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Abstract: Many analog neural network approaches for sparse recovery were based on using
`1-norm as the surrogate of `0-norm. This paper proposes an analog neural network model, namely
the Lagrange programming neural network with `p objective and quadratic constraint (LPNN-LPQC),
with an `0-norm sparsity measurement for solving the constrained basis pursuit denoise (CBPDN)
problem. As the `0-norm is non-differentiable, we first use a differentiable `p-norm-like function to
approximate the `0-norm. However, this `p-norm-like function does not have an explicit expression
and, thus, we use the locally competitive algorithm (LCA) concept to handle the nonexistence of the
explicit expression. With the LCA approach, the dynamics are defined by the internal state vector.
In the proposed model, the thresholding elements are not conventional analog elements in analog
optimization. This paper also proposes a circuit realization for the thresholding elements. In the
theoretical side, we prove that the equilibrium points of our proposed method satisfy Karush Kuhn
Tucker (KKT) conditions of the approximated CBPDN problem, and that the equilibrium points of
our proposed method are asymptotically stable. We perform a large scale simulation on various
algorithms and analog models. Simulation results show that the proposed algorithm is better than or
comparable to several state-of-art numerical algorithms, and that it is better than state-of-art analog
neural models.

Keywords: analog neural networks; LPNN; optimization; real-time solution

MSC: 94A12; 68T01; 68T07

1. Introduction
1.1. Background

The last few decades have seen increasingly rapid advances in analog neural networks
for solving optimization problems. In an analog neural network, the state transitions of
neurons are governed by some differential equations. After the dynamics of the network
converge to an equilibrium point, the solution of the problem is obtained from the state
of the neurons. From many neural pioneers [1–6], this approach is very attractive when
real-time solutions are required.

The research of the analog neural network approach could be dated back to the
1980s [2]. One of the earliest analog networks is the Hopfield model [2]. Early applications
of the Hopfield model are analog-to-digital conversion and the traveling salesman problem.
Later, many analog models [3–7] for various optimization problems were proposed. Over
the last decade, many new applications of the analog neural modes were investigated,
including image processing, sparse approximation [5,8], mobile target localization [9,10],
and feature selection [6]. Recently, several analog techniques [5,8,11–13] were designed for
solving sparse recovery problems.
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In sparse recovery [8,14–18], the aim is to recover an unknown sparse vector x ∈ Rn

from an observation vector b ∈ Rm. For many real life signals, their internal representations
are with the sparse property [19]. For example, audio signals are approximately sparse
in the time-frequency domain [20]. Sparse recovery techniques can be in many signal
processing applications. For instance, we use can sparse recovery techniques for image
restoration [18,21,22]. Additionally, they can be used to remove the stripes in hyperspectral
images [23]. In the inverse synthetic aperture radar (ISAR) application [24,25], a high-
quality image of an object can be obtained from the Fourier transformed signal based
on sparse recovery techniques. Another application of sparsity recovery is to process
electrocardiogram (ECG) signal for classification of various heart diseases [26].

One of sparse recovery problems is the following `0-norm optimization problem:

min
x
‖x‖0, subject to b = Φx, (1)

where Φ ∈ Rm×n is the measurement matrix. When there are some measurement noise in
b, the problem becomes the constrained basis pursuit denoise (CBPDN) problem:

min
x
‖x‖0, subject to ||b−Φx||22 ≤ mθ2, (2)

where θ > 0 is the standard deviation of observation noise. Since the `0-norm is difficult
to handle, we usually use the `1-norm to replace the `0-norm. The problems, stated in (1)
and (2), become

min
x
‖x‖1, subject to b = Φx, and min

x
‖x‖1, subject to ||b−Φx||22 ≤ mθ2, (3)

respectively. In the last two decades, many `1-norm based numerical algorithms were pro-
posed, such as BPDN-interior [27] and Homotopy [28]. In addition, elegant implementation
packages [29,30] are available, such as SPGL1 [30].

Although the aforementioned `1-norm relaxation approaches were well studied, they
have some drawbacks. For instance, in the BPDN-interior algorithm, the solution vector
contain many small non-zero elements [31]. As mentioned in [32,33], `p-norm (0 < p < 1)
is a better choice for replacing `0-norm. However, `p-norm is a non-convex function, which
introduces complex behaviours in the problem-solving process. Therefore, we can use some
approximation functions to replace the `p-norm term, such as minimax concave penalty
(MCP) function [34,35]. In addition, there are other methods, which directly handle the
`0-norm. They are normalized iterative hard threshold (NIHT) method [36], approximate
message passing (AMP) [37], `0-norm zero attraction projection (l0-ZAP) [38], `0-norm
alternating direction method of multipliers (`0-ADMM) [39,40], and expectation-conditional
maximization either (ECME) [41]. All the mentioned `p-norm or `0-norm techniques in this
paragraph are digital numerical algorithms.

