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Abstract: The implicit midpoint rules are employed as a powerful numerical technique, and in
this article we attend a class of viscosity iteration approximations on hierarchical problems for the
implicit double midpoint rules. We prove the strong convergence theorem to the unique solution on
hierarchical problem of this technique is established under some favorable conditions imposed on the
control parameters in Hilbert spaces. Furthermore, we propose some applications to the constrained
convex minimization problem, nonlinear Fredholm integral equation and variational inequality on
fixed point problem. Moreover, some numerical examples are also presented to illustrate the different
proposed methods and convergence results. Our results modified the implicit double midpoint rules
with the hierarchical problem.
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1. Introduction

To begin with, we first give some necessary notations that we use throughout our paper.
In the framework of a real Hilbert space H with inner product 〈·, ·〉 and its induced norm
‖ · ‖, let C be a subset of H with its properties which are closed and convex. The notations
⇀ and→ refer to weak convergence and strong convergence, respectively.

Next, we recall some definitions which will be considered in the next part of our paper.
We shall start with the well-known problem referred to as The variational inequality [1] which
is to find the solution x∗ ∈ C that satisfies the following inequality

〈Ax∗, x− x∗〉 ≥ 0, ∀x ∈ C,

where C is nonempty. The set of its solution is denoted by VI(C, A), that is,

VI(C, A) =
{

x∗ ∈ C : 〈Ax∗, x− x∗〉 ≥ 0, ∀x ∈ C
}

.

The contraction mapping f : C → C with a constant ρ ∈ [0, 1) is defined as follows: for
all x, y ∈ C

‖ f (x)− f (y)‖ ≤ ρ‖x− y‖.
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A self-mapping on H, A, is said to be α-strongly monotone if there exists a positive real
number α satisfying

〈Ax− Ay, x− y〉 ≥ α‖x− y‖2, ∀x, y ∈ H.

A self-mapping on H is called L-Lipschitz continuous if there exists a real number L > 0
such that for all x, y in H which satisfies the following:

‖Ax− Ay‖ ≤ L‖x− y‖.

An operator A which is linear and bounded is titled as a strongly positive on H if there
exists a positive constant γ̄ that meets the following inequality:

〈Ax, x〉 ≥ γ̄‖x‖2, ∀x ∈ H.

A well-known nonexpansive mapping, T, is defined by

‖Tx− Ty‖ ≤ ‖x− y‖

for all elements x, y in C.
We shall say that a point x in C is a fixed point of a mapping T when that x satisfies

the equality Tx = x. Undoubtedly, for any mapping T, there may be one or various or no
fixed point. However, where it is present we will denote the set of its fixed point as Fix(T),
i.e., Fix(T) = {x ∈ C : Tx = x}.

For a nonexpansive mapping T : C → C where C is bounded, closed and convex,
Fix(T) is exactly nonempty [2].

Recently, since the variational inequality problem has attracted many mathematicians
to find the best way to solve it, there arose a new interesting problem, known as the
hierarchical problem, that was improved from the classical variational inequality. Instead of
considering the variational inequality over a closed convex set C, we mention that problem
over the fixed point set of a nonexpansive mapping T : C → C. This problem can be stated
as follows:

Let A : C → H and T : C → C be a monotone continuous mapping and a nonexpan-
sive mapping, respectively. This hierarchical problem is to find x∗ ∈ Fix(T) which satisfies

〈Ax∗, x− x∗〉 ≥ 0, ∀x ∈ Fix(T),

where Fix(T) is nonempty and we aim to denote its solution set as VI(Fix(T), A). There
are many researches involving this problem in the literature [3–17].

In 2011, Yao et.al [18] proposed an iterative algorithm that provides a strong conver-
gence to a unique solution of variational in equality in case of hierarchical problem. Their
iterative algorithm for generating the sequence {xn} is designed by

xn+1 = βnxn + (1− βn)TPC[I − αn(A− γ f )]xn, ∀n ≥ 0,

where x0 ∈ C is chosen arbitrarily and both sequence {αn} and {βn} are in [0, 1]. Un-
der some appropriate assumptions, they can gaurantee that the generated sequence con-
verges to a unique solution x∗ ∈ Fix(T) of the following variational inequality:

〈(A− γ f )x∗, x− x∗〉 ≥ 0, ∀x ∈ Fix(T) (1)

where A : C → H which is a strongly positive linear bounded operator, f : C → H is a
ρ-contraction and T : C → C which is a nonexpansive mapping where Fix(T) is nonempty.
They identified the solution set of (1) by Ω1 := VI(Fix(T), A− γ f ).
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Later, in 2011, Ceng et.al [19] studied a strong convergence to a unique solution of the
variational inequality on the modified hierarchical problem. For x0 ∈ C which is chosen
arbitrarily, define a sequence {xn} followed by

xn+1 = PC[λnγ(αn f (xn) + (1− αn)Sxn) + (I − λnµF)Txn], ∀n ≥ 0, (2)

where the sequences {αn} and {λn} in [0, 1]. Then, {xn} converges strongly to x∗ ∈ Fix(T)
which is the unique solution of the variational inequality which is to find x∗ ∈ Fix(T) satisfying

〈(µF− γ)x∗, x− x∗〉 ≥ 0, ∀x ∈ Fix(T). (3)

By algorithm (2), the assumption of an F : C → H is a Lipschitzian and strongly
monotone operator, f : C → H is a contraction mapping, S, T are both nonexpansive
mappings with Fix(T) being nonempty and others satisfying certain conditions. They give
a notation of the solution set of (3) as Ω2 := VI(Fix(T), µF− γ).

