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Abstract: A critical step in sharing semantic content online is to map the structural data source to a
public domain ontology. This problem is denoted as the Relational-To-Ontology Mapping Problem
(Rel20nto). A huge effort and expertise are required for manually modeling the semantics of data.
Therefore, an automatic approach for learning the semantics of a data source is desirable. Most of
the existing work studies the semantic annotation of source attributes. However, although critical,
the research for automatically inferring the relationships between attributes is very limited. In
this paper, we propose a novel method for semantically annotating structured data sources using
machine learning, graph matching and modified frequent subgraph mining to amend the candidate
model. In our work, Knowledge graph is used as prior knowledge. Our evaluation shows that our
approach outperforms two state-of-the-art solutions in tricky cases where only a few semantic models
are known.

Keywords: semantic model; frequent subgraph mining; knowledge graph; ontology
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1. Introduction

Structural data sources are still one of the most prevalent modes for the storage of
enterprise or Web data. It is a long-standing and urgent issue in many real database re-
search fields to automatically integrate heterogeneous data sources [1,2]. Though relational
schemata are suitable for ensuring data integrity, they are short of semantic descriptions
that support efficient semantic integration of different sources. The construction of ontology
from relational databases is a basic problem for the development of the Semantic Web [3].
Common ontology provides a method to express the semantics of a relational schema and
facilitate integrating heterogeneous data sources. It is appropriate to manually indicate
semantic descriptions if the integration of only a few data sources is required. However, as
the number of heterogeneous schemata increases, manually labeling becomes tedious. To
settle this problem, a standard way is to design a common ontology and build a source de-
scription of the assigned mappings between the sources and the ontology automatically [4].
This problem is named as Relational-To-Ontology Mapping Problem (Re120nt) [5].

Formally, the problem of Re120nt can be expressed as below [5]. Assume a data source
s is an n-ary relation which contains a series of attributes As = (ay, ...,a,). The attribute
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mapping function ¢ : As — Dy, constructs the mapping between the attributes of the sources
s and the node set D, of the semantic model m. Given a source s, a semantic model m, and
an attribute mapping ¢, a source description is defined as a triple § = (s, m, ¢). Suppose we
have a gold standard model for a new source s*, given an ontology O, and a set of source
descriptions A = {(s1,m1,$1),..., (5, m;,¢;)} , for a new source s*. How do we derive
the semantic model m* and the attribute mapping function ¢* so that §* = (s*, m*, ¢*)
maximizes the precision and recall between the semantic model m* and the gold standard
semantic model m" of the data source s*?

Lately, machine learning techniques have been employed to address the Re120nt issue.
For instance, Karma [6] can automatically learn semantic models for a new data source
by leveraging the knowledge from domain ontology and historical semantic models of
sources in the same domain. Binh Vu et al. [7] proposed a novel way to learn semantic
models for data sources by using a probabilistic graphical model (PGM). Recently knowledge
graphs, as one of the main trends driving the next wave of technologies [8], have become
a novel form for representing knowledge and the basis of multiple applications from
common applications to specific industrial use cases [9]. A knowledge graph is a structured
representation of facts consisting of entities, relationships, and semantic descriptions [10].
Relationships among semantic models of a data source can be inferred by exploiting a
knowledge graph as prior knowledge [11]. For example, Giuseppa et al. developed a
semi-automatic tool SeMi for constructing large-scale knowledge graphs from structured
data sources by building the semantic models of data sources [12].

These automatic semantic annotation methods based on machine learning enormously
elevate the data matching efficiency of structural data sources. However, these strategies
also have the following drawbacks: (a) Limited known semantic models of data sources:
the performance of Karma is better when plenty of data sources are available for training a
standard learning graph. For instance, when Karma uses 29 known museum data sources to
train the learning graph, it can generate a candidate semantic model for the new museum
data source with an accuracy of up to 80% [6], whereas in practical applications, the data
sources might be limited, perhaps to 2 or 3, so the existing methods still need to be greatly
improved. (b) Lack of linked data: when inferring semantic relations from knowledge
graphs based on machine learning methods [11], it is assumed that there are adequate linked
data usable in the same domain as the destination data source, which greatly depends on
the amount of linked data. If there is little or no linked data available, the capacity to dig
available patterns will be greatly reduced. (c) Finite ability to extract long patterns: the
calculation of inferring patterns from the method of inferring semantic relationships from
knowledge graphs is very complicated [11]. In a reasonable time, only the patterns of three
or four nodes may be inferred. Therefore, it is challenging to use SPARQL queries to extract
long patterns from a lot of triples.

In this article, we extend our previous work [13] and present a novel machine-learning-
based procedure, which is helpful to figure out the Re120nto issue with the prior knowledge
of the knowledge graph. For this reason, we attribute the Re120nto problem to a customized
frequent subgraph mining problem. Primarily, it runs the Steiner tree generation algorithm
to output reasonable semantic models by utilizing existing semantic models and domain
ontology [6]. We select the first ranked candidate model cm as the seed model for further
amending. Then, we remove incorrect relationships of cm by using a knowledge graph as
prior knowledge and machine learning techniques. Since some relationships are removed
from the initial candidate semantic model, the resulting model may be incomplete. Ac-
cordingly, to improve the completeness of the model, we use a grow-and-store strategy [14]
to mine the top-o frequent subgraphs in the knowledge graph as final candidate models.
The underlying heuristic hypothesis is that the correct semantic model may have higher
frequency in the knowledge graph than other substructures.

The contributions of our paper are as follows: (a) A new pipeline for automatically
learning the semantic model of a new structural data source is arranged by utilizing several
existing semantic models, domain ontologies, and domain specific knowledge graphs. (b)
A novel approach is put forward for discovering and eliminating the incorrect relationships
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in candidate semantic models by machine learning and graph matching techniques. (c) We
use the the grow-and-store approach and modify a frequent subgraph mining algorithm to
calculate the subgraph frequency of a domain-specific knowledge graph and mine frequent
subgraphs. The top-o frequent subgraphs are acquired as the most rational semantic models
of the structured data source.

The rest of this article is structured as below. In Section 2, we represent related work.
We introduce an illustrative example in Section 3. We exploit a new way for inferring
semantic relations of the destination data source in Section 4. In Section 5, we display our
experimental evaluation results of our method and draw conclusions in Section 6.

