 Orthogonal Matching Pursuit 7.9 0.55 9.23 7.6 0.36 10.1
17 Elastic Net 8.1 0.52 9.31 7.62 0.40 9.6
18 Lasso Regression 7.70 0.57 8.76 7.77 0.40 9.63
19 Passive aggressive Regressor 8.1 0.42 10.44 8.56 0.19 11.20
20 Random sample consensus 7.43 -0.33 8.43 10.10 -0.10 12.49
21 Theil-Sen regressor 7.43 -0.33 8.43 10.10 -0.10 12.49

5.2. Performance Analysis

The model’s performance was analyzed across different aspects, as discussed below.

5.2.1. Performance of Regression Models

The regression models for the given dataset were developed using PyCaret; for a
diverse dataset, the coefficient of determination (R2), mean absolute error (MAE), and root
mean square error (RMSE) are considered reliable statistics for evaluating the prediction
model. Among the 21 different generated continuous models on the training set and the
test set, the statistical significance of the best five selected models after being subjected to
hyperparameter tuning, 10-fold cross-validation, and various ensemble techniques, giving
their coefficient of determination (R2), the mean absolute error (MAE), and the root mean
square error (RMSE), is given in Table 9 below. Based on the statistical values, it appears
that the extra tree regressor (ET) outperformed in all cases at the training and testing stages,
with an R2 of 0.808, MAE of 3.7, and an RMSE of 5.2 on the test set. The extra tree regressor,
which outperformed in all the cases, was finalized as the best model.

5.2.2. Performance of the Extra Tree Regressor

The extra tree regressor model was also analyzed graphically using residual graphs,
prediction error plots, and validation curve plots. Plotting uses the trained model object
and generates a plot based on the testing dataset. Figure 10 depicts the plots between
the experimental and predicted Smax as predicted by the generated models. The x-axis
and y-axis represent the experimental and predicted values, respectively, and the blue and
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green colors represent the training and testing sets, respectively. The black diagonal line
represents the identity line.

Table 9. Statistical values of the best five selected prediction Models on Training and Test set.

No. Model
MAE R2 RMSE MAE R2 RMSE

Training Training Training Test Test Test

1 Extra tree Regressor 3.4 0.913 4.04 3.7 0.808 5.2
2 Random Forest Regressor 4.2 0.861 5.0 4.3 0.786 5.4
3 Gradient Boosting Regressor 4.3 0.854 5.1 3.8 0.792 5.5
4 AdaBoost Regressor 4.4 0.849 5.1 5.0 0.763 5.9
5 Light Gradient Boosting Machine 4.5 0.842 5.5 3.9 0.778 6.0

A prediction error plot compares actual targets to the values predicted by our model.
This demonstrates the model’s variance. We can identify regression models using this plot
by comparing them to the 45-degree slanting line and determining whether the prediction
exactly matches the model.

A residual plot is a graphical representation of the relationship between an indepen-
dent variable and its corresponding response variable. A residual value is a measure of
how well a regression line fits the dataset, with a few data points fitting and others missing.
The x-axis in the residual plot represents the residual values, and the y-axis represents the
independent variable.

The validation curve is the learning curve calculated from a holdout validation dataset
that gives an idea of how well the model is generalizing dataset. The validation curve
plots the score over a varying hypermeter. It is more convenient to plot the influence of a
single hypermeter on the training score and the validation score to determine whether the
estimator is overfitting or underfitting for some hypermeter values. From Figure 10c, both
the validation curves are becoming narrower with the increased value of max_depth.
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5.2.3. Prediction of Unseen Data

To finalize the model and predict based on unseen data (the 20% of data) that we
detached at the start and never revealed to PyCaret. The finalize_model () function fits
the model to the full dataset containing the test/holdout samples. The predict_model ()
function is employed to make predictions on the unseen data, this time we will pass the
data_unseen parameter. Data_unseen is the variable created at the beginning and contains
20% (53 samples) of the original dataset that was never exposed to PyCaret. Although the
model is same, we can see that R2 increased from 0.913 to 0.96 in the final ET model. This is
because the final ET variable is trained on the entire dataset including the test/hold-out set.
The plot of prediction error is shown in Figure 11. After testing the models on the unseen
data subset, the results we obtained are summarized in Table 10 below. At the unseen_data
stage, the model performed well with MAPE of 2.10, R2 of 0.961, and RMSE of 3.94.
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Table 10. Statistical values of the Generated prediction Models on unseen data.

