Intelligent Generation of Cross Sections Using a Conditional Generative Adversarial Network and Application to Regional 3D Geological Modeling
Abstract
:1. Introduction
2. Conditional Generative Adversarial Network
2.1. Convolution Layer
2.2. Leaky-ReLU Activation
2.3. Deconvolution
3. Materials and Methods
3.1. Intelligent Generation of Cross Sections Based on CGAN
3.2. Data Preparation
3.2.1. Geological Data
3.2.2. Geophysical Data
3.2.3. Data Gridding
3.2.4. Construction of the Input Dataset
3.2.5. Label Data
3.3. Data Augmentation
4. Results and Discussion
4.1. Data and Data Processing
4.2. Experiments and Results
4.3. Influence of Different Super Parameters on the Results
4.4. Comparison with Other Deep Learning Algorithms
5. 3D Geological Modeling and Application
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pan, M.; Li, Z.; Gao, Z.; Yang, Y.; Wu, G. 3-D geological modeling-concept, methods and key techniques. Acta Geol. Sin. (Engl. Ed.) 2012, 86, 1031–1036. [Google Scholar]
- Wang, G.; Li, R.; Carranza, E.J.M.; Zhang, S.; Yan, C.; Zhu, Y.; Qu, J.; Hong, D.; Song, Y.; Han, J.; et al. 3D geological modeling for prediction of subsurface Mo targets in the Luanchuan district, China. Ore Geol. Rev. 2015, 71, 592–610. [Google Scholar] [CrossRef]
- Wang, G.; Zhu, Y.; Zhang, S.; Yan, C.; Song, Y.; Ma, Z.; Hong, D.; Chen, T. 3D geological modeling based on gravitational and magnetic data inversion in the Luanchuan ore region, Henan Province, China. J. Appl. Geophys. 2012, 80, 1–11. [Google Scholar] [CrossRef]
- Ming, J.; Pan, M.; Qu, H.; Ge, Z. GSIS: A 3D geological multi-body modeling system from netty cross-sections with topology. Comput. Geosci. 2010, 36, 756–767. [Google Scholar] [CrossRef]
- Bistacchi, A.; Massironi, M.; Dal Piaz, G.V.; Dal Piaz, G.; Monopoli, B.; Schiavo, A.; Toffolon, G. 3D fold and fault reconstruction with an uncertainty model: An example from an Alpine tunnel case study. Comput. Geosci. 2008, 34, 351–372. [Google Scholar] [CrossRef]
- Whiteaker, T.L.; Jones, N.; Strassberg, G.; Lemon, A.; Gallup, D. GIS-based data model and tools for creating and managing two-dimensional cross sections. Comput. Geosci. 2012, 39, 42–49. [Google Scholar] [CrossRef]
- Lemon, A.M.; Jones, N.L. Building solid models from boreholes and user-defined cross-sections. Comput. Geosci. 2003, 29, 547–555. [Google Scholar] [CrossRef]
- Zhu, L.F.; Wu, X.C.; Liu, X.G.; Shang, J.G. Reconstruction of 3D strata model based on borehole data. Geogr. Geo-Inf. Sci. 2004, 20, 26–30. [Google Scholar]
- Wu, Q.; Xu, H.; Zou, X. An effective method for 3D geological modeling with multi-source data integration. Comput. Geosci. 2005, 31, 35–43. [Google Scholar] [CrossRef]
- Ming, J. Quick construction and update of three-dimensional geological models based on boreholes. Geogr. Geo-Inf. Sci. 2012, 28, 55–59, 113. [Google Scholar]
- Chen, G.L.; Liu, X.G.; Sheng, Q.; Zhang, Y.H. A modeling method based on intersected geological sections. Rock Soil Mech. 2011, 32, 2409–2415. [Google Scholar]
- Guo, Y.J.; Pan, M.; Wang, Z.; Wang, Y.; Wu, Z.X.; Qu, H.G.; Ming, J. Research on three-dimensional geological modeling method based on drilling data and constraints of intersected folded cross-sections. Geogr. Geo-Inf. Sci. 2009, 25, 23–26. [Google Scholar]
- Xue, L.F.; Li, W.Q.; Zhang, W.; Chai, S.L.; Liu, Z.H. A method of block-divided 3D geologic modeling in regional scale. J. Jilin Univ. Earth Sci. Ed. 2014, 44, 2051–2058. [Google Scholar]
- Zhang, W.; Xue, L.F.; Peng, C.; Chai, Y.; Cheng, W. The 3D modeling method based on profiles and its application in Benxi, Liaoning province. Geol. Resour. 2013, 22, 403–408. [Google Scholar]
- Qu, H.G.; Pan, M.; Ming, J.; Wu, Z.X.; Sun, Z.D. An efficient method for high-precision 3D geological modeling from intersected folded cross-sections. Acta Sci. Nat. Univ. Pekin. 2008, 44, 84–89. [Google Scholar]