2. Related Work

Since the manual creation and scheme of the mapping between relations to ontologies
is a labor-intensive process, several machine learning technologies have been suggested to
tackle the Re120nt problem. Taheriyan et al. presented a method to automatically learn
a semantic model of a new source utilizing domain information and historical seman-
tic models [6]. Considering lack of known available semantic model in many domains,
Taheriyan et al. further put forward a method to automatically learning the semantic
relationships within a given data source exploiting Linked Open Data (LOD) [11]. The
limitation of [11] is that when the available LODs are sparse, the exactness of the out-
putted semantic models is severely affected and not enough useful patterns are obtained.
Diego et al. [5] combined machine learning with constraint programming to infer mapping
rules from previous mapping instances to deal with attributes that cannot be matched
to the ontology. Binh et al. [7] presented a method for automatically learning semantic
models using a probabilistic graphical model. Their approach is more robust to noise than
previous methods. Giuseppe et al. proposed a semi-automatic approach for inferring
semantic relations based on a graph neural network trained on a background knowledge
graph [12]. In our article, we learned a semantic model for a new source by integrating the
knowledge of known semantic mappings, knowledge graphs, and domain ontology. Our
approach helps to study the exact semantic models without sufficient historical mappings.
We studied this problem in our previous work [13]. Comparing to our previous work, the
following four points are strengthened in this article. First, multiple candidate semantic
types for each attribute of structural data source are considered, while in our previous
work, we assumed that all the correct semantic types of attributes are known. Second,
we eliminated the incorrect relationships in seed model by using two different methods in
the pipeline to improve the accuracy of our method. Third, we optimized our previous
algorithm for adding missing substructures to improve its efficiency. Finally, we conducted
more experiments to evaluate our approach by using more datasets. Compared to our
previous work with only one dataset and one semantic modeling approach being and
evaluated, in this article, we compared our approach with two state-of-the-art semantic
modeling methods by exploiting three datasets.

Search-based approaches were also exploited to tackle the Re120nt problem. Pinkel et al.
proposed a new semi-automatic matching method IncMap [15], which used the lexical and
structural similarities between ontology and relational schemata to generate the mapping
from relational schemata to ontology. Sequeda et al. defined a specific query mapping
QODI [16] for an ontology-based data integration system (OBDI). QODI generates path cor-
respondences , rather than entity correspondences, to facilitate the representation of queries.
Moreover, Sequeda et al. exploited a semi-automatic software Ultrawrap Mapper [17]
for the creation of a mapping from Relational Databases to RDF in the R2ZRML language.
Ultrawrap Mapper aligns the original schemata and target ontology using QODI techniques
and gives mapping suggestions [17]. The MIRROR system [18] yields an R2ZRML mapping
file containing the mappings for a given relational database. Naglaa et al. proposed a
ProGOMap (Property Graph to Ontology Mapper) system for the automatic generation of
mappings from property graphs to a domain ontology [19]. The PG-to-Ontology mappings
can be automatically generated by using the aligned axioms. Florian et al. developed a pro-
totype for a semantic data lake for addressing the heterogeneous format of the activity logs
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and the content data of cross-platform collaboration [20]. In their prototype, ontology-based
data access is implemented based on a mapping between an ontology and the ingested data.
All of the approaches in [15-20] focus on constructing mappings between relational scheme
and domain ontology through a search-based algorithm. Different from these search-based
approaches, our method attempts to learn mapping rules by leveraging the amount of
knowledge bases, including not only historical relational schemes and domain ontology,
but also knowledge graphs.

As mentioned above, semantic labeling is a significant step for solving the Re120nt
problem. Several works for addressing the problem of semantic labeling exist. For instance,
Krishnamurthy et al. [21] tried to leverage the distribution and characteristic properties
of the data for learning semantic types of source attribute. Pham et al. [22] used machine
learning technologies to infer the correct semantic type by calculating similarities between
unlabeled and labeled attributes. Mulwad et al. [23] leveraged Linked Open Data (LOD)

information to build up the known semantic message algorithm for the annotation of tables
on the web.

3. Mlustrative Example

In this section, a typical procedure for building a semantic model of a sample data
source from the Crystal Bridges Museum in the United State (CB) https:/ /crystalbridges.
org/ (accessed on 14 December 2022) is provided. The gold semantic model of the CB

is exhibited in Figure 1. In the article, the correct model of a data source means the gold
standard model of this source.
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Figure 1. CB data source and its semantic model.

The semantic model m is a directed graph which includes two categories of nodes: class

nodes (C,) and data nodes (D). Cyy, is the set of classes in the ontology, and D,, corresponds
to data properties. The term semantic model is synonymous with semantic mapping with
a minor difference. Semantic mapping is a schema mapping from the data source to an
ontology. This mapping can be represented as a semantic graph which is also called a
semantic model. As Figure 1 shows, the class nodes are ontology classes, and the data
nodes are source attributes. For example, in the seed model of CB, the entities E55_Type1
and E54_Dimensionl are class nodes, and data source attributes Medium and dimensions
are data nodes. The edges of the semantics model can be classified into object properties
and data properties. In Figure 1, object properties defined in the ontology are shown by
the black-colored links between class nodes. Furthermore, data properties (shown in blue
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color) are relationships between data nodes and class nodes. For instance, P102_has_title
and rdfs:label are object properties and data links, respectively.

Suppose that we only have two data sources whose gold standard semantic models
are given. The data sources are the tables describing the information about artworks in the
National Portrait Gallery (NPG) and Getty: Resources for Visual Art and Cultural Heritage
(GT), respectively. Our goal is to learn a semantic model for a new source such as CB by
leveraging a small number of historical semantic mappings and the domain ontology and
using a knowledge graph as background knowledge. In the next section, we present our
method for automatically learning a semantic model for a new source with a few known
semantic models and a knowledge graph.