1.2. Motivation

Apart from using the numerical methods to solve the sparse recovery problem, we can
consider using the analog neural approach for solving sparse recovery problems [5,8,11–13,21].
However, those analog models in [5,8,11–13,21] were developed based on the `1-norm
relaxation techniques. Since the `1-norm is a surrogate function of the `0-norm only,
directly using the `0-norm or a `0-like norm usually leads to a better performance. There
is indeed a `0-norm-based analog model, namely local competition algorithm (LCA) [31].
However, it was designed for unconstrained sparse recovery problems only.

As directly working with the `p-norm or `0-norm usually results in better performance,
it is interesting to develop some `p-norm or `0-norm analog models for sparse recovery
problems with constraints. Another shortcoming of existing `1-norm relaxation neural
models [8,11–13] is that the corresponding circuit realizations, especially the circuit for
projection and thresholding operations, were not discussed.
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1.3. Contribution and Organization

This paper focuses on using the analog technique to solve the CBPDN problem with
the `0-norm objective, stated in (2). Strictly speaking, the `0-norm is not a norm and is not
differentiable. These properties create difficulties for constructing the analog model for the
CBPDN problem.

The paper proposes a `p-norm-like function for representing the sparsity measure-
ment. The proposed `p-norm-like function is differentiable. We then apply the Lagrange
programming neural network (LPNN) framework [8,42] for solving the CBPDN problem.
The proposed `p-norm-like function does not have a simple expression, but its derivative
has. Hence, we borrow the internal state concept from the LCA [31] to construct a LPNN
model for the CBPDN problem. We call our model “LPNN with `p objective and quadratic
constraint (LPNN-LPQC)”.

In developing an analog neural model, one of difficulties is to analyze the behaviour of
the analog neural network dynamics, especially, for non-convex objective function without
an explicit expression. The paper discusses the stability of the proposed LPNN-LPQC
model. We theoretically prove that the equilibrium points of our proposed LPNN-LPQC
satisfy Karush Kuhn Tucker (KKT) conditions of the approximated CBPDN problem.
We use the term “approximated” because we have applied an approximation for the `0-
norm. In addition, we prove that the equilibrium points of our proposed method are
asymptotically stable.

Unlike some existing analog neural results which do not discuss the circuit real-
ization [8,11–13], this paper also discusses the circuit realization of the proposed model.
In particular, the detailed circuit design for the thresholding element is given. We then
use the MATLAB Simulink to verify our design. In the verification, we find that the MAT-
LAB Simulink results are nearly the same as the corresponding results obtained from the
discretized dynamic equations.

This paper also presents a large scale simulation. The simulation result shows that the
proposed LPNN-LPQC is better than or comparable to several state-of-art digital numerical
algorithms, and that is better than state-of-art analog neural networks.

The rest of this paper is organized as follows. Backgrounds on the LPNN and LCA
models are described in Section 2. In Section 3, the proposed LPNN-LPQC is developed.
Section 4 discusses the circuit realization of the thresholding element. Section 5 discusses
the LPNN-LPQC’s stability. Simulation results and comparisons with state-of-art numerical
algorithms are provided in Section 6. Finally, conclusions are drawn in Section 7.

2. LPNN Framework and LCA
2.1. LPNN

The LPNN technique [42] can be used in many applications, such as locating a target
in a radar system [9] and `1-norm-based sparse recovery [8], and ellipse fitting [43]. It was
developed for solving a general non-linear constrained optimization problem:

min
x

φ(x), subject to h(x) = 0 , (4)

where φ : Rn → R is the objective, and h : Rn → Rm (m < n) represents m equality
constraints. In the LPNN approach, we first set up a Lagrangian function, given by

Leq = φ(x) + λ>h(x) , (5)

where λ = [λ1, · · · , λm]> is the Lagrange multiplier vector. An LPNN has two classes of
neurons: variable neurons for holding x and Lagrange neurons for holding λ. Its neural
dynamics are

µ
dx
dt

= −
∂Leq

∂x
, and µ

dλ

dt
=

∂Leq

∂λ
, (6)
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where µ is the characteristic time constant. Without loss of generality, we consider that µ is
equal to 1. With (6), when some mild conditions [42] are held, the network settles down
at a stable state. The main restriction of using the LPNN framework is that φ(x) and h(x)
should be differentiable.

2.2. LCA

The LCA [31,44] aims at solving the following unconstrained optimization problem:

min
x
L(x) =

1
2
||b−Φx||22 + κ

n

∑
i=1

Sα,γ,κ(xi), (7)

where κ ∑n
i=1 Sα,γ,κ(xi) is a penalty term to improve the sparsity of the resultant x. The func-

tion κSα,γ,κ(x) does not have an exact expression. Instead, it is defined by introducing an
internal state vector u. To define κSα,γ,κ(x), a thresholding function on u is first introduced

xi = Tα,γ,κ(ui) = sign(ui)
|ui| − ακ

1 + exp (−γ(|ui| − κ))
, (8)

where κ > 0 is the threshold and is related to the magnitude of the non-zero elements,
γ ∈ (0,+∞) controls the threshold transition rate or slope around threshold, and α ∈ [0, 1]
indicates adjustment fraction after the internal neuron across threshold. Figure 1a illustrates
the shape of Tα,γ,κ(ui) under various settings. With (α, γ, κ) = (1, ∞, κ), the threshold
function Tα,γ,κ(·) is the well-known soft threshold function. Given a threshold function,
the penalty function Sα,γ,κ(xi) is then defined by

κ∂Sα,γ,κ(xi) = ui − xi = ui − Tα,γ,κ(ui), (9)

Sα,γ,κ(0) = 0, (10)

where ∂Sα,γ,κ(xi) is the gradient or sub-gradient of Sα,γ,κ(xi).