Next, in 2014, Kumam and Jitpeera [20] consider a strong convergence to a unique
solution of the hybrid hierarchical problem. They generated the sequence {xn} iteratively
as follows:

xn+1 = γλnφ(xn) + (I − λnµF)TPC[βnSxn + (1− βn)xn], ∀n ≥ 0, (4)

where x0 ∈ C can be chosen arbitrarily and both sequences {βn} and {λn} in [0, 1]. They
found that the generated sequence {xn} converges strongly to a unique solution x∗ ∈
Fix(T) of the following vriational inequality:

Find x∗ ∈ Fix(T) such that 〈(µF− γφ)x∗, x− x∗〉 ≥ 0, ∀x ∈ Fix(T), (5)

where F : C → H is a Lipschitzian and strongly monotone operator, φ : C → C is
a contraction mapping and S, T are nonexpansive mappings with Fix(T) is nonempty.
The solution set of (5) is denoted by Ω3 := VI(Fix(T), µF− γφ).

In recent years, the implicit midpoint rule has been proved in many papers [21,22].
The implicit midpoint rule is one of the powerful methods for finding ordinary differential
equations. In 2019, Dhakal and Sintunavarat [23] studied the viscosity method to the
implicit double midpoint rule for nonexpansive mapping. For x0 ∈ C is chosen arbitrarily,
the sequences {xn} be generated by the following algorithm,

xn+1 = αn f
( xn + xn+1

2

)
− (1− αn)T

( xn + xn+1

2

)
, ∀n ≥ 0,

where the sequences αn ∈ (0, 1). Under some mild conditions, they can show that the
generated sequence {xn} converges strongly to a unique solution x∗ ∈ Fix(T) of the
following variational inequality.

Find x∗ ∈ Fix(T) such that 〈(I − f )x∗, x− x∗〉 ≥ 0, ∀x ∈ Fix(T), (6)

where f : C → C is a contraction mapping and T is nonexpansive mapping with Fix(T) is
a nonempty set. They denoted Ω4 := VI(Fix(T), I − f ) as the solution set of (6).

By considering the previous mentioned research, we aim to consider a hybrid viscosity
method using implicit double midpoint rule to solve a hybrid hierarchical problems, stated
as follows:{

yn = PC[βnSxn + (1− βn)xn+1],
xn+1 = γλnφ(wnxn + (1− wn)xn+1) + (I − λnµF)Tyn, ∀n ≥ 0,

(7)
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where S, T are nonexpansive mappings with F(T) is nonempty, F : C → H is a Lipschitzian
and strongly monotone operator, φ : H → H is a contraction mapping and other control
sequences satisfy some mild conditions. Our mentioned problem is stated as follows:

Find x∗ ∈ Fix(T) such that 〈(µF− γφ)x∗, x− x∗〉 ≥ 0, ∀x ∈ Fix(T).

We also give the notation of its solutions set by Ω := VI(Fix(T), µF− γφ), that is

VI(Fix(T), µF− γφ) =
{

x∗ ∈ Fix(T) : 〈(µF− γφ)x∗, x− x∗〉 ≥ 0, ∀x ∈ Fix(T)
}

.

Under some appropriate assumptions, we exactly claim the strong convergence of
our sequence {xn} generated by our proposed algorithm. The results improve the main
theorem of Dhakal and Sintunavarat [23], Kumam and Jitpeera [20]. Thus, our solution is
VI(Fix(T), µF− γφ), which is more general than VI(Fix(T), I − f ). Furthermore, our new
algorithm (7) is more general than (4) that uses the double midpoint rule.

The remainder of this paper is divided into six sections. In Section 1, we recall some
definitions and properties to be used in the sequel. In Section 2, lemmas are provided
for using in proof. In Section 3, we prove the strong convergence theorem of the hybrid
hierarchical problem with double midpoint rules in the Hilbert spaces. Some deduced
results are provided in Section 4. In Section 5, we present some applications and numerical
examples. The conclusion is given in the final section.

2. Preliminaries

In this section, we collect some definitions, properties and lemmas that are necessary
for use in this paper. We start with the following inequality: ‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉,
∀x, y ∈ H.

An operator PC : H → C, that project every point x ∈ H to a unique nearest point in
C is called the metric projection of H onto C,that is, PCx = min{‖x− y‖, y ∈ C}. From it
definitions, it is trivial that the following properties hold.

〈x− y, PCx− PCy〉 ≥ ‖PCx− PCy‖2, ∀x, y ∈ H.

〈x− PCx, y− PCx〉 ≤ 0, ∀x, y ∈ H. (8)

‖x− y‖2 ≥ ‖x− PCx‖2 + ‖y− PCx‖2, ∀x, y ∈ H.

Furthermore, for a monotone mapping A : C → H, the properties (8) implies that

x∗ ∈ VI(C, A)⇔ x∗ = PC(x∗ − λAx∗), λ > 0.

Next, we recall some lemmas that will be used in the proof.

Lemma 1 ([24]). Let {an} be a sequence of nonnegative real numbers such that

an+1 ≤ (1− γn)an + δn, ∀n ≥ 0,

where {γn} ⊂ (0, 1) and {δn} is a sequence in R such that
(i) ∑∞

n=1 γn = ∞,
(ii) lim supn→∞

δn
γn
≤ 0 or ∑∞

n=1 |δn| < ∞.
Then limn→∞ an = 0.

Lemma 2 ([25]). Let C be a nonempty closed and convex subset of a real Hilbert space H, and T :
C → C be a nonexpansive mapping with Fix(T) 6= ∅. If {xn} is a sequence in C such that
{x− n}} converges weakly to x and {(I − T)xn} converges strongly to 0, where I is the identity
mapping, then Tx = x.
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3. Main Results

In this section, we propose our algorithm for solving hierarchical problem by using
technique of the viscosity method together with a generalized implicit double midpoint rule.
We also verify the strong convergence of our generated sequence to a fixed point of nonex-
pansive mapping which is also a unique solution of a mentioned variational inequality.

