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Abstract: In this paper, an analytical technique based on the global residue harmonic balance method
(GRHBM) is applied in order to obtain higher-order approximate analytical solutions of an electro-
statically actuated micro-beam. To illustrate the applicability and accuracy of the method, a high level
of accuracy was established for the analytical solutions by comparing the results of the solutions with
the numerical solution as well as the already published literature, such as the variational approach
(VA), Hamiltonian approach (HA), energy balance method (EBM), and homotopy analysis method
(HAM). It is shown that the GRHB method can be easily applied to nonlinear problems and provides
solutions with a higher precision than existing methods. The obtained analytical expressions are
employed to study the effects of axial force, initial gape, and electrostatic load on nonlinear frequency.

Keywords: non-linear analysis; numerical methods; iteration/recursive method; electrostatically
actuated microbeam
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1. Introduction

Nonlinear oscillation problems play an important role in wavelet analysis, applied
mathematics, physics, and mechanical engineering and have also attracted much interest
due to their wide range of applicability. Most real systems are modeled by nonlinear
differential equations, which play a crucial role in natural and physical simulations. In the
last decades, significant progress has been made in using nonlinear equations to understand
and accurately predict the stability of the motion of an oscillator [1–6].

Micro-electro-mechanical systems (MEMS) are intelligent structures with typically
micron- or nanometer-sized systems. These tiny components, utilized in vibrators, sensors,
switches, and other products, are a result of micro-electrical technology [7–11].

In general, nonlinear mathematical models are used to depict them. As a result, it is
crucial to forecast these nonlinear models’ approximate solutions in order to understand
how they will behave dynamically. MEMS refers to the compact size of high-tech devices.
They are developed based on micro-electronic technology. Consequently, they are used,
for example, in the production of optical sensors, micro vibrators, and pressure sensors,
and they also have many applications in engineering disciplines such as aerospace, optics,
biomedicine, micro-switches, transistors, accelerometers, pressure sensors, micro-mirrors,
micro-pumps, micro-grippers, bio-MEMS, and so on [1–11]. They are small integrated
devices that combine electrical and mechanical components. They are also subject to
electrically actuated MEMS devices, which require few mechanical components and low
voltage levels for actuation and are continuously increasing their applications in modern
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technology. MEMS devices are commonly used as capacitive accelerometers [3], capacitive
sensors [4], switches, and so on [5]; they are usually compared with traditional mechanical
systems, and their largest size will not exceed one centimeter or will sometimes only be
on the order of microns. Consequently, they can easily fabricate mechanical elements
such as beams, gears, diaphragms, and springs for integrated circuits. In addition, MEMS
devices can also be easily integrated into large layers and are highly resistant to vibrations
and shocks [6]. For a large surface-to-volume ratio, integrated circuit (IC) technology in
the modern industry facilitates the fabrication of huge numbers of MEMS devices, which
increase reliability and reduced costs.

In recent years, many efficient analytical methods have been used to solve nonlinear
differential equations, such as the variational iteration method [12], spreading residue
harmonic balance method [13], energy balance method [14–16], frequency-amplitude for-
mulation [17,18], homotopy perturbation method [19–23], modified harmonic balance
method [24], differential quadrature method [25], parameter expansion method [26], vari-
ational approach [27,28], homotopy analysis method [29,30], higher-order Hamiltonian
approach [2,31–33], and so on.

The main aim of this paper is to apply the global residue harmonic balance method
introduced by Ju and Xue [34–37] and recently developed through [38–42], in order to
obtain analytical approximate solutions to the large-amplitude vibration of electrostatically
actuated micro-beams. The higher-order approximations (mainly second-order approxima-
tions) have been obtained for the large-amplitude vibration of electrostatically actuated
micro-beams, providing the expected accuracy. A very simple solution procedure and
high-accuracy results are the advantages in this paper.