4. Our Approach

In this section, we introduce our method for automatically inferring the semantic
models of a structural data source. The whole pipeline of this method is illustrated in
Figure 2. The domain ontology, several historical semantic mappings from data sources to
domain ontology, a new data source, and domain knowledge graphs are the inputs of our
approach. The overall pipeline consists of two phases. In the first phase, we find candidate
semantic types for each attribute and find a candidate semantic model cm for a new data
source by using a Steiner tree algorithm. A cm is usually a partially correct model. In the
second phase, we amend the cm to eliminate incorrect entities and relationships. We first
train a decision tree model to distinguish ambiguous relationships and then use a graph
matching technique to remove incorrect relationships. Next, a modified frequent subgraph
mining algorithm is used to add missing substructures. The output of our approach is
a semantic model that describes how the specified semantic types are linked with the
seed model.
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T T T IR CORED!
[ > | -
Historical semantic | coll col2 col3 : (S M P :
: [valeel | valuez | value3| : coll col2 B |
mappings | [Lvaluea | values | values| | | |eluel T valueZ T value3]
| [value7 | value8 | vales | | | | valued | valueS | value6] |
1 | value7 value8 value9 |
o | o ___ |
% New dat Find candidate semantic types label Find candidate semantic model cm
ew data source for each column of new data source by using Steiner tree algorithm

Phase Il: Amend the partially correct semantic model

—0  Frequent subgraph mining & ,\ Graph matching °:':$5° Decision tree

| | | | e 1
- | | | | |
7 " | N - | | v‘ o | | A 3 |
h L ] I I ]
LTS E e e e
T ] \™ | | | | ] 7
IS IS « ! ¥ 4 M AR | L L | . i
coll col2 col3 | coll col2 col3 | | coll col2 col3 | | coll col2 col3
ValueT | valueZ | value3 ! [Vauel [ vamez [vame3| | [CEel [ valez [vames| | [l [ valwer [vame3| |
value4 | values | value6 | value4 | valueS | value6] | | value4 | valueS | value6| | | valued | values | values |
value7 value8 value9 | value7 | value8 valueS | ] value7 value8 value9 ] I value7 values value9 ]
| | | |
L __ H Lo i Lo __ i
Final model Add correlated substructures of cm Find and remove incorrect Move incorrect edge of
correfated substructures or ¢ substructures of cm based on KG cm based on data source

L} o ]

o
Je'® o Knowledge graph @ Knowledge base
[ ¢ e

4.1. Obtaining the Seed Semantic Model

The first phase abides by the classical solution [4] of the Re120nt problem which in-
cludes two sub-steps, i.e., semantic labeling and relationship discovery. Semantic labeling [24] is

Figure 2. The overall pipeline.
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the process of annotating the semantic type for an attribute by scoring a confidence value for
the assignment of an attribute from s to a type I € L, (L, is the set of all possible candidate
semantic types). In this work, we use the approach proposed by Krishnamurthy et al. [21]
which is called SemanticTyper to automatically obtain the semantic type of source attributes.
Semantic types for each attribute of a new data source can be labeled automatically by
using a semantic labeling function trained from a set of manually annotated sources.

Relationship discovery is the process of linking all the semantic annotations with
multiple relationships to formulate a semantic model. We find all the relationships and
build a candidate model cm by using a Steiner tree algorithm. The relationships of the
matched data nodes (attributes) are identified for the generation of the semantic models
T = {T',T?,.., T* } of data sources. First, a directed weighted graph Go = (Vo, o),
called alignment graph, is constructed on top of the historical semantic mappings and
expanded using semantic types £y and the ontology O. The alignment graph provides
an integrated view on top of the historical semantic descriptions dr. Similar to a semantic
model, both class and data nodes are contained in Gp. Note that the alignment graph is
weighted by a weighting function we : £» — R so that edges inferred from the ontology
have higher weights than the edges shown in the known semantic models. The details
of the algorithm and weighting function are illustrated in [6]. Then, the top-¢c candidate
semantic models are acquired from the learned semantic types and alignment graph by
solving the Steiner Tree Problem(STP) [5,6]. Given a graph G = (V, E) and a subset of
itsnodes T C V, a Steiner Tree G; = (Vs,Es) (T C Vs C V and Es C E) is a subtree of G
which contains all the nodes in T and may include extra nodes from V to guarantee the
connectedness. The Steiner Tree Problem (STP) can be described as finding the Steiner
Tree which has the minimum sum of the weights of the edges in E; with given graph G
and a weight function wy : E — R [25]. For leveraging a STP to formulate the Re120nto
schema mapping problem for a new source s*, we apply the method proposed in [6] and
build the alignment graph Z§, = (V5,5 ), where V& = (Vp, Ag+). The set of edges
Sg* consists of £» and ./\/l‘g (i.e., 5(‘3* =&pU /\/l‘g), where £p is the set of all edges in the
alignment graph, and M, represents the edges which connect each attribute of s* to the
nodes in the alignment graph induced by the semantic types (i.e., the set of nodes in Dg,).
For example, in Figure 3, the blue-colored dashed lines are the set M, . Next, a weighting
function wy : E — RT is associated with the alignment graph. Here, we weight the edges
of the alignment graph by the weighting function in [6]. After weighting edges, we use
an approximation algorithm of STP, such as the BANKS algorithm [26], to build a set of
subgraphs T* = (V*,E*) of the alignment graph Ig for the new source s* . The output
of the Steiner tree algorithm is the top-c candidate semantic models. Since our approach
attempts to amend one partially correct semantic model, we only select the first candidate
semantic model cm with the lowest weight as the seed model for further amending.

Figure 3 shows the seed model of the data source CB generated by the method in [6]
using the known semantic model of source NPG and source GT. This seed model will be
used as the start of amending in the next sub-section.



Mathematics 2022, 10, 4778

7 of 19

——— Correct object
property
> Incorrect object
property
P Correct data
property

O
@

property

correct entity
incorrect entity

————— » Incorrect data ( missing entity
N\

S —

-
E22_Man-Made_Object1

P108i_was_prof

<E12_Productionl

P102_has_title

P14_carried_out_by
< EZl_PersoQ
P131_ig/identified_by

82_Actor_Appel
lation1
\

E67_Birthl

P98i_wgs_born P100i_died, in

P32_used_general_technique’

. tie-spanP4_haSXiqe-span

E35_Titlel
S EsA_DlmenslonD

— e ———— H
@me_spans ( ES5_Typel ) Y P \
- ~— / e i
’ P
, .
, .