Theorem 1. Let C be a nonempty closed and convex subset of a real Hilbert space H. F : C → C
be κ-Lipschitzian and η-strongly monotone operators with constant κ and η > 0. φ : C → C
be a ρ-contraction with coefficient ρ ∈ [0, 1). T : C → C be a nonexpansive mapping with
Fix(T) 6= ∅, S : H → H be a nonexpansive mapping. Let 0 < µ < 2η/κ2 and 0 < γ < τ, where
τ = 1−

√
1− µ(2η − µκ2). Suppose {xn} is a sequence generated by the following algorithm

which x0 ∈ C is chosen arbitrarily,{
yn = PC[βnSxn + (1− βn)xn+1],
xn+1 = γλnφ(wnxn + (1− wn)xn+1) + (I − λnµF)Tyn, ∀n ≥ 0,

(9)

where {λn} ⊂ (0, 1), {βn}, {wn} ⊂ (0.5, 1) satisfy the following conditions:
(C1): βn ≤ kλn;
(C2): limn→∞ λn = 0, limn→∞

λn−λn−1
λn

= 0, ∑∞
n=0 λn = ∞;

(C3): limn→∞
βn−βn−1

βn
= 0.

Then, {xn} converges strongly to x∗ ∈ Fix(T), which is the unique solution of another
variational inequality:

〈(µF− γφ)x∗, x− x∗〉 ≥ 0, ∀x ∈ Fix(T),

where Ω = VI(Fix(T), µF−γφ) 6= ∅. On the other hand, x∗ is a unique fixed point PFix(T)(γφ−
µF), that is, PFix(T)(γφ− µF)(x∗) = x∗

Proof. First, we want to show the existence of a sequence {xn} defined by (9). Consider the
mapping Sn : C → C by Snx = γλnφ(wnw + (1− wn)x) + (I − λnµF)TPC[βnSw + (1−
βn)x] for all x ∈ C. We will show the mapping Sn is a contraction mapping for all n ∈ N.
For each n ∈ N and x, y ∈ C, we have

‖Snx− Sny‖ = ‖γλnφ(wnw + (1− wn)x) + (I − λnµF)TPC[βnSw + (1− βn)x]

−γλnφ(wnw + (1− wn)y)− (I − λnµF)TPC[βnSw + (1− βn)y]‖
≤ γλn‖φ(wnw + (1− wn)x)− φ(wnw + (1− wn)y)‖

+(I − λnµF)
∥∥TPC[βnSw + (1− βn)x]− TPC[βnSw + (1− βn)y]

∥∥
≤ ργλn‖(wnw + (1− wn)x)− (wnw + (1− wn)y)‖

+(1− λnτ)
∥∥[βnSw + (1− βn)x]− [βnSw + (1− βn)y]

∥∥
≤ ργλn‖(1− wn)x− (1− wn)y‖+ (1− λnτ)‖(1− βn)x− (1− βn)y‖
≤ ργλn(1− wn)‖x− y‖+ (1− λnτ)(1− βn)‖x− y‖
= [ργλn(1− wn) + (1− λnτ)(1− βn)]‖x− y‖
= ρ́‖x− y‖,

where ρ́ = ργλn(1− wn) + (1− λnτ)(1− βn) ∈ [0, 1) for all n ∈ N. This shows that the
mapping Sn is a contraction mapping for all n ∈ N. From the Banach contraction principle,
Sn has a unique fixed point for all n ∈ N. Thus, we conclude the existence of a sequence
{xn} defined by (9). We will divide the proof into six steps.
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Step 1. First, we claim that {xn} is bounded. Indeed, for any x∗ ∈ Fix(T), we can
see that

‖xn+1 − x∗‖ = ‖γλnφ(wnxn + (1− wn)xn+1)

+(I − λnµF)TPC[βnSxn + (1− βn)xn+1]− x∗‖
≤ γλn‖φ(wnxn + (1− wn)xn+1)− φx∗‖

+(I − λnµF)‖TPC[βnSxn + (1− βn)xn+1]− TPCx∗‖
≤ γρλn{wn‖xn − x∗‖+ (1− wn)‖xn+1 − x∗‖}+ λn‖γφx∗ − µFx∗‖

+(1− λnτ) ·
{βn‖xn − x∗‖+ (1− βn)‖xn+1 − x∗‖+ βn‖Sx∗ − x∗‖}

= (γρλnwn + (1− λnτ)βn)‖xn − x∗‖
+(γρλn(1− wn) + (1− λnτ)(1− βn))‖xn+1 − x∗‖
+(1− λnτ)βn‖Sx∗ − x∗‖+ λn‖γφx∗ − µFx∗‖

≤ γρλnwn + (1− λnτ)βn

γρλnwn + (1− λnτ)βn + λn(τ − γρ)
‖xn − x∗‖

+
(1− λnτ)βn

γρλnwn + (1− λnτ)βn + λn(τ − γρ)
‖Sx∗ − x∗‖

+
λn

γρλnwn + (1− λnτ)βn + λn(τ − γρ)
‖γφx∗ − µFx∗‖

≤
(

1− λn(τ − γρ)

γρλnwn + (1− λnτ)βn + λn(τ − γρ)

)
‖xn − x∗‖

+
kλn(τ − γρ)

γρλnwn + (1− λnτ)βn + λn(τ − γρ)
· 1

τ − γρ
‖Sx∗ − x∗‖

+
λn(τ − γρ)

γρλnwn + (1− λnτ)βn + λn(τ − γρ)
· 1

τ − γρ
‖γφx∗ − µFx∗‖

≤
(

1− λn(τ − γρ)

γρλnwn + (1− λnτ)βn + λn(τ − γρ)

)
‖xn − x∗‖

+
λn(τ − γρ)

γρλnwn + (1− λnτ)βn + λn(τ − γρ)
·(

k
τ − γρ

‖Sx∗ − x∗‖+ 1
τ − γρ

‖γφx∗ − µFx∗‖
)

≤ max
{
‖xn − x∗‖, 1

τ − γρ
(k‖Sx∗ − x∗‖+ ‖γφx∗ − µFx∗‖)

}
.