-2 -1 0 1 2
u

-2

-1

0

1

2

x

Threshold Function

( , , )=(1, ,1)

( , , )=(0,10,1)

( , , )=(0, ,1)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2
Sparsity Measure Function

( , , )=(1, 1)
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Figure 1. Threshold function and sparsity measure function. (a) The shape of Tα,γ,κ(ui) under various
settings. (b) Sparsity measure function. For α = 0, γ→ ∞ and κ = 1, the value of x cannot be in the
range of (0, 1) based on the property of the ideal thresholding function T0,∞,1(u).

In the vector form, (9) is written as

κ∂
( n

∑
i=1

Sα, γ, κ(xi)
)
= u− x = u− Tα,γ,κ(u), (11)

where Tα,γ,κ(u) = [Tα,γ,κ(u1), · · · , Tα,γ,κ(un)]>.
From (9), Sα,γ,κ(xi) is defined by the derivative. Hence, in general, there is no ex-

plicit expression for Sα,γ,κ(xi). To visualize them, we should use numerical integration.
Figure 1b shows the sparsity measure function Sα,γ,κ(xi) under various parameter settings.
As shown in the figure, in some cases, such as a large γ value, the sparsity measure function
S0,γ,κ(x) is closed to `p-norm (0 < p < 1). Hence, S0,γ,κ(x) is called the `p-norm-like
sparsity function.
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With the internal state concept and (9), LCA defines the dynamics on u (rather than
on x) as

du
dt

= −
∂Leq

∂x
= −κ∂

( n

∑
i=1

Sα, γ, κ(xi)
)
+ Φ>(b−Φx) = −u + x + Φ>(b−Φx). (12)

3. LPNN-LPQC Model

For the proposed model, α = 0, κ = 1
2 , and γ is a large positive number. The meaning

of κ = 1
2 is that the magnitude of the non-zero elements in the resultant x should be greater

than 1
2 .
For simplicity, we use notation S(x) to replace S0,γ, 1

2
(x). We consider the following

LPQC problem:

min
x

1
2

n

∑
i=1

S(xi), subject to ||b−Φx||22 ≤ mθ2, (13)

We first discuss some properties of S(x). Afterwards, we derive the LPNN-LPQC
model and perform the stability analysis on the proposed model.

3.1. `p-Norm-like Sparsity Measure Function

Recall that from Figure 1b, for large γ, S(x) is similar to the `p-norm. When α = 0 and
κ = 1

2 , the threshold function becomes

x = T(u) = sign(u)
|u|

1 + exp (−γ(|u| − 1
2 ))

. (14)

Sparsity measurement function S(x) is defined by its derivative:

1
2

∂S(x) = u− x = u− T(u), (15)

S(0) = 0. (16)

Before discussing the properties of 1
2 S(x) and T(x), we would like to make some

remarks. First, the explicit expression of 1
2 S(x) and T−1(·) are not available, but the value

of 1
2 ∂S(x) is easily obtained from u based on (14). Second, as shown in the rest of this

paper, in the implementation of the proposed model, we need to implement T(u) rather
than 1

2 S(x).
We first list a number of properties of T(u) and 1

2 S(x). From (14) and basic mathemat-
ics, we have Property 1.
Property 1.

P1.a: T(u) is a continuous odd function.

P1.b: T(u) is strictly monotonically increasing.

P1.c: Inverse of T(u) exists.

P1.d: T(u) is differentiable at everywhere for all real u.

Since T(u) is an odd function and monotonically increasing, from basic mathematics,
S(x) has the following properties.

Property 2.

P2.a: 1
2 S(x) is an even function.

P2.b: 1
2 S(|x|) is monotonically increasing with respect to |x|.

Additionally, T(u) has the following properties.
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Property 3. Define f (u) = 1
1+exp (−γ(|u|− 1

2 ))
. Thus, we have T(u) = u f (u). For small positive

ε, we have the following properties:

P3.a: If |u| ≥ 1
2 + 1

γ log 1
ε , then 1

1+ε ≤ f (u) < 1.

P3.b: If |u| ≤ 1
2 −

1
γ log 1

ε , then 0 < f (u) ≤ ε
1+ε .