PBZfalv?someftime

/, / e L, . |
P82_at_some_time Vs . .
—at_some,

within 7 4 - i
! - / P\izit_r:t‘_mm’%“me abel 7 s P3_hag_note
\ P4_has_tihe-span P4_hasAime-span | J/ - / ’ e g '
‘b ¥ A ! d / Rl labgl i ;
label == = / / . Lo |
' GSZiTime—Spa&LTime-Sp@ / % s T ;
! , Pid 4
,\ S N e— I/ i S e ,/, //
| \ ) / S ALl - , !
H P82_at_some_ P82_at_sopne_time  / L /,’ L, L7 4 !
| time_within \ _within / L’ - PR - K4 |
-~ Y — e -7~ - 7 '
v R e x ~—--- 5 ar 4 y
Attribution BeginDate | End Date | Dated Medium Title Dimensions

Romare Bearden 1911 1988 1941 Gouache and casein on paper Sacrifice 31 1/4 x 47 in. (79.4 x 119.4 cm) Framed: 43 3/8 x 59 1/2 x 2 1/2 in. (110.2 x 151.1 X 6.4 cm)
George Wesley Bellows 1882 1925 1908 Oil on canvas Excavation at Night | 34 x 44 in. (86.4 x 111.8 cm) Framed: 45 x 54 7/8 x 2 7/8 in. (114.3 x 139.4 x 7.3 cm)
George Wesley Bellows 1882 1925 1919 Oil on canvas The Studio 48 x 38in. (121.9 x 96.5 cm) Framed: 57 3/8 x 47 3/8 x 3 3/8 in. (145.7 x 120.3 x 8.6 cm)

Figure 3. The seed model of CB. The incorrect entities are in the gray background, and incorrect
relationships are colored red. The missing entities are on a white background

4.2. Amending the Seed Model

Compared with the gold semantic model, some substructures may be missing, and
some wrong relationships may appear in the seed model. For example, as Figure 3
shows, in the seed model of CB, the red-colored relationships, i.e., (E22_Man-Made_0Object1,
P130i_features_are_also_found_on, E57_Materiall), etc., are improper and should not
appear in the semantic model. To improve the quality of the seed model, these incorrect
relationships must be eliminated from seed models. In the meantime, compared to the gold
standard model, the seed model lacks three entities (which are in the white background), i.e.,
E52_Time-Spanl, E52_Time-Span2, E55_Typel and their corresponding incoming links.

In this section, we present a way to modify the seed model to move or remove faulty
relationships and add missing relationships to the model. Here, the meaning of moving
an erroneous relationship is to attach the relationship to a node in the graph. We propose
two approaches to remove or move potentially incorrect relationships. First, we use
machine learning techniques to distinguish some ambiguous relationships based on the
data source. Then, some incorrect substructures of cm can be detected through matching
model fragments in a knowledge graph. After removing or moving incorrect relationships,
we add potentially missing substructures of cm by using a modified frequent subgraph
mining algorithm. As a result, a high-quality semantic model is obtained.

4.2.1. Move Incorrect Relationships

One entity may be linked to multiple other entities by various relationships. For
example, the entity E52_Time-Span can be linked with E12_Production, E8_Acquisition,
E67_Birth, and E69_Death by relationship P4_has_time-span in the gold semantic mod-
els of the museum-crm dataset. We define such an entity as an ambiguous entity and the
attributes it labeled as ambiguous attributes. In the candidate model generated by the
Steiner Tree algorithm, some elements may be wrong because of multiple possible relation-
ships. For example, as Figure 3 shows, the relationships P4_has_time-span from the entity
E12_Production to E52_Time-Span2 and E52_Time-Span3 are incorrect. In fact, these enti-
ties should be linked with E67_Birth and E69_Death by relationship P4_has_time-span
respectively. In this section, we put forward a machine learning method to move such
ambiguous relationships. We treat the problem of distinguishing ambiguous relationships
as a multi-category classification problem. Similarity metrics are used as features of the
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learning matched function to determine whether different ambiguous attributes have the
same relationship and thereby infer the correct links.

Our method of removing incorrect relationships is summarized in the following:
(1) For training data sources, we gather all ambiguous attributes (their corresponding
ambiguous relationships are known), extract several features and train a decision tree
model [27]; (2) For a new data source, we find all the ambiguous attributes and use the
trained decision tree model to determine the correct linking position; and (3) We move the
relationships according to the predicted result.

We used the following candidate features, including attribute name similarity, value
similarity, distribution similarity, and histogram similarity to a decision tree model. Besides
these, we also use an external knowledge base to generate additional features. We briefly
describe these similarities in the following: (1) Attribute Name Similarity: Usually, there is
a title for each column of a structural tabular data source such as a Web table or spreadsheet.
We treat these headings as attribute names and use them to compare the similarities
between attribute names and entity names. The similarity may infer the correct relationship
to which the entity is linked. For example, if an attribute is named birthDate, its labeled
entity should be E52_Time-Span link with entity E67_Birth rather than entity E69_Death.
(2) Value Similarity: Value similarity is the most commonly used similarity measure, which
has been used in various matching systems. Since the same semantic types usually contain
similar values, value similarity plays a significant role in recognizing attributes labeled
by the identical semantic types. In our method, two different value similarity metrics
are applied, i.e., Jaccard similarity [28] and TF-IDF cosine similarity [28] for computing
the value similarity of textual data. (3) Distribution Similarity: For numeric data, value
similarity is always ineffective to distinguish semantic types because they always have the
similar value range. However, their distribution of values may be different because they
have different potential meanings. Therefore, we use statistical hypothesis testing as one of
the similarity measures to analyze the distribution of values in attributes. We also used
the Kolmogorov-Smirnov test (KS test) [29] as one of the similarity metrics. (4) Histogram
Similarity: Histogram similarity calculates value histograms in textual attributes and
compares their histograms. The statistical hypothesis test for the histograms is the Mann—
Whitney test (MW test) [29]. In our method, the MW test is used for computing the
histogram similarity, considering it calculates the distribution distance based on medians.
(5) External Knowledge Base: To improve the accuracy of our approach further, we used
an external knowledge base as a candidate feature. In the cultural heritage community,
the Getty Union List of Artist Names (ULAN) https://www.getty.edu/research/tools/
vocabularies/ulan (14 December 2022) is an authoritative reference dataset containing
over 650,000 names of over 160,000 artists. For the museum datasets, some ambiguous
attributes can be distinguished by retrieving the information from ULAN. For example,
we can validate the information of biography of artists by comparing the information with
an attribute labeled by E52_Time-Span with ULAN to determine if the information with
E52_Time-Span really represents the birth date of artists.