By induction, it follows that

‖xn − x∗‖ ≤ max
{
‖x0 − x∗‖, 1

τ − γρ
(k‖Sx∗ − x∗‖+ ‖γφx∗ − µFx∗‖)

}
, n ≥ 0.

Therefore, {xn} is bounded.
Step 2. We verify that limn→∞ ‖xn+1− xn‖ = 0. For each n ∈ N with n > 1, we obtain

‖xn+1 − xn‖ =

∥∥∥∥γλnφ(wnxn + (1− wn)xn+1) + (I − λnµF)TPC[βnSxn + (1− βn)xn+1]

−γλn−1φ(wn−1xn−1 + (1− wn−1)xn)

−(I − λn−1µF)TPC[βn−1Sxn−1 + (1− βn−1)xn]

∥∥∥∥.
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So that

‖xn+1 − xn‖ =

∥∥∥∥γλn
(
φ(wnxn + (1− wn)xn+1)− φ(wn−1xn−1 + (1− wn−1)xn)

)
+γ(λn − λn−1)φ(wn−1xn−1 + (1− wn−1)xn)

+(I − λnµF) ·(
TPC[βnSxn + (1− βn)xn+1]− TPC[βn−1Sxn−1 + (1− βn−1)xn]

)
+µ(λn−1 − λn)FTPC[βn−1Sxn−1 + (1− βn−1)xn]

∥∥∥∥
≤ γρλn‖(1− wn)(xn+1 − xn) + wn−1(xn − xn−1)‖

+γ|λn − λn−1|‖φ(wn−1xn−1 + (1− wn−1)xn)‖
+(1− λnτ) ·∥∥(1− βn)(xn+1 − xn) + βn(Sxn − Sxn−1) + (βn − βn−1)(Sxn−1 − xn)

∥∥
+µ|λn − λn−1|

∥∥FTPC[βn−1Sxn−1 + (1− βn−1)xn]
∥∥

≤
(
γρλn(1− wn) + (1− λnτ)(1− βn)

)
‖xn+1 − xn‖

+
(
γρλnwn−1 + (1− λnτ)βn

)
‖xn − xn−1‖

+|λn − λn−1

{
γ
∥∥φ(wn−1xn−1 + (1− wn−1)xn)

∥∥
+µ
∥∥FTPC[βn−1Sxn−1 + (1− βn−1)xn]

∥∥}
+(1− λnτ)|βn − βn−1|‖Sxn−1 − xn‖

=
(
γρλn(1− wn) + (1− λnτ)(1− βn)

)
‖xn+1 − xn‖

+
(
γρλnwn−1 + (1− λnτ)βn

)
‖xn − xn−1‖

+|λn − λn−1|M1 + (1− λnτ)|βn − βn−1|M2,

≤ γρλnwn−1 + (1− λnτ)βn

γρλnwn + (1− λnτ)βn + λn(τ − γρ)
‖xn − xn−1‖

+
|λn − λn−1|

γρλnwn + (1− λnτ)βn + λn(τ − γρ)
M1

+
(1− λnτ)|βn − βn−1|

γρλnwn + (1− λnτ)βn + λn(τ − γρ)
M2

=

(
1− λn(τ − γρ)

γρλnwn + (1− λnτ)βn + λn(τ − γρ)

)
‖xn − xn−1‖

+
|λn − λn−1|

γρλnwn + (1− λnτ)βn + λn(τ − γρ)
M1

+
(1− λnτ)|βn − βn−1|

γρλnwn + (1− λnτ)βn + λn(τ − γρ)
M2,

which M1 := supn∈N

{
γ‖φ(wn−1xn−1 + (1 − wn−1)xn)‖ + µ‖FTPC[βn−1Sxn−1 + (1 −

βn−1)xn]‖
}

and M2 := ‖Sxn−1 − xn‖. This yields that for all n ∈ N with n > 1. We

can also write

‖xn+1 − xn‖ ≤ (1− αn)‖xn − xn−1‖+ δn (10)

for all n ∈ N with n > 1, where

αn :=
λn(τ − γρ)

γρλnwn + (1− λnτ)βn + λn(τ − γρ)
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and

δn :=
|λn − λn−1|

γρλnwn + (1− λnτ)βn + λn(τ − γρ)
M1 +

(1− λnτ)|βn − βn−1|
γρλnwn + (1− λnτ)βn + λn(τ − γρ)

M2.

Using the conditions (C1), (C2) and comparing (10) with Lemma 1, we obtain

lim
n→∞

‖xn+1 − xn‖ = 0. (11)

Step 3. We want to show that limn→∞ ‖xn − Txn‖ = 0. For each n ∈ N, we have

‖xn − Txn‖ ≤ ‖xn − xn+1‖+
∥∥xn+1 − TPC[βnSxn + (1− βn)xn+1]

∥∥
+
∥∥TPC[βnSxn + (1− βn)xn+1]− Txn

∥∥
≤ ‖xn − xn+1‖

+λn
∥∥γφ(wnxn + (1− wn)xn+1)− µFTPC[βnSxn + (1− βn)xn+1]

∥∥
+‖βnSxn + (1− βn)xn+1 − xn‖

≤ ‖xn − xn+1‖

+λn

{
γ‖φ(wnxn + (1− wn)xn+1)‖+ µ

∥∥FTPC[βnSxn + (1− βn)xn+1]
∥∥}

+(1− βn)‖xn − xn+1‖+ βn‖xn − Sxn‖
≤ ‖xn − xn+1‖+ λn M1

+(1− βn)‖xn − xn+1‖+ βn‖xn − xn+1‖+ βn‖xn+1 − Sxn‖
≤ 2‖xn − xn+1‖+ λn M1 + βn M2.

From the conditions (C1), (C2) and using (11), we obtain

lim
n→∞

‖xn − Txn‖ = 0. (12)

Step 4. We need to claim that ωw(xn) ⊆ Fix(T), where

ωw(xn) := {x ∈ H : ∃{xni}⇀ x}.