P3.c: If |u| ≥ 1
2 + 1

γ log γ
ε , then 1 < dT(u)

du ≤ 1 + 3
2 ε;

P3.d: If 0 ≤ |u| ≤ 1
2 −

1
γ log γ

ε , then 0 < dT(u)
du ≤ 3

2 ε.

Proof. The proof is exhibited in Appendix A.

Remark 1. P3.a and P3.b mean that in some regions of u, T(u) is approximately equal to either u
or 0. On the contrary, the regions of | 12 −

1
γ log 1

ε | < |u| < |
1
2 + 1

γ log 1
ε | are uncertain regions.

However, the uncertain regions can be arbitrarily small by choosing a sufficient large γ.

With Properties 1–3, we can prove that 1
2 S(x) is differentiable at everywhere.

Property 4. 1
2 S(x) is a continuously differentiable function.

Proof. The proof is exhibited in Appendix B.

Since 1
2 S(x) is differentiable, in the rest of this paper, we replace “∂” with “∇” to

indicate the partial derivative of 1
2 ∑n

i=1 S(xi), i.e., 1
2∇(∑

n
i=1 S(xi)) = u− x. In addition, we

discuss two features of 1
2 S(·), which make 1

2 S(·) to be a good sparsity measure function.

Property 5. For a given ε and sufficient large γ,

• Boundness: for |u| ≥ 1
2 + 1

γ log 1
ε , 1

2 S(x) ≈ 1/8.
• Sparsity: for |u| ≤ 1

2 −
1
γ log 1

ε , 1
2 S(x) ≈ 0.

Proof. The proof is exhibited in Appendix C.

Note that when γ tends to +∞, S(x) becomes the `0-norm and T(u) is the hard
threshold function.

3.2. Properties of LPQC Problem

In order to analyze the properties of the LPQC problem, stated in (13), we review the
KKT necessary conditions for general constrained optimization problems.

Lemma 1. Consider the following non-linear optimization problem:

min
x

φ(x), subject to h(x) ≤ 0, (17)

where φ : Rn → R is the objective, h : Rn → R defines the inequality constraint, φ and h are
continuously differentiable. If x∗ is a local optimum, then there exists a constant λ∗, called Lagrange
multiplier, such that

Stationarity: ∇φ(x∗) + λ∗∇h(x∗) = 0,

Primal feasibility: h(x∗) ≤ 0,

Dual feasibility: λ∗ ≥ 0,

Complementary slackness: λ∗h(x∗) = 0.

With the arm with Lemma 1 and some reasonable assumptions, we could simplify the
KKT conditions of the LPQC, stated in (13). The result is summarized in Theorem 1.



Mathematics 2022, 10, 4801 7 of 22

Theorem 1. Given that ||b||22 > mθ2, and that x∗ is a local optimum of the optimization problem
(13), the KKT conditions become

u∗ − x∗ − λ∗Φ>(b−Φx∗) = 0, (18a)

||b−Φx∗||22 −mθ2 = 0, (18b)

λ∗ > 0. (18c)

Note that ∇(∑n
i=1 S(x∗i )) = u∗ − x∗.

Proof. From Lemma 1, the KKT conditions of (13) are

u∗ − x∗ − λ∗Φ>(b−Φx∗) = 0, (19a)

||b−Φx∗||22 −mθ2 ≤ 0, (19b)

λ∗ ≥ 0, (19c)

λ∗(||b−Φx∗||22 −mθ2) = 0. (19d)

According to (19c), λ∗ is either greater than or equal to 0. The proof of λ∗ > 0 is by
contradiction. Assume that λ∗ = 0. From (19a), we have ∇(∑n

i=1 S(x∗i )) = 0. Furthermore,
from 1

2∇(∑
n
i=1 S(x∗i )) = u∗ − x∗ and (14), it is easy to prove that u∗ = x∗, and that

u∗ = x∗ = 0. On the other hand, from (19b), when u∗ = x∗ = 0, we have ||b||22 −mθ2 ≤ 0,
which contradicts our earlier assumption ||b||22 > mθ2. Hence, λ∗ must be greater than 0.
In other words, the KKT conditions of (13) become (18). The proof is completed.

3.3. Dynamics of LPNN-LPQC

In the analog neural approach, we need to design the neural dynamics such that the
equilibrium points of the dynamics fulfill the KKT conditions of the problem.

From the LPNN framework, we set up a Lagrangian function:

LLPQC =
1
2
(

n

∑
i=1

S(x∗i )) + α2(||b−Φx||22 −mθ2), (20)

where α2 := λ, which is used to simplify the proof of the Lagrange multiplier λ being
greater than zero. Based on the concepts of LPNN and LCA, we propose the dynamics of
the LPNN-LPQC as

du
dt

= −
∂LLPQC

∂x
= −1

2
∇(

n

∑
i=1

S(xi)) + 2α2Φ>(b−Φx)

= −u + x + 2α2Φ>(b−Φx), (21a)
dα

dt
=

∂LLPQC

∂α
= 2α(‖b−Φx‖2

2 −mθ2). (21b)

4. Circuit Realization

In the concept of analog neural models for optimization process, one important issue
is whether the operations in the dynamic equation can be implemented with analog circuits
or not. This section addresses this issue.