2. Nonlinear Vibration of an Electrostatically Actuated Microbeam

In this section, we will consider a fully clamped microbeam with a uniform thickness h,
length l, width (b� 5h), effective modulus E = E/(1− v2), Young’s modulus E, Poisson’s
ratio v, and density ρ, as shown in Figure 1. Employing the classical beam theory and
considering the mid-plane stretching effect as well as the distributed electrostatic force,
the nonlinear vibration equation of an electrostatically actuated microbeam [2,16,28,30] is
given by:

(a1x4 + a2x2 + a3)
..
x + a4x + a5x3 + a6x5 + a7x7 = 0, x(0) = A,

.
x(0) = 0, (1)

where x is the dimensionless deflection of the microbeam, and dot denotes the derivative

with respect to the dimensionless time variable t = τ
√

EI/ρbhl4, with I and t being the
second moment of area of the beam cross-section and time, respectively.
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The expressions of the governing physical parameters ai(i = 1, . . . , 7) can be written
as [16]:

a1 =
∫ 1

0 φ6dζ,
a2 = −2

∫ 1
0 φ4dζ,

a3 =
∫ 1

0 φ2dζ,
a4 =

∫ 1
0

(
φ′′′φ− Nφ′′φ−V2φ2)dζ,

a5 = −
∫ 1

0

(
2φ′′′ ′φ3 − 2Nφ′′φ3 + αφ′′φ

∫ 1
0 (φ′)2dζ

)
dζ,

a6 = −
∫ 1

0

(
φ′′′ ′φ5 − Nφ′′φ5 + 2αφ′′φ3

∫ 1
0 (φ′)2dζ

)
dζ,

a7 = −
∫ 1

0

(
αφ′′φ5

∫ 1
0 (φ′)2dζ

)
dζ,


(2)

in which the following non-dimensional variables and parameters are introduced:

α =
6g2

0
h2 , ζ =

x
l

, N =
Nl2

EI
, V2 =

24ε0l4V2

Eh3g3
0

. (3)

The symbol (′) indicates the partial differentiation with respect to the coordinate
variable x. Following the procedure presented in [16], the trial function φ in Equation (3)
can be replaced by φ(ζ) = 16ζ2(1− ζ)2. The parameter N denotes the tensile or compres-
sive axial load, g0 is the initial gap between the microbeam and the electrode, V is the
electrostatic load, and ε0 is the vacuum permittivity. Other details of the problem can be
found in [2,16,28,30].

With a new independent variable τ = ωt, Equation (1) can be transformed into:

(a1x4 + a2x2 + a3)ω
2x′′ + a4x + a5x3 + a6x5 + a7x7 = 0, x(0) = A, x′(0) = 0, (4)

where the prime denotes the derivative with respect to τ.

3. Application of the Global Residue Harmonic Balance Method (GRHBM)

In what follows, an analytical technique based on the global residue harmonic balance
method (GRHBM) is employed to obtain the analytical approximate solutions of the prob-
lem discussed before. To obtain higher-order approximate solutions, all the residual errors
are considered [33–36].

3.1. Zero-Order GRHBM Approximation

The initial approximation that satisfies the initial conditions of Equation (4) is given by:

x0(τ) = A cos(τ), ω2 = ω2
0. (5)

Substituting Equation (5) into Equation (4) yields:(
a4 +

48
64 A2a5 +

40
64 A4a6 +

35
64 A6a7 − 40

64 A4a1ω2 − 48
64 A2a2ω2 − a3ω2

)
A cos(τ)

+
(

16
64 A2a5 +

20
64 A4a6 +

21
64 A6a7 − 20

64 A4a1ω2 − 16
64 A2a2ω2

)
cos(3τ) = 0.

(6)

Inputting the coefficient of cos(τ) to equal zero yields:

ω0 =

√
64a4 + 48A2a5 + 40A4a6 + 35A6a7

40A4a1 + 48A2a2 + 64a3
. (7)

At this time, we know the zero-order approximate periodic solution of Equation (4) in
the form of Equation (7). Taking x0 and ω0 into the left-hand side of Equation (4), we have
the residual error R0 as follows:
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R0(τ) =
A3

128(5A4a1 + 6A2a2 + 8a3)
∆ cos(3τ), (8)

where:
∆ = −320A2a1a4 − 256a2a4 − 80A4a1a5 + 256a3a5 + 80A4a2a6

+ 320A2a3a6 + 35A8a1a7 + 112A6a2a7 + 336A4a3a7.

