A Method of Optimizing Cell Voltage Based on STA-LSSVM Model
Abstract
:1. Introduction
2. Data Processing Based on DBSCAN Algorithm
2.1. The Processing of Aluminum Electrolysis
2.2. Experimental Data Preprocessing
3. Cell State Evaluation Analysis Model
3.1. Comprehensive Evaluation Index of Cell State
3.2. Evaluation Model of Cell State Based on K-Means++ Algorithm
4. Optimization of Cell Voltage
4.1. Soft Sensing Modeling of Cell Voltage Based on STA-LSSVM
- (1)
- (rotation transformation, RT):
- (2)
- (translation transformation, TT):
- (3)
- (expansion transformation, ET):
- (4)
- (axesion transformation, AT):
4.2. Cell Voltage Optimization Model Based on STA
5. Analysis of Experimental Results
5.1. Data Clustering Analysis
5.2. Cell State Evaluation
5.3. Prediction of Cell Voltage
5.4. Optimization of Cell Voltage
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, F.Q.; Qiu, D.S.; Gu, S.Q. Analysis on the Competitiveness and Development Trend of China’s Aluminum Smelting Industry. J. Eng. Sci. 2022, 44, 561–572. [Google Scholar]
- Liu, J.P. Analysis on the energy-saving and consumption reducing technology strategy of the structure of aluminum electrobath. Xinjiang Nonferrous Met. 2022, 45, 9–10. [Google Scholar]
- Lan, H.B.; Le, K.Q.; Du, Q.S. Factors affecting the current efficiency of 320KA prebaked aluminum electrolytic cell and methods to improve it. Sichuan Nonferrous Met. 2022, 36, 36–39. [Google Scholar]
- Li, M.; Ma, S.; Li, H.; Hou, W.; Cheng, B.; Hu, T.; Wang, Y. Mode Coupling Analysis of Interfacial Stability and Critical Anode–Cathode Distance in a 500-kA Aluminum Electrolysis Cell. JOM 2021, 73, 2741–2751. [Google Scholar] [CrossRef]
- Tu, C.M.; Cai, M.; Yu, X.P. ESR and capacitance monitoring method based on the discharge pattern of aluminum electrolytic capacitors. Power Autom. Equip. 2020, 40, 108–115. [Google Scholar]
- Zhang, Y.R.; Yang, C.H.; Zhu, H.Q. Data-based classification of aluminum electrolytic cell states. Comput. Eng. Appl. 2015, 51, 233–237. [Google Scholar]
- Cui, G.M.; Xue, F.Y.; Liu, P.L. Research on prediction of aluminum electrolytic current efficiency based on cell state classification. Comput. Emul. 2017, 34, 288–291. [Google Scholar]
- Lin, J.D.; Wang, F.; Liao, X.Y. Aluminum cell state prediction based on wavelet neural network. Control. Eng. 2012, 2, 7. [Google Scholar]
- Fan, Q.; Long, W.; Yao, L.Z. Multi-objective optimization of aluminum electrolysis based on function-based evolutionary operators. J. Sichuan Univ. 2021, 58, 90–98. [Google Scholar]
- Li, J.J.; Wang, Z.J.; Zhu, J.L. Theoretical study of multi-objective control system for aluminum electrolysis based on quantum optimization. Light Met. 2016, 6, 24–29. [Google Scholar]
- Xu, C.H.; Ping, J.M.; Lin, X.F. Voltage optimization of aluminum electrolysis cell based on multiple extreme learning machine based on genetic algorithm. CPCC 2017, 55, 37–46. [Google Scholar]
- Yi, G.; Chen, G.; He, W.; Tang, Y.; He, F.; Luo, B. Anode effect prediction method of aluminum electrolytic cell based on SDAE and random forest. Chin. J. Rare Met. 2021, 45, 428–436. [Google Scholar]
- Lundby, E.T.; Rasheed, A.; Gravdahl, J.T.; Halvorsen, I.J. A novel hybrid analysis and modeling approach applied to aluminum electrolysis process. J. Process Control 2021, 105, 62–77. [Google Scholar] [CrossRef]
- Lee, M.H.L.; Ser, Y.C.; Selvachandran, G. Comparative study of forecasting electricity consumption using machine learning models. Mathematics 2022, 10, 1329. [Google Scholar] [CrossRef]
- Yan, S.; Zhang, Y.; Liu, X. Rock burst intensity classification prediction model based on a bayesian hyperparameter optimization support vector machine. Mathematics 2022, 10, 3276. [Google Scholar] [CrossRef]
- Bonah, E.; Huang, X.; Yi, R.; Aheto, J.H.; Yu, S. Vis-NIR hyperspectral imaging for the classification of bacterial foodborne pathogens based on pixel-wise analysis and a novel CARS-PSO-SVM model. Infrared Phys. Technol. 2020, 105, 103220. [Google Scholar] [CrossRef]