Let us consider x ∈ ωw(xn). Then there exists a subsequence {xni} of {xn} such that
xni ⇀ x. From (12), we obtain

lim
i→∞
‖(I − T)xni‖ = lim

n→∞
‖xni − Txni‖ = 0.

It implies that {(I − T)xni} strong convergence to 0. Using Lemma 2, we obtain
Tx = x and x ∈ Fix(T). Thus, we can conclude that ωw(xn) ⊆ Fix(T).

Step 5. We want to show that

lim sup
n→∞

〈x∗ − φ(x∗), x∗ − xn〉 ≤ 0,

where x∗ ∈ Fix(T) is a unique fixed point of PFix(T) ◦ φ, that is x∗ = PFix(T)φ(x∗). Since
{xn} is bounded, there exists a subsequence {xni} of {xn} such that it has weak convergence
to p. Without loss of generality, we may assume that xni ⇀ p as i→ ∞ for some p ∈ H and

lim sup
n→∞

〈x∗ − φ(x∗), x∗ − xn〉 = lim
i→∞
〈x∗ − φ(x∗), x∗ − xni 〉.

From the Step 4, we obtain p ∈ Fix(T). Using (8), we obtain

lim sup
n→∞

〈x∗ − φ(x∗), x∗ − xn〉 = lim
i→∞
〈x∗ − φ(x∗), x∗ − xni 〉 = 〈x

∗ − φ(x∗), x∗ − p〉 ≤ 0.
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Step 6. Finally, we will prove xn+1 → x∗. From (9), we note that

‖xn+1 − x∗‖2 = ‖γλnφ(wnxn + (1− wn)xn+1)

+(I − λnµF)TPC[βnSxn + (1− βn)xn+1]− x∗‖2

= ‖γλn
(
φ(wnxn + (1− wn)xn+1)− φx∗

)
+(I − λnµF)

(
TPC[βnSxn + (1− βn)xn+1]− x∗

)
+ λn(γφx∗ − µFx∗)‖2

≤ ‖γλn
(
φ(wnxn + (1− wn)xn+1)− φx∗

)
+(I − λnµF)

(
TPC[βnSxn + (1− βn)xn+1]− x∗

)
‖2

+2λn〈γφx∗ − µFx∗, xn+1 − x∗〉
≤ γ2λ2

n‖φ(wnxn + (1− wn)xn+1)− φx∗‖2

+(1− λnτ)2‖TPC[βnSxn + (1− βn)xn+1]− x∗‖2

+2γλn(1− λnτ) ·
〈φ(wnxn + (1− wn)xn+1)− φx∗, TPC[βnSxn + (1− βn)xn+1]− x∗〉
+2λn〈γφx∗ − µFx∗, xn+1 − x∗〉

≤ γ2ρ2λ2
n‖wn(xn − x∗) + (1− wn)(xn+1 − x∗)‖2 + ηn

+2γρλn(1− λnτ)‖wn(xn − x∗) + (1− wn)(xn+1 − x∗)‖ ·
‖βn(xn − x∗) + (1− βn)(xn+1 − x∗) + βn(Sx∗ − x∗)‖

≤ γ2ρ2λ2
n

(
w2

n‖xn − x∗‖2 + wn(1− wn)(‖xn − x∗‖2 + ‖xn+1 − x∗‖2)

+(1− wn)
2‖xn+1 − x∗‖2

)
+2γρλn(1− λnτ)

(
wnβn‖xn − x∗‖2 +

(
wn(1− βn) + (1− wn)βn)

‖xn − x∗‖‖xn+1 − x∗‖+ (1− wn)(1− βn)‖xn+1 − x∗‖2
)

+2γρλnβn(1− λnτ)‖Sx∗ − x∗‖
(
wn‖xn − x∗‖+ (1− wn)‖xn+1 − x∗‖

)
+ηn

≤ γ2ρ2λ2
nwn‖xn − x∗‖2 + γ2ρ2λ2

n(1− wn)‖xn+1 − x∗‖2

+2γρλn(1− λnτ)wnβn‖xn − x∗‖2

+2γρλn(1− λnτ)(1− wn)(1− βn)‖xn+1 − x∗‖2

+γρλn(1− λnτ)
(
wn(1− βn) + (1− wn)βn) ·(

‖xn − x∗‖2 + ‖xn+1 − x∗‖2
)

+2γρλnβn(1− λnτ)‖Sx∗ − x∗‖
(
wn‖xn − x∗‖+ (1− wn)‖xn+1 − x∗‖

)
+ηn

≤
(

γ2ρ2λ2
nwn + 2γρλn(1− λnτ)wnβn

)
‖xn − x∗‖2

+

(
γ2ρ2λ2

n(1− wn) + 2γρλn(1− λnτ)(1− wn)(1− βn)

)
‖xn+1 − x∗‖2

+γρλn(1− λnτ)
(
wn(1− βn) + (1− wn)βn)‖xn − x∗‖2

+γρλn(1− λnτ)
(
wn(1− βn) + (1− wn)βn)‖xn+1 − x∗‖2

+2γρλnβn(1− λnτ)‖Sx∗ − x∗‖
(
wn‖xn − x∗‖+ (1− wn)‖xn+1 − x∗‖

)
+ηn.
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Hence

‖xn+1 − x∗‖2 =

(
γ2ρ2λ2

nwn + γρλn(1− λnτ)(wn + βn)

)
‖xn − x∗‖2

+

(
γ2ρ2λ2

n(1− wn) + γρλn(1− λnτ)(2− wn − βn)

)
‖xn+1 − x∗‖2

+2γρλnβn(1− λnτ)‖Sx∗ − x∗‖
(
wn‖xn − x∗‖+ (1− wn)‖xn+1 − x∗‖

)
+ηn,

where

ηn := (1− λnτ)2‖TPC[βnSxn + (1− βn)xn+1]− x∗‖2 + 2λn〈γφx∗ − µFx∗, xn+1 − x∗〉.