3.2. First-Order GRHBM Approximation

To obtain the first-order analytical approximation, the following relation is considered:

x(τ) = x0(τ) + px1(τ), ω2 = ω2
0 + ω1, (9)

where p is a bookkeeping parameter. We assume:

x1(τ) = a31(cos(τ)− cos(3τ)). (10)

Substituting Equation (9) into Equation (4), one obtains all the coefficients of p
as follows:

F1(τ, ω1, a31) ,
∆1 cos(τ) + ∆2 cos(3τ) + ∆3 cos(5τ)

(5A4a1 + 6A2a2 + 8a3)
, (11)

where:

∆1 = 1
128(5A4a1+6A2a2+8a3)

A(1600A3a1a4a31 + 1280Aa2a4a31

+ 1680A5a1a5a31 + 1536A3a2a5a31 + 768Aa3a5a31 + 1600A7a1a6a31,
+ 1520A5a2a6a31 + 960A5a3a6a31 + 1505A9a1a7a31 + 1456A7a2a7a31
+ 1008A5a3a7a31 − 400A8a2

1ω1 − 960A6a1a2ω1 − 576A4a2
2ω1

− 1280A4a1a3ω1 − 1536A2a2a3ω1 − 1024a2
3ω1),

∆2 = 1
128(5A4a1+6A2a2+8a3)

(2752A4a1a4a31 + 4096A2a2a4a31

+ 8192a3a4a31 + 2064A6a1a5a31 + 3072A4a2a5a31 + 6144A2a3a5a31
+ 1920A8a1a6a31 + 2800A6a2a6a31 + 5440A4a3a6a31 + 1855A10a1a7a31
+ 2660A8a2a7a31 + 5040A6a3a7a31 − 200A9a2

1ω1 − 400A7a1a2ω1
− 192A5a2

2ω1 − 320A5a1a3ω1 − 256A3a2a3ω1),

∆3 = 1
128(5A4a1+6A2a2+8a3)

A2(3008A2a1a4a31 + 2816a2a4a31

+ 1776A4a1a5a31 + 1536A2a2a5a31 − 768a3a5a31 + 1280A6a1a6a31
+ 1040A6a1a6a31 − 960A2a3a6a31 + 1085A8a1a7a31 + 868A6a2a7a31
− 896A4a3a7a31 − 40A7a2

1ω1 − 48A5a1a2ω1 − 64A3a1a3ω1).

Using Equations (8) and (11), the following expression is constructed:

F1(τ, ω1, a13) + R0(τ) = 0. (12)

Equating the coefficients of cos(τ) and cos(3τ) as equal to zero in Equation (12), we
can obtain the constants a31 and ω1 as below:

a31 = −(2A3((5A4a1 + 6A2a2 + 8a3)(−320A2a1a4 − 256a2a4 − 80A4a1a5)
+ 256a3a5 + 80A4a2a6 + 320A2a3a6 + 35A8a1a7 + 112A4a2a7 + 336A4a3a7))/
(19520A8a2

1a4 + 61184A6a1a2a4 + 44032A4a2
2a4 + 125952A4a1a3a4

+ 163840A2a2a3a4 + 131072a2
3a4 + 12240A10a2

1a5 + 41088A8a1a2a5
+ 11200A12a2

1a6 + 37040A10a1a2a6 + 27520A8a2
2a6 + 80320A8a1a3a6

+ 26096A10a2
2a7 + 7504010a1a3a7 + 99008A8a2a3a7 + 80640A6a2

3a7),

(13)



Mathematics 2022, 10, 4762 5 of 11

ω1 = −(A4(−320A2a1a4 − 256a2a4 − 80A4a1a5 + 256a3a5 + 80A4a2a6 + 320A2a3a6
+ 35A8a1a7 + 122A6a2a7 + 336A4a3a7 + 1600A2a1a4 + 1280a2a4 + 1680A4a1a5
+ 1536A2a2a5 + 768a3a7 + 1600A6a1a6 + 1520A4a2a6 + 960A2a3a6
+ 1505A8a1a7 + 1456A6a2a7 + 1008A4a3a7))/(8(5A4a1 + 6A2a2 + 8a3)
(19520A8a2

1a4 + 61184A6a1a2a4 + 44032A4a2
2a4 + 125952A4a1a3a4

+ 163840A2a2a3a4 + 131072a2
3a4 + 12240A10a2

1a5 + 41088A8a2a5
+ 30720A6a2

2a5 + 90624A6a1a3a5 + 119808A4a2a3a5 + 98304A2a2
3a5

+ 11200A12a2
1a6 + 37040A10a1a2a6 + 27520A8a2

2a6 + 80320A8a1a3a6
+ 106240A6a2a3a6 + 87040A4a2

3a6 + 11025A14a2
1a7 + 35560A12a1a2a7

+ 26096A10a2
2a7 + 75040A10a1a3a7 + 99008A8a2a3a7 + 80640A6a2

3a7)).
(14)