4.1. Thresholding Element

From the dynamic equations, stated in (21), there are many conventional analog oper-
ations, such as adders [45], integrators [45], multipliers [46,47] and square circuits [48,49].
The circuit realization of those common operations are well discussed in [45–49].

There is an unconventional element in the dynamic equations. It is the thresholding
function:

x = T(u) = sign(u)
|u|

1 + exp (−γ(|u| − 1
2 ))

.



Mathematics 2022, 10, 4801 8 of 22

Figure 2a shows a generalized realization of the thresholding element for large γ.
In this generalized realization, the thresholding level is Vre f , where Vre f is a positive
number. The detailed function is given by

x = T(u) = sign(u)
|u|

1 + exp (−γ(|u| −Vre f ))
.

The two MOSFETs in Figure 2a control the thresholding mode.
If the magnitude |u| of the input is greater than Vre f , then one of the two MOS-

FETs is on and the circuit in Figure 2a becomes an equivalent one shown in Figure 2b.
Clearly, for this equivalent circuit, the output is equal to input.
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Figure 2. (a) Circuit for the thresholding function T(x). (b) Equivalent circuit of the thresholding func-
tion T(x) when the magnitude of input is greater than Vre f . (c) Equivalent circuit of the thresholding
function T(x) when the magnitude of input is less than or equal to Vre f .

On the other hand, in Figure 2a, if the magnitude |u| of the input is less than or equal
to Vre f , then the two MOSFETs are off and we obtain another equivalent circuit shown
in Figure 2c. In this case, the inputs of the OP-AMP1 are clamped at u/2. Since the two
current values, Iu and Il , of the upper and lower paths are equal, the output uo of the
OP-AMP1 is zero.

In Figure 3, we show the transfer function of our threshold function for Vre f = 1.
The transfer function is obtained from a circuit simulator. In the simulator, the open loop
gain of OP-AMP1 is set to 108 and the open loop gain of OP-AMP2-to-OP-AMP4 is set
to 105. For the two MOSFETs, they are n-type with the following parameters: channel
width = 100 µm, channel length = 200 nm, transconductance = 118 µ A/V2, zero-bias
threshold voltage = 430 mV and channel-length modulation = 60 mV−1. From the figure,
the transfer function quite matches our theoretical model with a large value of γ.

4.2. Circuit Structure

Figure 4 shows the analog realization of (21) in the block diagram level. In the realiza-
tion, there are n blocks to compute dui

dt ’s. Inside each block, there are adders, multipliers,
and square circuits. Additionally, there is a block to compute dα

dt . The time derivatives
dui
dt ’s and dα

dt are then fed to the integrators to obtain internal variables ui(t) and α. In order
to obtain the decision variables xi(t)’s, the internal variables are fed to n thresholding
elements (Figure 2), where Vre f = 1/2.
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Figure 3. Thresholding function T(x) obtained from the circuit simulation of Figure 2 with Vre f = 1.

Figure 4. Analog realization of (21) in the block diagram level.

4.3. Circuit Simulation

In this subsection, we use a small scale problem to verify our approach based on the
Matlab Simulink platform. The problem details are:

• n = 8 and m = 6.
• Measurement matrix:

Φ =
1√
8



1 −1 −1 −1 1 −1 1 1
1 1 −1 1 1 1 1 −1
−1 1 −1 −1 −1 1 1 1
−1 1 1 1 1 −1 1 1

1 1 1 −1 1 1 −1 1
−1 −1 −1 1 1 1 −1 1

.

• Real sparse vector x = [−2, 0, 0, 0, 0, 0, 2, 0]T and noisy observation vector
b=[−0.0001, 0.0038, 1.4149, 1.4145,−1.4140,−0.0035]T.

• Noise tolerant parameter θ = 0.001.

We build the Simulink file for our model, shown in Figure 4. We implement the
thresholding function based on Figure 2. Other blocks are based on Simulink’s functional
blocks. To verify our Simulink result, we also consider the discrete time simulation on (21).
For digitization of (21), the discrete time simulation equations are



Mathematics 2022, 10, 4801 10 of 22

u(t + ∆t) = u(t) + ∆t
du
dt

(22a)

α(t + ∆t) = α(t) + ∆t
dα

dt
. (22b)

where ∆t = 0.001. Figure 5 shows the dynamics from the Simulink results and discrete
time simulation. From the figure, the dynamics from the two approaches are nearly the
same. The final outputs x are

Simulink: x = [−1.9970, 0, 0, 0, 0, 0, 2.0037, 0]> (23a)

Discrete time: x = [−1.9965, 0, 0, 0, 0, 0, 2.0032, 0]>. (23b)

Clearly, from Figures 5 and (23), both approaches produce the similar results.
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Figure 5. Dynamics obtained from Simulink and discrete time simulation.