Our approach to distinguishing ambiguous attributes is stated in detail as follows.
Given an ambiguous entity, where the number of possible links is k > 1, we randomly
select k attributes {a,1, 4,2, ..., ar4} from the training attributes as reference attributes. The
reference attributes should contain all possible relationships. For other training attributes
{a1, ap, a3, ... a,}, we compute multidimensional feature vectors f; by comparing against all
reference attributes and searching the external knowledge base. During training, we label
each f; as a number j (ranging from 1 to k), where j means the jth possible relationships.
Given a new ambiguous attribute ay, we compute the feature fy and use the learned tree
model to label fy as a number ranging from 1 to k. Unlike [22], for each attribute, we
compute only one feature vector by comparing it with all the reference attributes. If the
label of fy is m, it means that a is linked by the mth possible relationships. If the predicted
result is not consistent with the relationship in the seed model, we move the relationship
according to the predicted result.
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For the seed model of CB, as Figure 3 shows, the corresponding relationships of am-
biguous attributes Begin Date, and Death Date are (E12_Production, P4_has_time-span,
E52_Time-Span). These are wrong predictions by the Steiner Tree algorithm. Figure 4 shows
the changes after moving the ambiguous relationships. Through our method, the correct
relationships of these attributes can be predicted, and the incorrect relationships are moved
into the correct linking position, i.e., (E67_Birth, P4_has_time-span , E52_Time-Spani)
for Begin Date and (E69_Death, PA_has_time-span, E52_Time-Span?2) for End Date.
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Figure 4. The change of seed model of CB after moving ambiguous relationships.

4.2.2. Remove Incorrect Relationships

There may still be incorrect substructures in the candidate model even though we
move incorrect relationships. We can leverage the knowledge graph as prior knowledge to
identify and remove them. The underlying idea of our method is that if incorrect relation-
ships are included in sd, then sd has no isomorphic matches in the knowledge graph. If we
remove incorrect substructures, the amended model must be a subgraph of the knowledge
graph. Algorithm 1 shows how we remove incorrect relationships using a knowledge
graph. The input is a seed model sd and a knowledge graph G. First, we remove all the
edges in cm that do not appear in the knowledge graph (Lines 4-8). (E22_Man-Made_0Object,
P130i_features_are_also_found_on, E57_Material) . Obviously, with this relationship,
sd cannot be matched to any occurrence in G. This type of incorrect substructure is eas-
ily detected and removed. However, some incorrect substructures may appear in the
knowledge graph but not occur in the gold model of cm. For these parts, we calculate
the maximum common subgraph (MCS) [30] between G and sd to find a subgraph of sd
which is subgraph-isomorphic to G with maximum nodes. The substructures which do not
appear in the mcs are removed (Lines 9-11). At this point, all the incorrect substructures
of sd are removed. If we remove an incorrect relationship, the corresponding attribute is
temporarily unlabeled by any entities. We denote such an attribute as an isolated column
isoCols. After removing incorrect relationships, the algorithm iterates over all the columns
of sd and returns all the isolated columns that are not annotated by entities.

Figure 5 shows the change after running Algorithm 1. For the seed model of CB, the re-
lationship (E22_Man-Made_0Object, P130i_features_are_also_found_on, E57_Material)
does not exist in the knowledge graph. Therefore, this incorrect relationship is removed
during the process in Lines 4-8 of Algorithm 1. Medium is the isolated column after remov-
ing this incorrect relationships because it is not annotated by any semantic types. Since the
annotation of the isolate column Medium is missing, the seed model is an incomplete model
and needs to be complemented with the missing substructures. In the next step, we use a
modified frequent subgraph mining algorithm for the completion of the seed model.
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Figure 5. The change of seed model of CB after removing incorrect relationships.

Algorithm 1: Algorithm for removing incorrect relationships.

1 Algorithm removelncorrectRel(Seed Model sd, Knowledge Graph G)
2 begin

3 isoCols < ¢;

4 foreach e € sd.edges() do

5 if e not appear in G then

6 remove e in sd;

7 end

8 end

9 if sd is not subgraph isomorphic to G then
10 ‘ sd < MCS(G,sd)

1 end

12 foreach col € sd.columns() do

13 if col not annotated by an entity then
14 isoCols < result U col

15 end

16 end

17 return isoCols;

18 end

4.2.3. Add Missing Substructures

In the seed model, some relationships may be missing. To enhance the integrity of the
seed model, we need to add extra substructures. Note that there must exist data types in
the data source that the added substructures can match. For instance, as shown in Figure 1,
if some attributes in the data are date or time matching E67_Birth1 , it may be reasonable
to amend the model and choose entity E62_Time-Span1 to match these attributes.

Each column of the new data source may correspond to several candidate semantic
types, and every semantic type has an ascribed confidence score computed during the
initial semantic labeling step. However, the semantic type with the highest confidence
score may not capture the correct semantics of the source attribute. For example, the correct
semantic type of column Medium of data source CB is E55_Type, while its first learned
semantic type is E57_Material. Accordingly, we consider multiple candidate semantic
types for each column of the source when semantic models are constructed.

Considering multiple semantic types may make our method less efficient in con-
structing a semantic model of a source. Hence, we apply several heuristics to increase the
effectiveness of our method in our algorithm. Algorithm 2 is used to check and reduce
candidate semantic types of an isolated column based on their confidence score and a
knowledge graph. First, we denote 7 as the ratio between the confidence score of the first
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ranked candidate type and the second candidate type (Line 4). However, 77 might not be
preset high enough to avoid the consideration of too many candidate semantic types. We
empirically set three as the threshold value of 77 based on the experimental results in Table 1.
If 7 is larger than three, we only select the first candidate type as the final candidate type
(Lines 5-8). Second, we remove all the candidate types whose confidence scores are lower
than 0.05 of a column (Lines 10-13). Finally, some candidate semantic types with high
confidence scores can be quickly excluded by searching within the knowledge graph using
the subgraph matching technique. For the candidate semantic type ct with a relatively
high confidence score (larger than 0.05), we attempted to search all the paths paths in G
that connect ct into candidate model sd after removing a presumed incorrect edge. If no
such graph connecting a path in paths into sd is subgraph-isomorphic to the knowledge
graph, we remove this candidate type (Lines 14-25). A VF2 algorithm [31] is used for
checking subgraph isomorphism. This process aims to find the entities in sd that do not
co-occur with other substructures in the knowledge graph. If such entities are considered
as candidate semantic types, the frequent subgraph mining algorithm may return none of
the resulting models while costing much time. After running Algorithm 2, some candidate
types are removed, which prunes large portions of the search space.

Algorithm 2: Algorithm of reducing candidate semantic types for an isolated
column.