- Pan, M.; Fang, Y.; Qu, H.G. Discussion on several foundational issues in three-dimensional geological modeling. Geogr. Geo-Inf. Sci. 2007, 23, 1–5. [Google Scholar]
- Wang, G.; Huang, L. 3D geological modeling for mineral resource assessment of the Tongshan Cu deposit, Heilongjiang Province, China. Geosci. Front. 2012, 3, 483–491. [Google Scholar] [CrossRef] [Green Version]
- Qi, G.; Lv, Q.T.; Yan, J.Y.; Wu, M.A.; Liu, Y. Geologic constrained 3D gravity and magnetic modeling of Nihe deposit-A case study. Chin. J. Geophys. 2012, 55, 4194–4206. [Google Scholar]
- Jia, R.; Wang, H.R.; Wang, G.W.; Wang, H.; Xu, R.D.; Feng, Z.K.; Song, Y.W.; Wang, X.L.; Pang, Z. Three-dimensional geological modeling and deep prospectivity of the Xigou Pb-Zn-Ag-Au deposit, Henan Province. Earth Sci. Front. 2021, 28, 156–169. [Google Scholar]
- Wang, G.W.; Zhang, T.S.; Yan, C.H.; Song, Y.W.; Chen, T.Z.; Li, D.; Ma, Z.B. 3D geological modeling based on geological and gravity-magnetic data integration in the Luanchuan Molybdenum Polymetallic deposit, China. Earth Sci. -J. China Univ. Geosci. 2011, 36, 360–366. [Google Scholar]
- Zhu, L.F.; Pan, X. Reconstruction of 3D stratigraphic model for fluvial erosion and aggrading action. Rock Soil Mech. 2005, 26 (Suppl. S1), 65–68. [Google Scholar]
- Zhong, D.H.; Li, M.C.; Song, L.G.; Wang, G. Enhanced NURBS modeling and visualization for large 3D geoengineering applications: An example from the Jinping first-level hydropower engineering project, China. Comput. Geosci. 2006, 32, 1270–1282. [Google Scholar] [CrossRef]
- Ming, J.; Yan, M. Three-dimensional geological surface creation based on morphing. Geogr. Geo-Inf. Sci. 2014, 30, 37–40. [Google Scholar]
- Wu, Z.C.; Guo, F.S.; Zhang, W.L.; Ying, Y.G.; Zhou, W.P.; Li, C. 3D geological modeling based on multi-source data merging of Xiangshan volcanic basin in Le’an of Jiangxi. J. Guilin Univ. Technol. 2020, 40, 310–322. [Google Scholar]
- Ackley, D.H.; Hinton, G.E.; Sejnowski, T.J. A learning algorithm for Boltzmann machines. Cogn. Sci. 1985, 9, 147–169. [Google Scholar] [CrossRef]
- Yang, M.L.; Xue, L.F.; Ran, X.J.; Sang, X.J.; Yan, Q.; Dai, J.H. Intelligent mineral geological survey method: Daqiao-Yawan area in Gansu Province as an example. Acta Petrol. Sin. 2021, 37, 3880–3892. [Google Scholar]
- Guo, J.; Li, Y.; Jessell, M.W.; Giraud, J.; Li, C.; Wu, L.; Li, F.; Liu, S. 3D geological structure inversion from Noddy-generated magnetic data using deep learning methods. Comput. Geosci. 2021, 149, 104701. [Google Scholar] [CrossRef]
- Hillier, M.; Wellmann, F.; Brodaric, B.; de Kemp, E.; Schetselaar, E. Three-dimensional structural geological modeling using graph neural networks. Math. Geosci. 2021, 53, 1725–1749. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, W.; Yao, J.; Liu, Y.; Pan, M. An improved method of reservoir facies modeling based on generative adversarial networks. Energies 2021, 14, 3873. [Google Scholar] [CrossRef]
- Li, S.; Chen, J.; Liu, C.; Wang, Y. Mineral prospectivity prediction via convolutional neural networks based on geological big data. J. Earth Sci. 2021, 32, 327–347. [Google Scholar] [CrossRef]
- Guo, M.; Bei, W.; Huang, Y.; Chen, Z.; Zhao, X. Deep learning framework for geological symbol detection on geological maps. Comput. Geosci. 2021, 157, 104943. [Google Scholar] [CrossRef]
- Tang, M.; Liu, Y.; Durlofsky, L.J. Deep-learning-based surrogate flow modeling and geological parameterization for data assimilation in 3D subsurface flow. Comput. Methods Appl. Mech. Eng. 2020, 376, 113636. [Google Scholar] [CrossRef]