5. Properties of the Dynamics

The first issue that we need to address is that equilibrium points of the LPNN-
LPQC model should fulfill the KKT conditions of the LPQC problem, stated in (13).
Otherwise, the LPNN-LPQC model cannot find out local/global minimums of the LPQC
problem. Note that since the LPQC problem or the original `0-norm CBPDN problem,
stated in (2), are non-convex, few algorithms can ensure that their solutions are the
global minimum.

The relationship between the equilibrium points of the LPNN-LPQC model and the
KKT conditions are summarized in the following theorem.

Theorem 2. Given that {u∗, α∗} with α∗ 6= 0 is an equilibrium point of the LPNN-LPQC model,
this point corresponds to the KKT conditions of the LPQC problem. Note that x∗ = T(u∗).

Proof. From (21), when {u∗, α∗} is an equilibrium point, we

−u∗ + x∗ + 2α∗2
ΦT(b−Φx∗) = 0, (24a)

2α∗(‖b−Φx∗‖2
2 −mθ2) = 0. (24b)

Clearly, (24a) is the same as (19a) with α∗2 = λ∗. Additionally, when α∗ 6= 0, from (24b)
becomes ‖b−Φx∗‖2

2 −mθ2 = 0 which is the same (19b). The proof is completed.

Theorem 2 tells us that equilibrium points of the LPNN-LPQC model corresponds to
the KKT condition of the LPQC problem. Another concern is the stability of the equilibrium
points of the LPNN-LPQC model. Theorem 3 presents the stability of the equilibrium
points of the LPNN-LPQC model.

Theorem 3. Given a positive ε and for a sufficient large positive γ, if (u∗, α∗) with α 6= 0
is an equilibrium point of the LPNN-LPQC model and for all i either |u∗i | >

1
2 + 1

γ log γ
ε or

|u∗i | <
1
2 −

1
γ log γ

ε , then the equilibrium point is an asymptotically stable point.
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Proof. The condition of either |ui| > 1
2 + 1

γ log γ
ε or |ui| < 1

2 −
1
γ log γ

ε is equivalent to for

all i, |ui| /∈ [ 1
2 − ζ, 1

2 + ζ], where ζ = 1
γ log γ

ε . With the condition, we define two index sets,
Γu and Γc

u, given by

active set Γu: If |ui| > 1 + ζ, then i ∈ Γu.

inactive set Γc
u: If |ui| < 1− ζ, then i ∈ Γc

u.

Obviously, for a given ε and a sufficient large γ, ζ tends to zero and the value of ζ can
be arbitrary small. Thus, the inactive neurons have nearly no effect on the dynamics, i.e.,
T(ui) tends to 0 for sufficient large γ (see Property 3).

For a given a, we define aΓu as the vector composed of the elements of a indexed by
Γu and aΓc

u as the vector composed of the elements of a indexed by Γc
u. Similarly, given a

matrix Φ, we define ΦΓu as the matrix composed of the columns of Φ indexed by Γu and
ΦΓc

u as the matrix composed of the columns of Φ indexed by Γc
u.

Now, we consider the dynamics near u∗ and α∗. We have two index sets Γu∗ and Γc
u∗

As mentioned in the above, for inactive states xΓc
u∗
→ 0 for sufficient large γ. The dynamics

given in (21) can be rewritten as:

duΓu∗

dt
=−uΓu∗+xΓu∗+2α2Φ>Γu∗

(b−ΦΓu∗xΓu∗ ), (25a)

dα

dt
= 2α(‖b−ΦΓu∗ xΓu∗ ‖

2
2 −mθ2), (25b)

duΓc
u∗

dt
= −uΓc

u∗
+ 2α2Φ>Γc

u∗

(
b−ΦΓu∗ xΓu∗

)
. (25c)

Furthermore, the linearization of (25) around the equilibrium point (u∗, α∗) is
duΓu∗

dt
dα
dt

duΓc
u∗

dt

 = −H

 uΓu∗ − u∗Γc
u∗

α− α∗

uΓc
u∗
− u∗Γc

u∗

, (26)

where “−H” is the Jacobian matrix at (u∗, α∗) and it is given by

− H =



du̇Γu∗
duΓu∗

du̇Γu∗
dα

du̇Γu∗
duΓc

u∗

dα̇
duΓu∗

dα̇
dα

dα̇
duΓc

u∗

du̇Γc
u∗

duΓu∗

du̇Γc
u∗

dα

du̇Γc
u∗

duΓc
u∗



∣∣∣∣∣∣∣∣∣∣∣∣∣
(u,α)=(u∗ ,α∗)

. (27)

From the given condition, for active nodes, we have dxi/dui ≈ 1, and for inactive
nodes dxi/dui ≈ 0. After deriving the sub-matrices in (27), we obtain