Regarding Equation (9), we obtain the first-order approximate frequency and periodic
solution as follows:

x(τ) = A cos(τ) + a31(cos(τ)− cos(3τ)), (15)

ω =

√
64a4 + 48A2a5 + 40A4a6 + 35A6a7

40A4a1 + 48A2a2 + 64a3
+ ω1. (16)

3.3. Second-Order GRHBM Approximation

To obtain the second-order analytical approximation, we consider:

x(τ) = x0(τ) + x1(τ) + px2(τ), ω2 = ω2
0 + ω1 + pω2, (17)

in which:
x2(τ) = a32(cos(τ)− cos(3τ)) + a52(cos(τ)− cos(5τ)). (18)

Substituting Equation (17) into Equation (4) and then equating the coefficients of
cos(τ), cos(3τ), and cos(5τ), the following three linear equations are obtained as follows:

cos(τ) : 7
64 α7

(
14a31 A6 + 42a2

31 A5 + 100a3
31 A4 + 175a4

31 A3 + 210a5
31 A2 + 154a6

31 A + 52a7
31 + 5A7)

+ 7
64 a52α7

(
132a31 A5 + 375a2

31 A4 + 700a3
31 A3 + 840a4

31 A2 + 588a5
31 A + 182a6

31 + 28A6)
+ 7

32 a32α7
(
42a31 A5 + 150a2

31 A4 + 350a3
31 A3 + 525a4

31 A2 + 462a5
31 A + 182a6

31 + 7A6)
+ 5

16 a32α6
(
24a31 A3 + 60a2

31 A2 + 80a3
31 A + 45a4

31 + 5A4)+ 3
2 a32α5

(
3a31 A + 3a2

31 + A2)
+ 5

16 a52α6
(
32a31 A3 + 60a2

31 A2 + 60a3
31 A + 25a4

31 + 9A4)+ 3
4 a52α5

(
6a31 A + 4a2

31 + 3A2)
+ 5

16 α6
(
5a31 A4 + 12a2

31 A3 + 20a3
31 A2 + 20a4

31 A + 9a5
31 + 2A5)+ α4(a31 + a32 + a52 + A)

+ 3
4 α5
(
2a31 A2α5 + 3a2

31 A + 2a3
31 + A3)+ [(ω2

0 + ω1)
1
4 α2(19a31 A2 + 41a2

31 A + 48a3
31 − A3)

+ 1
16 a32α1(272a31 A3 + 1164a2

31 A2 + 2420a3
31 A + 1925a4

31 + 53A4) + 1
4 a32α2(144a2

31 + 19A2

+82a31 A) + 1
16 a52α1(232a31 A3 + 582a2

31 A2 + 680a3
31 A + 239a4

31 + 91A4) + 1
2 (12a52 A2α2

+11a31a52 Aα2 − a2
31a52α2 + 18a31α3 + 18a32α3)] +

1
16 (ω

2
0 + ω1 + ω2)(a31α1(−92a31 A3

−292a2
31 A2 − 420a3

31 A− 245a4
31 + 15A4)− 10A5α1) +

1
4 (a31α2(−25a31 A− 30a2

31 + 2A2)
−3A3α2)ω2 − α3(a31 + A)ω2,

(19)

cos(3τ) : 7
64 α7

(
−18a2

31 A5 − 75a3
31 A4 − 175a4

31 A3 − 252a5
31 A2 − 210a6

31 A− 78a7
31 + 3A7)

− 7
64 a31a32α7

(
225a31 A4 + 700a2

31 A3 + 1260a3
31 A2 + 1260a4

31 A + 546a5
31 + 36A5)

− 21
32
(
a31a52α7

(
25a31 A4 + 70a2

31 A3 + 105a3
31 A2 + 84a4

31 A + 28a5
31 + 3A5)− a52 A6α7

)
+ 5

16 a52α6(a31 + A)
(
−9a31 A2 − 21a2

31 A− 19a3
31 + A3)− 5

16 a32α6(16a31 A3 + 60a2
31 A2

+100a3
31 A + 65a4

31 + A4) + 5
16 α6

(
−a31 A4 − 8a2

31 A3 − 20a3
31 A2 − 25a4

31 A− 13a5
31 + A5)

− 3
4 α5
(
a32 A2 + 6a31a32 A + 2a31a52 A + 8a2

31a32 + 2a2
31a52

)
+ 1

4 α5(A3 − 3a31 A2 − 9a2
31 A

−8a3
31)− (a31 + a32) α4 − 1

4 ω2
(
−19a31 A2α2 − 41a2

31 Aα2 − 48a3
31α2 − 36a31α3 + A3α2

)
+(ω2

0 + ω1)[
1

16 a52α1(232a31 A3 + 582a2
31 A2 + 680a3

31 A + 239a4
31 + 91A4) + 1

4 a32α2(19A2

+82a31 A + 144a2
31) +

1
16 a32α1(272a31 A3 + 1164a2

31 A2 + 2420a3
31 A + 1925a4

31 + 53A4)