- Chen, H.G.; Shen, J.Y.; Chen, W.H. Grinding chatter detection and ident cation based on BEMD and LSSVM. Chin. J. Mech. Eng. 2019, 32, 90–102. [Google Scholar] [CrossRef] [Green Version]
- Jebakumari, V.S.; Saravanan, D.S.; Devaraj, D. Seizure detection in EGG signal with novel optimization algorithm for selecting optimal thresholded offset Gaussian feature. Biomed. Signal Process. Control 2020, 56, 101708. [Google Scholar] [CrossRef]
- Song, C.; Yao, L.; Hua, C. A water quality prediction model based on variational mode decomposition and the least squares support vector machine optimized by the sparrow search algorithm (VMD-SSA-LSSVM) of the Yangtze River. Environ. Monit. Assess. 2021, 193, 263. [Google Scholar] [CrossRef]
- Chen, F.Y.; Zhou, X.; Chen, Y.Y. Estimating biochemical component contents of diverse plant leaves with different kernel based support vector regression models and VNIR spectroscopy. Spectrosc. Spectr. Anal. 2019, 39, 428–434. [Google Scholar]
- Li, C.M.; Zhou, M.M.; Liu, Y.J. Multi-level fault diagnosis of transformer based on neighborhood rough set and multiple kernel support vector machine. High Volt. Eng. 2018, 44, 3474–3482. [Google Scholar]
- Yang, C.; Oh, S.-K.; Yang, B.; Pedrycz, W.; Fu, Z. Fuzzy quasi-linear SVM classifier: Design and analysis. Fuzzy Sets Syst. 2020, 413, 42–63. [Google Scholar] [CrossRef]
- Rajalakshmi, M.; Saravanan, V.; Arunprasad, V. Machine Learning for Modeling and Control of Industrial Clarifier Process. Intell. Autom. Soft Comput. 2022, 32, 339–359. [Google Scholar] [CrossRef]
- Rajalakshmi, M.; Jeyadevi, S.; Karthik, C. Computer-Aided Controller Design for a Nonlinear Process Using a Lagrangian-Based State Transition Algorithm. Circuits Syst. Signal Process. 2020, 39, 977–996. [Google Scholar]
- Wang, Y.L.; Yi, K.; Wang, K. A neighborhood-adaptive state transition algorithm for operational optimization of residue hydrogenation fractionation process. Int. J. Energy Res. 2021, 45, 12740–12757. [Google Scholar] [CrossRef]
- Dumka, A.; Sathian, D.; Ramasamy, M. Nonlinear system parameter estimation of drying process using modified state transition algorithm in cloud environment. Int. J. Commun. Netw. Distrib. Syst. 2020, 24, 123–142. [Google Scholar]
- Feng, X.L.; Mao, H.J.; Liu, C.R. The control system of friction welding machine for 5000kN karge electrolytic aluminum prebaked anode conductor. J. Phys. Conf. Ser. 2021, 1748, 52016. [Google Scholar] [CrossRef]
- Xin, Y.; Li, Y.; Cai, Z.R. On line monitoring of elements in molten aluminum by laser induced breakdown spectroscopy and liquid metal composition analyzer. Metall. Anal. 2019, 1, 15–20. [Google Scholar]
- Savitzky, A.; Golay, M.J.E. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, W.W.; Ye, H.M. Accurate workload prediction for edge data centers: Savitzky-Golay filter, CNN and BiLSTM with attention mechanism. Appl. Intell. 2022, 52, 13027–13042. [Google Scholar] [CrossRef]
- Raheja, N.; Manocha, A.K. Removal of Artifcats in Electrocardiograms using Savitzky-Golay Filter: An Improved Approach. J. Inf. Technol. Manag. 2021, 12, 62–75. [Google Scholar]
- Indrajit, G.R. An optimal Savitzky-Golay derivative filter with geophysical applications: An example of self-potential data. Geophys. Prospect. 2020, 68, 1041–1056. [Google Scholar]
- Hadi, K.; Zhang, C.W.; Mahdi, S. Beam Damage Detection Under a Moving Load Using Random Decrement Technique and Savitzky-Golay Filter. Sensors 2019, 20, 243. [Google Scholar]
- Basan, E.; Nekrasov, A.; Fidge, C. A Data Normalization Technique for Detecting Cyber Attacks on UAVs. Drones 2022, 6, 245. [Google Scholar] [CrossRef]
- Zhang, Y.N.; Cai, D.P.; Shi, Z.R. Industrial Popularization and Application of New Energy Saving Technology for Aluminum Electrolytic Cells with Stable Current and Thermal Insulation. Nonferrous Met. 2018, 7, 21–24. [Google Scholar]