This implies that

‖xn+1 − x∗‖2 ≤ γ2ρ2λ2
nwn + γρλn(1− λnτ)(wn + βn)

1−
(
γ2ρ2λ2

n(1− wn) + γρλn(1− λnτ)(2− wn − βn)
)‖xn − x∗‖2

+
2γρλnβn(1− λnτ)‖Sx∗ − x∗‖

(
wn‖xn − x∗‖+ (1− wn)‖xn+1 − x∗‖

)
1−

(
γ2ρ2λ2

n(1− wn) + γρλn(1− λnτ)(2− wn − βn)
)

+
(1− λnτ)2‖TPC[βnSxn + (1− βn)xn+1]− x∗‖2

1−
(
γ2ρ2λ2

n(1− wn) + γρλn(1− λnτ)(2− wn − βn)
)

+
(2λn〈γφx∗ − µFx∗, xn+1 − x∗〉

1−
(
γ2ρ2λ2

n(1− wn) + γρλn(1− λnτ)(2− wn − βn)
)

This completes the proof.

4. Some Deduced Results

Corollary 1. Let C be a nonempty closed and convex subset of a real Hilbert space H. F : C → C
be κ-Lipschitzian and η-strongly monotone operators with constant κ and η > 0. Let T : C → C
be a nonexpansive mapping with Fix(T) 6= ∅, S : H → H be a nonexpansive mapping. Let
the control conditions be 0 < µ < 2η/κ2 and 0 < γ < τ, where τ = 1−

√
1− µ(2η − µκ2).

Suppose the generated sequence {xn} is designed by the following algorithm where x0 ∈ C can be
chosen arbitrarily:

xn+1 = (I − λnµF)TPC[βnSxn + (1− βn)xn+1], ∀n ≥ 0,

where {λn} ⊂ (0, 1), {βn},⊂ (0.5, 1) satisfy conditions (C1)–(C3). Then, {xn} converges
strongly to x∗ ∈ Fix(T), which is the unique solution of variational inequality:

〈(µF− I)x∗, x− x∗〉 ≥ 0, ∀x ∈ Fix(T),

where Ωa = VI(Fix(T), µF − I) 6= ∅. On the other hand, x∗ is a unique fixed point PFix(T)
(I − µF), that is, PFix(T)(I − µF)(x∗) = x∗.

Proof. Putting φ ≡ 0 into Theorem 1, we can immediately obtain the desired result.

Corollary 2. Let C be a nonempty closed and convex subset of a real Hilbert space H. φ : H → H
be a ρ-contraction with coefficient ρ ∈ [0, 1), T : C → C be a nonexpansive mapping with
Fix(T) 6= ∅ and S : H → H be a nonexpansive mapping. Suppose {xn} is a sequence generated
by the following algorithm x0 ∈ C arbitrarily:{

yn = PC[βnSxn + (1− βn)xn+1],
xn+1 = λnφ(wnxn + (1− wn)xn+1) + (1− λn)Tyn, ∀n ≥ 0,
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where {λn} ⊂ (0, 1), {βn}, {wn} ⊂ (0.5, 1) satisfy the following conditions (C1)–(C3). Then,
{xn} converges strongly to x∗ ∈ Fix(T), which is the unique solution of variational inequality:

〈(I − φ)x∗, x− x∗〉 ≥ 0, ∀x ∈ Fix(T),

where Ωb = VI(Fix(T), I− φ) 6= ∅. On the other hand, x∗ is a unique fixed point PFix(T)(φ− I),
that is, PFix(T)(φ− I)(x∗) = x∗.

Proof. Putting γ = 1, µ = 2 and F ≡ I
2 in Theorem 1, we can immediately obtain the

desired result.

Corollary 3. Let C be a nonempty closed and convex subset of a real Hilbert space H. T : C → C
be a nonexpansive mapping with Fix(T) 6= ∅ and S : H → H be a nonexpansive mapping.
Suppose {xn} is a sequence generated by the following algorithm x0 ∈ C arbitrarily:

xn+1 = (1− λn)TPC[βnSxn + (1− βn)xn+1], ∀n ≥ 0,

where {βn} ⊂ (0.5, 1) satisfy the following condition (C1)-(C3). Then {xn} converges strongly to
x∗ ∈ Fix(T), which is the unique solution of variational inequality:

〈(I − S)x∗, x− x∗〉 ≥ 0, ∀x ∈ Fix(T).

where Ωc = VI(Fix(T), I− S) 6= ∅. On the other hand, x∗ is a unique fixed point PFix(T)(S− I),
that is, PFix(T)(S− I)(x∗) = x∗.

Proof. Putting φ ≡ 0 and in Corollary 2, we can immediately obtain the desired result.

Corollary 4. Let C be a nonempty closed and convex subset of a real Hilbert space H. T : C → C
be a nonexpansive mapping with Fix(T) 6= ∅ and S : C → C be a nonexpansive mapping. Suppose
{xn} is a sequence generated by the following algorithm x0 ∈ C arbitrarily:

xn+1 = λnxn + (1− λn)T[βnSxn + (1− βn)xn], ∀n ≥ 0,

where {λn} ⊂ (0, 1), {βn} ⊂ (0.5, 1) satisfy the following conditions (C1)-(C3). Then {xn}
converges strongly to x∗ ∈ Fix(T), which is the unique solution of variational inequality:

〈(I − S)x∗, x− x∗〉 ≥ 0, ∀x ∈ Fix(T).

where Ωd = VI(Fix(T), I− S) 6= ∅. On the other hand, x∗ is a unique fixed point PFix(T)(S− I),
that is, PFix(T)(S− I)(x∗) = x∗.

Proof. Putting φ ≡ I, {wn} = 1, PC ≡ I in Corollary 2, we can immediately obtain the
desired result.