1 Algorithm reduceSemanticTypes(Seed Model sd, Knowledge Graph G, isolated column isoCol)
2 begin

3 Let cTypes be the top-4 candidate types of isoCol;
4 n < cTypes|0].score/cTypes[1].score;
5 if 7 > 3 then
6 ‘ select the first candidate type;
7 end
8 foreach ct € cTypes do
9 if ct.score < 0.05 then
10 cTypes.remove(ct);
1 continue;
12 end
13 Let paths be all the possible edge paths that connect ct into sd;
14 isIncorrectType = true;
15 foreach path € paths do
16 tmpModel < sd.addPath(path);
17 if isSubgraphlsomorphic(G, tmpModel) then
18 isIncorrectType = false;
19 break;
20 end
21 end
22 if isIncorrectType then
2 | cTypes.remove(ct);
24 end
25 end
26 end

Table 1. Counts of mislabeled attributes in three datasets in a different range of 7.

Datasets n>1 n>2 n>3 n>4 n>5 7>6
dseqm 30 10 4 3 2 1
dscrm 34 7 2 1 0 0

ASweapon 20 9 7 7 6 6

In the seed model of CB, for the isolated column Medium, the confidence scores of
the last two candidate semantic types are lower than 0.05, so we filter them out in can-
didate types. For the incorrect type E57_Material of attribute Medium, there is only one
possible relationship connecting it into sd, i.e., (E22_Man-Made_Object, P45_consists_of,
E57_Material). However, if we try to add this relationship in sd, we find the intermediate



Mathematics 2022, 10, 4778

12 0of 19

model is not subgraph-isomorphic to G. So the candidate semantic type E57_Material
might be incorrect, and we can eliminate it from consideration. After reducing the can-
didate semantic types, there is only one candidate semantic type i.e., E55_Typel for the
column Medium.

Algorithm addMissingSubStructures (Algorithm 3) is proposed to search and add
deleted substructures of imperfect seed semantic model sd. First, we use Algorithm 1 to
remove incorrect substructures and obtain isoCols of sd (Line 4). If the attribute set isoCols
is empty, the algorithm returns sd as the result (Lines 5-7). In this case, none of the incorrect
relationships is detected by Algorithm 1. The seed model might be the correct model.
Then, we iterate over the set isoCols, and for each attribute isoCol, we use Algorithm 2 to
reduce its candidate semantic types (Lines 8-10). After these steps, we enumerate all the
possible combinations of candidate semantic types of isoCols and run the modified frequent
subgraph mining algorithm (Lines 13-21). Unlike the traditional algorithm, we abandon
the parameter frequency threshold 7 for the uncertainty of the frequency threshold of the
correct model. Without the limitation on frequency, the efficiency of frequent subgraph
mining algorithms may decrease. Accordingly, we propose a set of pruning strategies for
speeding up our algorithm. These pruning strategies will be introduced below. The output
of Algorithm 3 is the set result, which stores all frequent subgraphs as complementary
semantic models.

Algorithm 3: Algorithm for repairing the seed model.

1 Algorithm addMissingSubStructures(Seed Model sd, Knowledge Graph G, Constraint Map cm)

2 begin

3 result < ¢;

4 isoCols <= removelncorrectRel (sd, G);

5 if isoCols == ¢ then

6 ‘ return sd;

7 end

8 foreach isoCol € isoCols do

9 ‘ reduceSemanticTypes(sd, G,isoCol);
10 end
11 Let types be the set of the combinations of candidate types of isoCols;
12 Let Edges be the set of edges of in G;
13 foreach newNodes € types do

14 foreach e € Edges do

15 if e is the edge of sd then

16 result <= result U subgraphExtension(G, e, newNodes,sd, cm);
17 Remove e from Edges;

18 end

19 end
20 end
21 return result;
22 end

As the sub-function of Algorithm 3, Algorithm subgraphExtension (Algorithm 4) is
used to search and add missing substructures from a specific imperfect semantic model
S. The inputs of Algorithm 4 are a seed model sd, a knowledge graph G, an incomplete
semantic model S, a constraint map cm, and the candidate semantic types newNodes that
the seed model may link with. The grow-and-store strategy is adopted in the algorithm
subgraphExtension for recursively mining the top-c frequent subgraphs of G. In the
meantime, Algorithm 3 can ensure the coverage between the seed model sd and all of
the candidate semantic types newNodes of source attributes in the mined top-c frequent
substructures. Here, our heuristic is that if the frequency of an amended semantic model
is higher than a certain threshold in the knowledge graph, it indicates that the model
could be correct. Further, the higher the frequency of an amended model in the knowl-
edge graph, the more likely it is to be a reasonable semantic model. The output of the
algorithm subGraphExtension is the top-c semantic models with complemented missing
substructures.
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Algorithm 4: Algorithm of subgraph extension.

1 function subgraphExtension(Knowledge Graph G, Incomplete semantic model S, Semantic Labels
newNodes, Seed Model sd, Constraint Map cm)

2 begin

3 fregs < [0];

4 cm = HashMap < node,value > //cm keys : entity types that appear in the semantic
model to be repaired; cm values : maximum occurrence of the key in the
semantic model to be repaired,;

5 foreach e € Edges and noden € S do

6 if e can be used to extend n and e is a valid edge then

7 Let ext be the extension of S with ¢;

8 if ext covers all nodes in sd and newNodes and sd is a subgraph of ext then

9 result <= result U ext;

10 return result;

1 end

12 check every key et in Constraint Map cm;

13 if count(et, ext) > cmet] then

14 | continue;

15 end

16 foreach ¢ € sd.edges do

17 if e.source € ext.nodes and e.target € ext.nodes and e ¢ ext.edges then

18 ‘ continue;

19 end

20 end

21 if freq(ext, G) > min(freqs) then

2 freqs <= freqs U freq(ext, G);

23 sort(freqs);

24 remove the min element in fregs;

25 if ext has not been generated before then

26 result <= resultU subgraphExtension(G,ext,newNodes,sd,cm);

27 end

28 end

29 end

30 end

31 return result

32 end

The inputs of Algorithm 4 are illustrated as below. Semantic Labels is a candi-
date combination of candidate semantic types of the source attributes that does not
occur in the seed model of a new data source. Constraint Map is a HashMap which
constraints the maximum count of entities for each semantic type that may appear in
a correct model. Generally, Constraint Map is prescribed through domain expertise.
For instance, as Figure 1 shows, in the semantic model of the CB, the Constraint Map
{< E52_Time-Span,3 >, < E35_Title,1 >} limits the count of entities for the semantic
types E62_Time-Span, and E35_Title must be less than three and one, respectively. The
intermediate variable fregs is a sorted integer list used to record the top-¢ frequencies of
all subgraphs throughout the algorithm process.