- Yang, J.C.; Zhao, C. A Review of K-Means Clustering Algorithm Research. Comput. Eng. Appl. 2019, 55, 7–14. [Google Scholar]
- Kanaparthi, T.; Ramesh, S.; Yarrabothu, S.R. K-Means Cluster-Based Interference Alignment With Adam Optimizer in Convolutional Neural Networks. Int. J. Inf. Secur. Priv. 2022, 16, 1–18. [Google Scholar] [CrossRef]
- Xu, C.H.; Zhang, J.Z.; Cheng, J.R. A ALO-LSSVM Model for the Cell Voltage Optimization in Aluminum Electrolysis Process. In Proceedings of the 39th China Control Conference, Shenyang, China, 27–29 July 2020; pp. 1431–1436. [Google Scholar]
- Zhou, X.J.; Yang, C.H.; Gui, W.H. Principle and application of state transition algorithm. J. Autom. 2020, 46, 2260–2274. [Google Scholar]
- Xu, Z.H.; Huang, X.Y.; Lin, L. BP neural networks and random forest models to detect damage by Dendrolimus punctatus Walker. J. For. Res. 2020, 31, 107–121. [Google Scholar] [CrossRef]
- Riazi, M.; Mehrjoo, H.; Nakhaei, R. Modelling rate of penetration in drilling operations using RBF, MLP, LSSVM, and DT models. Sci. Rep. 2022, 12, 11650. [Google Scholar] [CrossRef]
- Youssef, H.; Bardhan, A.; Kaloop, M. Optimizing energy consumption patterns of smart home based on Sine Cosine Algorithm. IET Gener. Transm. Distrib. 2021, 16, 984–999. [Google Scholar] [CrossRef]
- Badr, E.; Almotairi, S.; Salam, M. New Sequential and Parallel Support Vector Machine with Grey Wolf Optimizer for Breast Cancer Diagnosis. Alex. Eng. J. 2022, 61, 162–175. [Google Scholar] [CrossRef]
Category | Cell Voltage/V | Noise/mV | Aluminum Fluoride Feeding Amount/kg | Electrolyte Temperature/°C | Electrolyte Level/cm | Aluminum Level/cm | Aluminum Output/kg | d |
---|---|---|---|---|---|---|---|---|
Class 1 | 4.035 | 19.74 | 17.72 | 952.60 | 17.11 | 28.29 | 1332 | 0.0499 |
Class 2 | 4.010 | 21.43 | 23.61 | 960.63 | 19.78 | 24.60 | 1280 | 0.1021 |
Class 3 | 4.048 | 19.45 | 21.38 | 961.08 | 19.77 | 24.18 | 1200 | 0.2312 |
Level | Comprehensive INDICATORS d | State Reaction |
---|---|---|
Class 1 | 0.0183~0.0665 | (Excellent cell) High current efficiency, low energy consumption, and stability |
Class 2 | 0.0835~0.1387 | (good cell) High current efficiency, medium energy consumption |
Class 3 | 0.1848~0.3012 | (poor cell) Low current efficiency, high energy consumption, and instability |
Level | Number of Sample Cell States | Number of Correct Classifications |
---|---|---|
Class 1 | 20 | 19 |
Class 2 | 10 | 10 |
Class 3 | 10 | 10 |
Model | MSE | MAE | R2 |
---|---|---|---|
BP [40] | 0.797 × 10−4 | 0.0068 | 0.9254 |
ELM [11] | 1.29 × 10−4 | 0.0086 | 0.8825 |
LSSVM [41] | 0.981 × 10−4 | 0.0064 | 0.9100 |
ALO-LSSVM [38] | 0.99 × 10−4 | 0.0049 | 0.9426 |
STA-LSSVM | 0.505 × 10−4 | 0.0046 | 0.9562 |
Technical Conditions | y* | |
---|---|---|
3.9795 cm | 3.8165 V | |
22.0000 cm | ||
0.0121 | ||
3.5% | ||
22.7850 cm | ||
171.5982 kA | ||
2.7000 |
Index | Pre-Optimization | Post-Optimization |
---|---|---|
W | 12,344 kW·h/t | 11,971KW·h/t |
ΔW | 373KW·h/t |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, C.; Tu, Z.; Zhang, W.; Cen, J.; Xiong, J.; Wang, N. A Method of Optimizing Cell Voltage Based on STA-LSSVM Model. Mathematics 2022, 10, 4710. https://doi.org/10.3390/math10244710
Xu C, Tu Z, Zhang W, Cen J, Xiong J, Wang N. A Method of Optimizing Cell Voltage Based on STA-LSSVM Model. Mathematics. 2022; 10(24):4710. https://doi.org/10.3390/math10244710
Chicago/Turabian StyleXu, Chenhua, Zhicheng Tu, Wenjie Zhang, Jian Cen, Jianbin Xiong, and Na Wang. 2022. "A Method of Optimizing Cell Voltage Based on STA-LSSVM Model" Mathematics 10, no. 24: 4710. https://doi.org/10.3390/math10244710
APA StyleXu, C., Tu, Z., Zhang, W., Cen, J., Xiong, J., & Wang, N. (2022). A Method of Optimizing Cell Voltage Based on STA-LSSVM Model. Mathematics, 10(24), 4710. https://doi.org/10.3390/math10244710