H =


2α2Φ>Γ ΦΓ −4αΦ>Γ(b−ΦΓxΓ) ∅

4α(b−ΦΓxΓ)
>ΦΓ 0 ∅

2α2Φ>Γc ΦΓ −4αΦ>Γc(b−ΦΓxΓ) I

, (28)

where ∅ denotes a matrix of zero with appropriate size. Following the proof logic of
Theorem 5 in [8], one can find that all eigenvalues of H are with positive real part. Therefore,
according to the classical control theory, the corresponding equilibrium point (u∗, α∗) is
asymptotically stable. The proof is completed.
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6. Experiment Results
6.1. Comparison Algorithms and Settings

This section compares our proposed LPNN-LPQC model with a number of digi-
tal numerical methods and analog neural methods. The comparison numerical meth-
ods are SPGL1 [30,50], MCP [35], AMP [37],`0-ADMM [39,40], `0-ZAP [38], NIHT [36],
and ECME [41]. The comparison analog methods are IPNNSR [11] and PNN-`1 [13].

The seven numerical algorithms are described as follows. The SPGL1 [30,50] is a
standard `1-norm approach. The MCP [35] is based on the approximation of the `0-norm
function and its turning parameters are selected by cross validation. The NIHT [36],
ECME [41], and AMP [37] are iterative algorithms, and they handle the `0-norm term by
the hard thresholding concept. The `0-ADMM [39,40] uses the frameworks of ADMM
and hard thresholding. The `0 ZAP [38] utilizes the idea of adaptive filter and projection.
The two analog comparison models are IPNNSR [11] and PNN-`1 [13], and are developed
based the projection concepts.

The setting of our experiment follows that of the experiment in [51]. The measurement
matrix Φ is a random ±1/

√
m matrix. The dimension n of the sparse signal x is 4096.

A sparse signal contains k non-zero elements which locations are randomly chosen with
uniform distribution. Their corresponding value are random ±1. In our experiment we set
k = {75, 100, 125}.

6.2. Parameter Settings

To conduct the experiment, we need to select some parameters for the proposed
method and comparison methods. In our proposed analog method, there are two tuning
parameters which are γ and κ. To make the approximation `p-norm close to the `0 norm, we
should use a large γ. In our experiment, we set γ = 10, 000. Parameter κ is used to control
the minimum value of the magnitudes of the decision variables xi. In our experiment, we
set κ = 1

2 and ∆t = 0.0001.
The SPGL1 package is used to solve

min
x
‖b−Φx‖2

2 subject to ‖x‖1 ≤ k,

where k is the number of non-zero elements in x. In the experiment, we set the maximum
number of iterations to 100,000.

The MCP algorithm is used to solve

min
x
‖b−Φx‖2

2 + P(λ,γ)(x),

where P(λ,γ)(x) is a penalty function to control the sparsity of the solution, and λ and γ are
parameters in P(λ,γ)(x). We set γ = 1.5 and use a linear search to obtain the best value of λ.
We set the maximum number of iterations to 100,000.

The AMP, NIHT, and ECME algorithms are used to solve

min
x
‖b−Φx‖2

2 subject to ‖x‖0 ≤ k,

where k is the number of non-zero elements in x. We set the maximum number of iterations
to 100,000.

The `0-ADMM algorithm is used to solve

min
x
‖b−Φx‖2

2 subject to ‖x‖0 ≤ k,

where k is the number of non-zero elements in x. In `0-ADMM, there is an augmented
Lagrangian parameter ρ. It is set to 0.5. The maximum number of iterations to 100,000.
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The `0-ZAP algorithm is used to solve

min
x
‖b−Φx‖2

2 + γ‖x‖0,

where γ is used to control the sparsity of the solution vector. We use a linear search to
obtain the best value of γ. In addition, there are two parameter κ and α. In the experiment,
κ = 0.001 and α = 2. Additionally, the maximum number of iterations is 100,000.

The IPNNSR and PNN-`1 analog models are used to solve

min
x
‖x‖1 subject to b = Φx.

For IPNNSR, we set ∆t = 1. For PNN-`1, we set ∆t = 0.01.

6.3. Convergence

The proposed algorithm is an analog neural network. Hence, one important issue is
the time to reach the equilibrium. Here, we conduct an experiment to empirically study
the convergent time. Some typical dynamics are given in Figure 6. In the figure, the first
row is the case of k = 75 and m = 500, the second row is the case of k = 100 and m = 600,
and the third row is the case of k = 125 and m = 700. Since there are 4096 elements in the
decision variable vector x, the legibility of the figure will be very poor, if we plot all ui(t)’s
and xi(t)’s in the figure. Therefore, we only plot the dynamics of the ui(t)’s and xi(t)’s
whose original xi values are non-zero. From the figure, it can be seen that within 20–40
characteristic time units, the dynamics of our proposed analog neural network settle down.
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Figure 6. Typical dynamics of u and x for the LPNN-LPQC model, where n = 4096. The first column:
k = 75, m = 500. The second column: k = 100, m = 600. The third column, k = 125, m = 700. In all
sub-figures, we only show the dynamics of the ui’s and xi’s whose original xi values are non-zero,
because there are 4096 curves in each sub-figure when we show all the dynamics for ui’s and xi’s.