- Zhang, T.F.; Tilke, P.; Dupont, E.; Zhu, L.; Liang, L.; Bailey, W. Generating geologically realistic 3D reservoir facies models using deep learning of sedimentary architecture with generative adversarial networks. Pet. Sci. 2019, 16, 541–549. [Google Scholar] [CrossRef] [Green Version]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014; pp. 2672–2680. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G. ImageNet classification with deep convolutional neural networks. In Proceedings of the 25th International Conference on Neural Information Processing Systems, Lake Tahoe, NV, USA, 3–6 December 2012; pp. 1097–1105. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2015), Boston, MA, USA, 8–10 June 2015; pp. 1–9. [Google Scholar]
- Mirza, M.; Osindero, S. Conditional Generative Adversarial Nets. arXiv 2014, arXiv:1411.1784. [Google Scholar]
- Ferreira, A.; Giraldi, G. Convolutional neural network approaches to granite tiles classification. Expert Syst. Appl. 2017, 84, 1–11. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, Y.; He, D.; Li, Y. Identification of apple leaf diseases based on deep convolutional neural networks. Symmetry 2017, 10, 11. [Google Scholar] [CrossRef] [Green Version]
- Ran, X.J.; Xue, L.F.; Zhang, Y.Y.; Liu, Z.Y.; Sang, X.J.; He, J.X. Rock classification from field image patches analyzed using a deep convolutional neural network. Mathematics 2019, 7, 755. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Ran, X.J. A step-based deep learning approach for network intrusion detection. Comput. Model. Eng. Sci. 2021, 128, 1231–1245. [Google Scholar] [CrossRef]
- Peng, C.; Xue, L.F.; Liu, Z.H.; Liu, H.Y. Application of the Non-seismic Geophysical method in the Deep Geological Structure Study of Benxi-Huanren Area. Arab. J. Geosci. 2016, 9, 1–15. [Google Scholar] [CrossRef]
- Diederik, P.K.; Max, W. Auto-Encoding Variational Bayes. arXiv 2013, arXiv:1312.6114. [Google Scholar]
Type | Section Pairs | Samples |
---|---|---|
Simple strata | 467 | 4281 |
Complex strata | 332 | 1672 |
Rock masses | 420 | 420 |
Faults | 431 | 431 |
Total | 1650 | 6804 |
Configuration | Value |
---|---|
CPU | Intel Core i5-7300HQ 2.5 GHz |
GPU | NVIDIA GeForce GTX 1050Ti with 4GB RAM |
Memory | 8 GB |
Hard disk | 1 TB |
Operating System | Windows 10 |
Python Version | 3.6.5 |
Tensorflow Version | Tensorflow-GPU 1.5.0 |
Experiments | Epochs | ILR | Batch | Decay | Validation Accuracy |
---|---|---|---|---|---|
1 | 18,000 | 10−3 | 2 | 10−3 | 86% |
2 | 18,000 | 10−3 | 2 | 10−4 | 87.2% |
3 | 18,000 | 10−3 | 2 | 10−5 | 85% |
4 | 18,000 | 10−4 | 2 | 10−3 | 92% |
5 | 18,000 | 10−4 | 2 | 10−4 | 88% |
6 | 18,000 | 10−4 | 2 | 10−5 | 89% |
7 | 18,000 | 10−5 | 2 | 10−3 | 91% |
8 | 18,000 | 10−5 | 2 | 10−4 | 86% |
9 | 18,000 | 10−5 | 2 | 10−5 | 85% |
Methods | VAE | GAN | Our Work |
---|---|---|---|
Max AMDoS | 1568.49 | 3351.65 | 1021.61 |
Min AMDoS | 352.84 | 2015.68 | 154.23 |
Max CRoPC | 83% | 65% | 92% |
Min CRoPC | 37% | 32% | 44% |
Validation accuracy | 68% | 45% | 87% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ran, X.; Xue, L.; Sang, X.; Pei, Y.; Zhang, Y. Intelligent Generation of Cross Sections Using a Conditional Generative Adversarial Network and Application to Regional 3D Geological Modeling. Mathematics 2022, 10, 4677. https://doi.org/10.3390/math10244677
Ran X, Xue L, Sang X, Pei Y, Zhang Y. Intelligent Generation of Cross Sections Using a Conditional Generative Adversarial Network and Application to Regional 3D Geological Modeling. Mathematics. 2022; 10(24):4677. https://doi.org/10.3390/math10244677
Chicago/Turabian StyleRan, Xiangjin, Linfu Xue, Xuejia Sang, Yao Pei, and Yanyan Zhang. 2022. "Intelligent Generation of Cross Sections Using a Conditional Generative Adversarial Network and Application to Regional 3D Geological Modeling" Mathematics 10, no. 24: 4677. https://doi.org/10.3390/math10244677
APA StyleRan, X., Xue, L., Sang, X., Pei, Y., & Zhang, Y. (2022). Intelligent Generation of Cross Sections Using a Conditional Generative Adversarial Network and Application to Regional 3D Geological Modeling. Mathematics, 10(24), 4677. https://doi.org/10.3390/math10244677