+ 1
4 α2(19a31 A2 + 41a2

31 A + 48a3
31 − A3) + 1

2 a52α2
(
11a31 A− a2

31 + 12A2)+ 9(a31 + a32) α3]

− 1
16 α1(ω

2
0 + ω1 + ω2)(−53a31 A4 − 136a2

31 A3 − 388a3
31 A2 − 605a4

31 A− 385a5
31 + 5A5),

(20)
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cos(5τ) : − 3
4 a32 Aα5(2a31 + A) + 1

16 α6
(
−40a2

31 A3 − 50a3
31 A2 − 25a4

31 A + a5
31 + A5)− 15

16 a31 A4α6
− 7

64 a52α7(13A6 + 108a31 A5 + 360a2
31 A4 + 700a3

31 A3 + 840a4
31 A2 + 588a5

31 A + 188a6
31)

− 5
16 a32α6

(
16a31 A3 + 30a2

31 A2 + 20a3
31 A− a4

31 + 3A4)− 3
4 a52α5

(
6a31 A + 5a2

31 + 2A2)
+ 7

64 α7(A7 − 33a2
31 A5 − 75a3

31 A4 − 105a4
31 A3 − 84a5

31 A2 − 28a6
31 A + 2a7

31) + 25a52α3
− 7

64 a32α7(66a31 A5 + 225a2
31 A4 + 420a3

31 A3 + 420a4
31 A2 + 168a5

31 A− 14a6
31 + 8A6)

− 5
16 a52α6

(
28a31 A3 + 60a2

31 A2 + 64a3
31 A + 29a4

31 + 5A4)− 3
4 a31 Aα5(a31 + A)− a52α4

− 7
8 a31 A6α7 + (ω2

0 + ω1)[
1

16 a32α1
(
144a31 A3 + 294a2

31 A2 + 100a3
31 A− 245a4

31 + 47A4)
+ 1

4 a52α2
(
130a31 A + 143a2

31 + 54A2)+ 1
16 a52α1588a31 A3 + 1452a2

31 A2 + 1952a3
31 A

+1137a4
31 + 169A4) + 1

4 α2
(
11a31 A2 + 3a2

31 A− 8a3
31
)
+ 1

4 a32α2
(
6a31 A− 24a2

31 + 11A2)]
+ 1

16
(
ω2

0 + ω1 + ω2
) ( 1

16 a31α1
(
72a31 A3 + 98a2

31 A2 + 25a3
31 A− 49a4

31 + 47A4)− A5α1

)
+ 1

4 α2ω2
(
11a31 A2 + 3a2

31 A− 8a3
31
)
.

(21)

Solving Equations (19)–(21), three unknown constants (a32, a52, and ω2) are determined.
The Mathematica command software was employed for this purpose. The expressions
obtained for a32, a52, and ω2 take too much space and cannot be presented here. However,
their numerical values will be reported in the results and discussion section.

Regarding Equation (17), the second-order approximation solution of Equation (4) is
obtained as follows:

x(τ) = (A + a31 + a32 + a52) cos(τ)− (a31 + a32) cos(3τ)− a52 cos(5τ),

ω =
√

ω2
0 + ω1 + ω2.

(22)

4. Results and Discussion

In this work, the effectiveness and convenience of the global residue harmonic balance
method for the nonlinear vibration of an electrostatically actuated micro-beam have been
displayed. The obtained approximate analytical solution was verified through a comparison
with the fourth-order Runge–Kutta method. From Figure 2, one can observe that for all
different values of amplitude A, the second-order approximate solutions match extremely
well with the numerical solutions. In Table 1, the approximate angular frequencies obtained
using the GRHB method, i.e., ωGRHBM, are compared with those achieved using the higher-
order Hamiltonian approach ωHA [2], energy balance method ωEBM [16], He’s variational
approach ωVA [28], and the homotopy analysis method ωHAM [30]. In Table 1, the exact
values ωexact are also reported. The comparison reveals the correctness and accuracy of the
proposed method.