For each relationship e in knowledge graph G and a semantic type # in the incomplete
model S, first Algorithm 4 validated if e can be linked with the semantic type n and
whether e is a valid edge in the knowledge graph (Line 6). For instance, assume that
entities E22_Man-Made_Object1 and E35_Titlel and a relationship P102_has_title occur
in an initial subgraph. Suppose 7 is semantic type E22_Man-Made_Objectlin S and e is
object property P43_has_dimension. Since G contains the triple (E22_Man-Made_0Object1,
P43_has_dimension, E54_Dimensionl), it implies that P43_has_dimension is effective and
can be used to link with E22_Man-Made-Objectl. Let ext be the extension of S with
e (Line 7). During the run of Algorithm 4, when all the nodes and links in the seed
model sd and candidate semantic types newNodes are covered in ext, the ext is the most
possibly plausible semantic model which correctly captures the semantics of the data
source. Next, ext is merged into the set result, and the algorithm ceases and returns result
(Lines 8-11). The set result is used to store the top-o semantic models as the output of the
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algorithm subGraphExtension. As Algorithm 3 demonstrates, the set newNodes represents
one possible combination of all candidate semantic types of isoCols, newNodes may be
erroneous to annotate semantic types for isoCols. Algorithm 4 may return none, which
indicates that there are some incorrect candidate types in the newNodes.

We apply some pruning strategies to improve the efficiency of the algorithm. In order
to prevent the recurrence of a given entity type et in the model, one of the pruning strategies
we employ is to leverage Constraint Map to limit the searching space. We check each entity
et in Constraint Map cm. If there is an entity type ef that appears in ext exceeding cm (et)
times, the further search for current ext is ceased (Lines 13-15). The Function count () is
used to calculate the number of appearances of ef in the intermediate subgraph ext.

We reduce the search space by leveraging the structure of sd. We iterate over the edge
of sd, and if there is an edge ¢ whose source node and target node exist in ext but e does
not exist in ext, we stop searching ext (Lines 16-20). For example, in the seed model of CB,
entity E22_Man-Made_Object and entity E12_Production are connected by relationship
P108i_was_produced_by. For an intermediate substructure ext containing these entities,
if there is no link between the two entities, ext can not be extended to the model which
contains the relationship P108i_was_produced_by. It is vain to further search substructure
ext. In practice, a large amount of search space can be reduced by using this pruning
strategy. For the seed model of CB, the running time is about 15 s, while without this
optimization, the respective running time is about 5 min.

Next, we use a Minimum Image-based Metric based on a subgraph matching algo-
rithm [32] (Line 21) in the function freq(ext, G) to calculate the frequencies of ext occurring
in G. All the substructure ext in which the frequency is lower than the minimum frequency
of freqs will be discarded. The intuition behind this pruning strategy is that the correct
semantic model may be a subgraph with higher frequency in the knowledge graph. During
the process of search, only the top-o frequent subgraphs are retained as candidate semantic
models in the frequency-based pruning strategy.

In Algorithm 4, during the whole search, top-o frequencies of all subgraphs are stored
in an integer list fregs (line 22) in which the length is o. Here, fregs merges the frequency
of ext (freq(ext, G)) (Line 22) if the frequency of ext is higher than the minimum value of
the current fregs. Then, Algorithm 4 sorts fregs (Line 23) and removes the minimum value
in the sorted fregs(Line 24).

Thereafter, for removing duplicate models, Algorithm 4 checks if exf has been searched
in the previous procedure. We exploit the canonical code method proposed in [14] to detect
the duplicate models (Line 25). The algorithm subgraphExtension is recursively executed
(Line 26) for further search if the substructure ext has not been generated before.

The incomplete model of CB before adding missing substructures is shown in Figure 5
(wrong entity E57_Materiall and its relationship were removed). After reducing the
candidate semantic types, E55_Type1 is the only candidate type for isolated column Medium.
Through the process of our modified subgraph mining algorithm, the missing relations
(E12_Productioinl, P32_used_general_technique, E55_Typel) can be linked into the
incomplete model, and the gold standard model (Figure 1) can be output as a frequent
subgraph. Hence, the seed model of CB is amended into a correct semantic model.

5. Evaluation
5.1. Experimental Setting

To assess our method, we conducted the experiments on three datasets, i.e., museum_edm
(dS¢dm), museum_crm (dscyy), and wepaon_lod (dsweqpon)- The datasets ds.g,, and dscy, both
contain 29 different data sources from different art museums in the USA and have different
data formats (CSV, XML, and JSON). Nevertheless, two different famous data models are
used as museum domain ontology: European Data Model (EDM) http://pro.europeana.
eu/page/edm-documentation (accessed on 14 December 2022), and CIDOC Conceptual
Reference Model (CIDOC-CRM) www.cidoc-crm.org (accessed on 14 December 2022);
dSweapon includes 15 data sources about weapon ads. The ontology of dsueqpon is an exten-
sion of the schema.org ontology. The background knowledge graphs were constructed by
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capturing these data sources and mapping them to the corresponding domain ontology.
For each specified data source of a dataset, we built a knowledge graph that integrated the
data from all of the data sources excluding this one. For example, for the s; of ds¢,;, the
knowledge graph integrates all the data sources, i.e., sy, s3, ..., 59, except s1. Table 2 lists
the details of these three datasets. For facilitating the construction of knowledge graphs,
we reconstructed the semantic models of the ground-truth datasets and transformed all the
data sources into CSV format. The datasets, experimental results, and our code are available
on Github https://github.com/Zaiwen/ModelCorrection (accessed on 14 December 2022).
Our objective is to assess the effectiveness of our method if only a few known semantic
models of similar sources are available. So we use only two or three data sources of the
datasets for training and the others for testing. We repeat the process three times and
average the results. Our experiments were run on a single machine with an Intel i7 10500
CPU 3.40GHz and 16 GB RAM.

Table 2. The evaluation of datasets.

dsedm dscrm dsweapon

#data sources 29 29 15

#classes in domain ontologies 120 83 718
#properties in domain ontologies 351 270 295
#nodes in the gold-standard models 409 750 230
#data nodes in the gold-standard models 123 362 81

#class nodes in the gold-standard models 286 388 149
#links in the gold-standard models 380 724 215
#average entities in knowledge graphs 55,432 57,558 5403
#average relationships in knowledge graphs 73,722 82,654 6529

5.2. Empirical Preliminary Experiments

In learning the candidate semantic types of an attribute of a data source s;, we use
the known semantic models and their corresponding data sources as training data. For
example, if we are learning the candidate types of data source s;, the training data are all the
data sources {sg|k = 1, ..., j and k # i}. The semantic labeler we use is SemanticTyper [21]. In
this work, we only consider the top four semantic types. Table 3 shows the mean reciprocal
rank (MRR) [33] scores of semantic labeling in three datasets.