MAE MSE RMSE R2 RMSLE MAPE

Extra tree regressor 2.1023 15.5794 3.9471 0.961 0.1664 0.1053

According to Table 10 and Figure 11, the mean absolute error (MAE) between predicted
and measured maximum surface subsidence is less than 3%, indicating that the predictive
performance of the model is acceptable and satisfactory for the given project. Given the
statistical results and graphical plots, the models generated by PyCaret can be used to
predict ground subsidence’s caused by shield tunneling.

5.3. Analysis of Model on Entire Dataset

As it is known that PyCaret wraps a number of machine learning frameworks and
libraries, the model built by PyCaret is evaluated to learn about the details of the best
algorithm selected by the AutoML function. The extra tree regressor is identified to be
the best-selected model based on the statistical R2 value of 0.961. Furthermore, our best
model was finalized for deployment and saved for making new predictions over the whole
dataset, including (training, test, and unseen_data sets). An actual vs. predicted value plot
is plotted for visualization as a histogram, as shown in Figure 12a, where the brown bars
represent the actual values, the blue bars represent the predicted values, and the purple
bars represent the error. A regression plot is plotted over the entire dataset to show the
linear relationship between the Actual Value and the Predicted Value of Smax, and the dots
are not far in the hyperplane of the linear line, which indicates that the regression model is
good as shown in Figure 12b. Further, we can compare the predicted values and residuals
in an error plot over the entire dataset, shown in Figure 12c. The statistical R2 value of
1 and the actual vs. predicted value plot on our entire dataset indicate that the selected
model i.e. extra tree regressor (ET) is highly significant in predicting the surface settlements
induced by tunneling when compared to our other models.
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6. Conclusions

This study systematically illustrates the process of application of Auto machine learn-
ing (AutoML)-based method to precisely predict tunneling-induced settlement using EPB
shield machines. The 10-fold cross-validation method is utilized to overcome the scarcity
of data and promote the robustness of the model. The coefficient of determination (R2),
mean absolute error (MAE), and root mean square error (RMSE), are selected as three
quantificational evaluation indices. Feature selection methods (i.e., Pearson correlation,
and the SHAP framework) were employed to select features from a dataset with 14 input
features (i.e., H, ST, GW, FPt, FPc, AR, PA, Th, To, JP, HDf, VDf, HDb, and VDb). Subse-
quently, AutoML-based models were built and trained on the selected features from the
corresponding feature selection method. Then, the five best models were selected among
21 developed ML prediction models, and performances were compared by computing the
R2, RMSE, and MAE. According to the analysis, the extra tree regressor outperformed the
other four models. Finally, the extra tree regressor model was used to make predictions
on unseen data to simulate a real-life scenario and highlight the strengths of the model’s
predicted performance.

The following conclusions are provided based on the results of the model comparison
and analysis:

• Feature selection is essential to address when predicting Smax due to shield tunneling.
It is recommended to compare at least two feature selection methods, especially when
there needs to be more information about the relationship between input and output
parameters. Herein, H, ST, GW, FPt, PA, To, JP, VDF, and VDb significantly impact the
maximum surface settlement caused by tunneling based on the features selected from
the Pearson correlation method. However, deciding which feature to select may be
challenging when there is a weak correlation with the desired output.

• SHAP-based feature selection algorithms comprehend the output of a complex ML
model and facilitate model validation by allowing the user to investigate how various
features contribute to the model’s prediction. The SHAP analysis performed in this
study revealed that the most critical parameters affecting tunneling-induced ground
settlements were soil type (ST), torque (To), cover depth (H), groundwater level
(GW), and tunneling deviation. These prudent factors identified by the model enable
engineers and shield operators to reasonably manage shield operations.

• It is feasible and most reliable to calculate the maximum ground settlement (Smax)
during the construction of earth pressure balanced (EPB) shield tunneling by the pro-
posed AutoML models. According to the statistical and graphical results, the extra-tree
regressor’s predictive ability is the best among all 21 AutoML models. Furthermore,
the prediction results on unseen data indicate that the model’s predicted performance
is acceptable and within the project’s tolerances. As a result, the prediction results
generated from the AutoML-based extra tree regressor model are the most reliable,
indicating that the model can be employed in real projects when completely-new deep
excavation data are imported.

Limitations

Because of the lack of a professional public database and the irregular quality of
engineering data, this study excludes the meta-learning submodule in AutoML. More work
should be done to collect similar data and create a database that can provide prior experience.

This study does not investigate the impact of tunneling operations with parameters
related to grouting quality (e.g., large grout filling percentage and grouting pressure),
which can significantly reduce settlements developed after the shield passing, as they were
unavailable for Project 1. In order to enhance the effectiveness of the ML models, it is
recommended to consider the effects of these parameters in future research.
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