5. Applications and Numerical
5.1. Nonlinear Fredholm Integral Equation

In this part, we consider the following nonlinear Fredholm integral equation:

x(r) = h(r) +
∫ 1

0
Q(r, t, x(t))dt, ∀ r ∈ [0, 1], (13)

where h is a continuous function on the interval [0, 1].
Q : [0, 1]× [0, 1]×R→ R is a continuous function. In this case, if we assume that Q

satisfies the Lipschitz continuity condition, i.e.,

|Q(r, t, x)−Q(r, t, y)| ≤ |x− y|, ∀ r, t ∈ [0, 1], x, y ∈ R,
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then we can verify that Equation (13) has at least one solution in L2[0, 1] (see [26], Theorem 3.3).
Define the mappings S, T : L2[0, 1]→ L2[0, 1] by:

(Sx)(r) = h(r) +
∫ 1

0
Q(r, t, x(t))dt, ∀ r ∈ [0, 1], (14)

and

(Tx)(r) = h(r) +
∫ 1

0
Q(r, t, x(t))dt, ∀ r ∈ [0, 1]. (15)

Then, for any x, y ∈ L2[0, 1], we have:

‖Sx− Ty‖2 =
∫ 1

0
|(Sx)(r)− (Ty)(r)|2 dr

=
∫ 1

0

∣∣∣∣∫ 1

0
Q(r, t, x(t))−Q(r, t, y(t)) dt

∣∣∣∣2dr

≤
∫ 1

0

∣∣∣∣∫ 1

0
|x(t)− y(t)| dt

∣∣∣∣2dr

≤
∫ 1

0
|x(t)− y(t)|2 dt

≤ ‖x− y‖2,

which implies that S and T are nonexpansive mapping on L2[0, 1]. We can definitely say
that the solution finding of Equation (13) and the solution finding of a commom fixed point
of S and T in L2[0, 1] are equivalent.

Theorem 2. Let a mapping Q : [0, 1]× [0, 1]×R→ R satisfies the Lipschitz continuity condition
and h be a continuous function on closed interval [0, 1]. Let S, T : L2[0, 1] → L2[0, 1] be a
mapping defined by (14) and (15). Let F : L2[0, 1] → L2[0, 1] be κ-Lipschitzian and η-strongly
monotone operators with constant κ and η > 0, respectively, φ : L2[0, 1] → L2[0, 1] be a ρ-
contraction with coefficient ρ ∈ [0, 1). Let 0 < µ < 2η/κ2, κ > 0 and 0 < γ < τ, where
τ = 1−

√
1− µ(2η − µκ2). Suppose that {βn}, {wn} and {λn} are the sequences in (0, 1) and

satisfy the conditions (C1)-(C3) of Theorem 1. For any x0(r) ∈ L2[0, 1], let {xn} be a sequence
generated by:{

yn(r) = βnSxn(r) + (1− βn)xn+1(r),
xn+1(r) = γλnφ(wnxn(r) + (1− wn)xn+1(r)) + (I − λnµF)Tyn(r), ∀n ≥ 0,

where r ∈ [0, 1]. Then, the sequence {xn(r)} converges strongly in L2[0, 1] to the solution of the
integral Equation (13).

5.2. Application to Convex Minimization Problem

In this part, we consider the well-known optimization problem

min
x∈C

Ψ(x), (16)

where Ψ : C → R is a convex and differentiable function. Assume that (16) is consistent,
and let a nonempty set Ω+ refers to its set of solutions. We generate the sequence {xn}
iteratively by using the gradient projection method as follows:

xn+1 = PC(xn − µ∇Ψ(xn)),
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where 0 < µ < 2η/κ2, κ > 0 and Ψ is (Gâteaux) differentiable. If∇Ψ is L-Lipschtzian, then
∇Ψ is 1

L -inverse strongly monotone, that is,

〈Ax− Ay, x− y〉 ≥ 1
L
‖Ax− Ay‖2, ∀ x, y ∈ H, L > 0.

Theorem 3. Let C be a nonempty closed convex subset a real Hilbert space H. For the minimization
problem (16), assume that Ψ is (Gâteaux) differentiable and the gradient ∇Ψ is 1

L -inverse strongly
monotone mapping with L > 0. Let φ : C → C be a ρ-contraction with coefficient ρ ∈ [0, 1).
Let 0 < µ < 2η/κ2, κ > 0 and 0 < γ < τ, where τ = 1−

√
1− µ(2η − µκ2). Suppose that

{βn}, {wn} and {λn} are the sequences in (0, 1) that satisfy the conditions (C1)-(C3) of Theorem
1. For a given x0 ∈ C, let {xn} be a sequence generated by:{

yn = βnSxn + (1− βn)xn+1,
xn+1 = γλnφ(wnxn + (1− wn)xn+1) + (I − λnµ∇Ψ)PC(1− µ∇Ψ)yn, ∀n ≥ 0.

Then {xn} converges strongly to a solution (x∗) of the minimization problem (16), which is also the
unique solution of the variational inequality

〈(µ∇Ψ− γφ)x∗, x− x∗〉 ≥ 0, ∀x ∈ Ω′,

where Ω′ := VI(Fix(T), µ∇Ψ− γφ) 6= ∅.

5.3. Application to Hierarchical Minimization

The following hierarchical minimization problem will be mentioned in this subsection.
(see [27] and references therein).

Let Ψ0, Ψ1 : H → R be lower semi-continuous convex functions. The hierarchical
minimization is shown as follows:

min
x∈Ω0

Ψ1(x), and Ω0 := argminx∈HΨ0(x). (17)

Assume that Ω0 is nonempty. Let Ω∗ := argminx∈Ω0
Ψ1(x) and assume Ω 6= ∅.