Table 3. MRR of semantic labeling.

Datasets ASedm dscem dsweapon

MRR scores 0.907 0.937 0.879

For an attribute, if the confidence score of its first ranked candidate semantic type is
much higher than the second candidate type, the first ranked candidate type is assumed
to be correct. To reduce the number of possible candidate types, we consider only the
first ranked candidate semantic type for such an attribute. Let # be the ratio between the
confidence score of the first candidate type and the second candidate type. Table 1 shows
the counts of the mislabeled attributes in different ranges of 1. The counts of mislabeled
attributes decrease with increasing 1. However, there are a few mislabeled attributes whose
1 is very large. When 7 is larger than three, the count of mislabeled attributes in three
datasets tends to be relatively stable. Therefore, in Algorithm 2, we only select the first
candidate type for the attribute whose 7 is larger than three for the balance between the
accuracy of candidate types and the efficiency of our algorithm.

5.3. Effectiveness of Our Approach

To evaluate our approach, standard mean reciprocal rank (MRR) [33] was used. We
compared the obtained models with the gold semantic model to assess the correctness of
them based on precision and recall as in Taheriyan et al. [6]:
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[rel(sm) Nrel (f*(sm’))]

precision = el (7~ (sm)| ¢y
|rel(sm) Nrel(f*(sm'))|
recall = el (sm)| 2
f* = argmax |rel(sm) Nrel(f(sm’))| (3)
f

where rel(sm) is the set of the triples (1, ¢,v) of a semantic model sm, and f is a mapping
function, which maps nodes in sm’ to nodes in sm.

Table 4 shows the results of our experiments. Two state-of-the-art semantic modeling
systems were compared: Karma [6] and PGM-SM [7]. Among them, our method improves
the two baseline methods by an average of 10.68%, 13.85%, and 9.08% on ds,,,, d5¢rm, and
dSweapon, respectively. Our approach uses knowledge graphs for amending the incorrect
substructures in learned semantic models and realizes noticeable modification, indicating
that knowledge graphs are useful prior knowledge to improve the quality of learned
semantic models.

Table 4. Performances of our method on ds,g,,,, dscrm, and dsweapon-

Precision Recall F1

Datasets Known Models
Karma PGM-SM Ours Karma PGM-SM Ours Karma PGM-SM Ours
s 2 0.864 0.791 0.920 0.846 0.754 0.913 0.855 0.770 0.917
edim 3 0.858 0.778 0.920 0.840 0.757 0.912 0.849 0.765 0.916
ds 2 0.738 0.824 0.897 0.703 0.721 0.878 0.721 0.773 0.888
erm 3 0.770 0.828 0.908 0.731 0.725 0.892 0.751 0.777 0.900
ds 2 0.795 0.809 0.870 0.734 0.758 0.834 0.765 0.784 0.852
tweapon 3 0.837 0.805 0.924 0.783 0.810 0.902 0.810 0.808 0.913

While our approach performs well in most cases, the accuracy of the semantic model
generated by our method is inferior to the semantic model generated by KARMA in some
specific cases. For example, the prediction accuracy and recall of the semantic model
generated by KARMA of sg are 0.6 and 0.75, respectively, while s, and s¢ are used as the
training set of ds,;,,. However, after amending using our approach, the precision and recall
of the final model are 0.4 and 0.5, respectively. Figure 6 shows the correct model, seed
model, and final model of sg in ds,;,,. Compared to the seed model, our approach moves
the correct relationship (Person, biographicalInformation, biography) into the error
relationship (CulturalHeritageObjectl, description, biography). The incorrect entity
CulturalHeritageObjectl appears in the seed model because of the wrong predicted se-
mantic type of attribute birthDate. The relationship (Personi, biographicalInformation,
biography) does not co-occur with the entity CulturalHeritageObject1 in the knowledge
graph. During running Algorithm 1, the relationship (Personi, biographicalInformation,
biography) is removed at line 10. This phenomenon indicates that our approach is sensi-
tive to the incorrect semantic labeling result. Since our approach attempts to improve the
seed model generated by the Steiner Tree algorithm, the performance of our approach is
highly sensitive to the quality of the seed model. If the seed model differs greatly from the
corresponding correct model, our approach may be unable to recover the correct model.
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Figure 6. The predict result of sg in ds,4,,, using s and s¢ as training sets.

5.4. Efficiency of Our Approach

We measured the running time of our method. The results are listed in Table 5. Phase
I refers to the process of moving and removing the incorrect substructures and phase II is
the process of adding missing substructures. The running time of our method is positively
correlated with the size of the knowledge graph. Since the size of knowledge graphs in
dSweapon is much smaller than that of ds,4,,, and ds¢,, (Table 2), we can see that the running
time is much less. In our approach, the running time mainly depends on graph algorithms
whose running time is affected by the size of the knowledge graph and the size of the
semantic models. While the size of the knowledge graphs created in different scenarios in
our experiment is close, the size of semantic models in ds,;,, is smaller than that in dsc,p,.
Therefore, the running time of phase II of ds,,, is less.

Table 5. Average running time of our method on ds, g, dScrm and dswpeapon-

Datasets Phase I Phase II
dSedm 45.395 s 13.581 s
dscrm 46.782 s 33.543 s

dSweapon 4232s 2.730s

6. Conclusions

In this article, we propose a novel approach for solving the Re120nt problem by
leveraging a knowledge graph as background knowledge. First, we require a partially
correct semantic model called seed model by running the Steiner tree algorithm [26]. We
move or remove imperfect relationships in the seed model by using machine learning and
a graph matching technique. After eliminating the incorrect substructures, a modified
frequent subgraph mining algorithm is applied to search the top-c frequent substructures
covering the seed model and the source attributes candidate semantic types from the
domain knowledge graph. Our experimental results indicate that we can generate high-
quality semantic models even when the known semantic models are lacking and that we
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can outperform two state-of-the-art semantic modeling systems in terms of the correctness
of the resulting models. In the future, we would like to further develop our method in the
following areas. Firstly, our decision tree model for distinguishing ambiguous relationships
can be enhanced by a feature selection algorithm [34] to further improve the accuracy.
Secondly, we will explore an automatic method for extracting a Constraint Map from
historical data. Finally, we will try to extend our approach to those data sources containing
a set of relations.
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