Table 1. Comparison of the approximated frequencies with corresponding exact frequencies based
on the various parameters in Equation (1).

A N α V ωHA
(Error %)

ωEBM
(Error %)

ωVA
(Error %)

ωHAM
(Error %)

ωGRHBM2
(Error %) ωExact

Constant Parameters [2] [16] [28] [30] Present [30]
0.3 10 24 0 26.3669 26.3867 26.3644 26.8372 26.8372 26.8372

(1.7837) (1.7073) (1.7933) (0.0000) (0.0000)
0.3 10 24 20 16.3547 16.3829 16.3556 16.6486 16.6486 16.6486

(1.7970) (1.6218) (1.7914) (0.0000) (0.0000)
0.6 10 24 10 26.3562 26.5324 26.1671 28.5368 28.5378 28.5382

(8.2789) (7.5598) (9.0614) (0.0049) (0.0014)
0.6 10 24 20 17.3013 17.5017 17.0940 18.5902 18.5902 18.5902

(7.4497) (6.2194) (8.7528) (0.0000) (0.0000)

The analytical expression obtained in Equation (17) can be used to study the effects of
the parameters given in Equation (4) on the nonlinear frequency. Figure 3 shows the effect
of parameter N on the nonlinear frequency with respect to the amplitude for α = 24 and
V = 10. The important point is that the effect of parameter N on the nonlinear frequency is
dependent on the amplitude. As can be seen, for small amplitudes, the nonlinear frequency
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increases when increasing the axial tensile load. However, for amplitudes close to unity,
the frequency is independent of the axial load. Moreover, for each value of the axial load,
there is an amplitude in which the frequency of the electrostatically actuated micro-beam
exhibits the maximum value.
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Figure 2. The comparison between analytical approximate solutions using the GRHBM (dashed line)
and numerical solution (solid line). (a) A = 0.3, V = 0, N = 10, α = 24. (b) A = 0.3, V = 20, N = 10, α = 24.
(c) A = 0.6, V = 10, N = 10, α = 24. (d) A = 0.6, V = 20, N = 10, α = 24. (e) A = 0.9, V = 10, N = 10, α = 24.
(f) A = 1, V = 0, N = 10, α = 24. (g) A = 10, V = 10, N = 10, α = 24. (h) A = 100, V = 20, N = 10, α = 24.
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Figure 3. Effect of parameter N on the nonlinear frequency of electrostatically actuated micro-beam.

Figure 4 illustrates the effect of the parameter V on the nonlinear frequency of an
electrostatically actuated microbeam for α = 24 and N = 10. It can be seen that for a specific
amplitude value, the nonlinear frequency decreases when increasing the electrostatic load.
Additionally, for a specific value of parameter V, the nonlinear frequency increases and
then decreases again. This means that for each value of the electrostatic load, there is an
amplitude in which the frequency of the electrostatically actuated micro-beam exhibits the
maximum value.
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Figure 4. Effect of parameter V on nonlinear frequency of electrostatically actuated micro beam.

Figure 5 shows the effect of the parameter α on the nonlinear frequency of the elec-
trostatically actuated microbeam for N = V = 10. Figure 5 reveals that for small am-
plitude values, the nonlinear frequency is independent of the parameter α. According
to Equation (3), the non-dimensional parameter α reflects the ratio of the initial gap g0
to the beam thickness h. Hence, it may be concluded that for a microbeam with specific
dimensions, the frequency is not influenced by the change of the initial gap between the
nanobeam and electrode for small amplitudes. This observation is also seen when the
amplitude is close to unity. Additionally, for each value of the parameter α, the maximum
frequency occurs when the amplitude is almost 0.8.
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5. Conclusions

In this paper, the global residue harmonic balance method has been successfully
applied to investigate the large-amplitude vibration of electrostatically actuated micro-
beams. An excellent agreement has been found between the approximated and numerical
solutions obtained from exact ones. It is remarkably important that the obtained results
are valid for small as well as large values of an initial oscillation amplitude with a high
accuracy. The GRHB method is very easy to apply, straightforward, concise, and highly
efficient in finding approximate analytical solutions for wide classes of nonlinear ordinary
differential equations. The global residue harmonic balance method is applied as a powerful
technique for solving many other sophisticated nonlinear problems arising in physics and
engineering applications.
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