Let Ψ0 and Ψ1 are differentiable and their gradients satisfy the Lipschitz continuity
conditions:

‖∇Ψ0(x)−∇Ψ0(y)‖ ≤ L0‖x− y‖ and ‖∇Ψ1(x)−∇Ψ1(y)‖ ≤ L1‖x− y‖ (18)

Note that the condition (18) implies that ∇Ψi is 1
Li

-inverse strongly monotone (i = 0, 1).
Now let

T0 = I − γ0∇Ψ0, and T1 = I − γ1Ψ1,

where γ0 > 0 and γ1 > 0. Note that Ti is nonexpansive if 0 < γi < 2
Li

(i = 0, 1).
Furthermore, it is easily seen that Ω0 = F(T0).

The optimality condition for x∗ ∈ Ω0 to be a solution of the hierarchical minimization (17)
is the VI:

x∗ ∈ Ω0, 〈∇Ψ1(x∗), x− x∗〉 ≥ 0, x ∈ Ω0. (19)

Theorem 4. Assume the hierarchical minimization problem (17) is solvable. Let φ : C → C be
a ρ-contraction with coefficient ρ ∈ [0, 1). Let 0 < µ < 2η/κ2, κ > 0 and 0 < γ < τ, where
τ = 1−

√
1− µ(2η − µκ2). Suppose that {βn}, {wn} and {λn} are the sequences in (0, 1) that

satisfy the conditions (C1)-(C3) of Theorem 1. Let {xn} be a sequence generated by:

xn+1 = γλnφ(wnxn + (1− wn)xn+1) + (I − λnµF)PΩ0(I − µ∇Ψ1)(βnxn + (1− βn)xn+1).
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If the condition (18) is satisfied and 0 < γi <
2
Li

(i = 0, 1), then {xn} converges in norm to a
solution x∗ of the VI (19) that is, a solution of hierarchical minimization problem (17) which also
solves the VI

〈(I − γφ)x∗, x− x∗〉 ≥ 0, x ∈ Ω∗.

5.4. Numerical Experiments

Example 1. Let C = [0, 1] be a subset of a real Hilbert space R with the usual inner product 〈·, ·〉
and define the mappings S, T, F, φ : C → C by

S(x) =
x
3

, T(x) =
x
2

, F(x) = 2x, and φ(x) =
x
4

.

Let sequence {xn} be generated by algorithm (9), where βn = 1
10n+1 , wn = 1

20n+1 ,
λn = 1

30n+1 , µ = 1
4 and γ = 1

4 Then, sequence {xn} converges strongly to 0.
Under the different setting of initial points x0 = 0.25, 0.45, 0.65, 0.85, the computational

results of algorithm (9) are given in both Table 1 and Figure 1.

Table 1. The approximation value via the algorithm (9) in the initial point x0.

Iterate x0 = 0.25 x0 = 0.45 x0 = 0.65 x0 = 0.85

1 0.1255435730 0.2259784314 0.3264132898 0.4268481482
2 0.0629054853 0.1132298736 0.1635542618 0.2138786501
3 0.0314970836 0.0566947504 0.0818924172 0.1070900841
4 0.0157651322 0.0283772379 0.0409893436 0.0536014494
5 0.0078891945 0.0142005501 0.0205119057 0.0268232613
6 0.0039473573 0.0071052432 0.0102631290 0.0134210149
7 0.0019748611 0.0035547500 0.0051346389 0.0067145278
8 0.0009879478 0.0017783060 0.0025686642 0.0033590224
9 0.0004942037 0.0008895667 0.0012849297 0.0016802927
10 0.0002472053 0.0004449695 0.0006427338 0.0008404980
11 0.0001236497 0.0002225694 0.0003214891 0.0004204088
12 0.0000618464 0.0001113235 0.0001608006 0.0002102777
13 0.0000309331 0.0000556796 0.0000804262 0.0001051727
14 0.0000154712 0.0000278481 0.0000402251 0.0000526020
15 0.0000077377 0.0000139279 0.0000201181 0.0000263083
16 0.0000038699 0.0000069658 0.0000100617 0.0000131576
17 0.0000019354 0.0000034838 0.0000050321 0.0000065804
18 0.0000009679 0.0000017423 0.0000025166 0.0000032910
19 0.0000004841 0.0000008713 0.0000012586 0.0000016458
20 0.0000002421 0.0000004358 0.0000006294 0.0000008231
21 0.0000001211 0.0000002179 0.0000003148 0.0000004116
22 0.0000000605 0.0000001090 0.0000001574 0.0000002059
23 0.0000000303 0.0000000545 0.0000000787 0.0000001029
24 0.0000000151 0.0000000273 0.0000000394 0.0000000515
25 0.0000000076 0.0000000136 0.0000000197 0.0000000257
26 0.0000000038 0.0000000068 0.0000000098 0.0000000129
27 0.0000000019 0.0000000034 0.0000000049 0.0000000064
28 0.0000000009 0.0000000017 0.0000000025 0.0000000032
29 0.0000000005 0.0000000009 0.0000000012 0.0000000016
30 0.0000000002 0.0000000004 0.0000000006 0.0000000008
31 0.0000000001 0.0000000002 0.0000000003 0.0000000004
32 0.0000000001 0.0000000001 0.0000000002 0.0000000002
33 0.0000000001 0.0000000001 0.0000000001 0.0000000001
34 0.0000000001 0.0000000001 0.0000000001 0.0000000001
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Figure 1. Values of xn.

6. Conclusions

According to the importance and attractiveness of hierarchical problems, in our
research, we applied the viscosity technique together with a generalized implicit double
midpoint rule to find a fixed point of nonexpansive mapping in the framework of real
Hilbert spaces. We obtain the strong convergence theorem of our designed algorithm
which can solve fixed point problem and also it is the same solution of our mentioned
hierarchical problem. We also we propose the deduced corollaries and express how to
apply our algorithm to solve other problems including the nonlinear Fredholm integral
equation, convex minimization problem and hierarchical minimization. Moreover, we
conduct a numerical experiment under a different initial point to illustrate the effective-
ness of our algorithm.
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