6.4. Comparison with Other Algorithms

To further analyze the performance of our proposed method, we compare it with
seven numerical algorithms and two analog models.

The observation vectors are generated by the following noisy model:

b = Φx + e (29)
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where e is a zero mean Gaussian noise with standard deviation σ = {0.001, 0.005, 0.01}.
The experiments repeat 100 times with different measurement matrix, initial states, and
sparse signals. For each instance we declare that it is successful if

‖x0 − x̂‖2

‖x0‖2
≤ tol, (30)

where x0 denotes the true signal, x̂ is the recovered signal, and tol is the tolerant value.
In our experiment, we set tol = 0.01.

The successful rate results are shown in Figure 7. For all the algorithms, their perfor-
mances are improved with the increasing numbers of measurements. From the figure, all
`0-norm and `p-norm models are superior to the `1 models, including SPGL1, IPNNSR, and
PNN-`1. In addition, comparing with the seven numerical methods, our proposed method
usually needs less measurements to obtain the same probability of exact reconstruction.

Comparing with the two analog models, IPNNSR and PNN-`1, our LPNN-LPQC
model is better. For example, with 125 non-zero elements and noise level equal to 0.01,
the IPNNSR and PNN-`1 need around 650 measurement vectors, while our LPNN-LPQC
needs around 575 to 600 measurement vectors only. The rationale of the improvement
is that our model uses a `0-norm approach, while IPNNSR and PNN-`1 are based on
the `0-norm.
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Figure 7. Simulation results of different algorithms, where n = 4096. For the first column, k = 75.
For the second column, k = 100. For the third column, k = 125. The three rows are based on three
different noise levels. The experiments are repeated 100 times using different settings.

6.5. Comparison with Other Analog Models

As the paper proposed an analog model, namely LPNN-LPQC, for sparse recovery,
this subsection performs a deep discussion on the comparison among our proposed LPNN-
LPQC, IPNNSR [11], and PNN-`1 [13]. We discuss three different aspects: probability of
exact reconstruction and reconstruction error. In IPNNSR [11] and PNN-`1 [13], the circuit
realization of thresholding operator and the projection operator were not addressed.
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6.5.1. Successful Rate of Recall

Since Figure 7 shows the successful rates of all algorithms, it may not be easy to see the
difference among the three analog models. In Figure 8, we only present the results of three
analog models. From the figure, it can be seen that the performance of our LPNN-LPQC is
better than that of IPNNSR and PNN-`1. In particular, the performance improvement is
significant when the number of non-zero elements is large and the noise level is high. For
instance, with 125 non-zero elements and noise level = 0.01, the IPNNSR and PNN-`1 need
around 650 measurements for high successful rates of recall, while our LPNN-LPQC needs
around 575 to 600 measurements only.
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Figure 8. Comparison with other analog models on probability of reconstruction, where n = 4096.
For the first column, k = 75. For the second column, k = 100. For the third column, k = 125.
The three rows are based on three different noise levels. The experiments are repeated 100 times
using different settings.

6.5.2. MSE of Recall

The successful rate results concern about whether the estimated x has the correct non-
zero positions. Here, in Figure 9, we present the MSE versus the number of measurements
used. From Figure 9, it can be seen that in terms of MSE, the performance of our LPNN-
LPQC is much better than that of IPNNSR and PNN-`1. In most cases, the MSE values
of our proposed model are less than those of IPNNSR and PNN-`1 in one or two orders
of magnitude. For example, for k = 75, σ = 0.005, and M = 450, the MSE values of the
IPNNSR and PNN-`1 are around 10−3, while the MSE value of the proposed model is
around 10−5 only.
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Figure 9. Comparison with other analog models on MSE, where n = 4096. For the first column,
k = 75. For the second column, k = 100. For the third column, k = 125. The three rows are based on
three different noise levels. The experiments are repeated 100 times using different settings.

7. Conclusions

This paper proposed a LPNN-LPQC method for sparse recovery under noise en-
vironment. The proposed algorithm is an analog neural network. We showed that the
equilibrium points of the model satisfy the KKT conditions of the LPQC problem, and that
the equilibrium points of the model are asymptotically stable. From the simulation results,
we can see that the performance of the proposed algorithm is comparable to, even superior
to many state-of-art `0-norm or `p-norm numerical methods. In addition, our proposed
algorithm is superior to two analog models. We also presented the circuit realization for
the thresholding element and performed circuit simulation for verifying our realization
based on the MATLAB Simulink.

In our analysis, we assume that the realization of analog circuit does not have any
time delay or synchronization problem. In fact, time delay and mis-synchronization may
affect the stability of analog circuits [52,53]. Hence, one of future works is to investigate the
behaviour of the proposed analog model with time delay or mis-synchronization.
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Abbreviations
The following abbreviations are used in this manuscript:

LPNN Lagrange Programming Neural Network
LPNN-LPQC LPNN with `p objective and Quadratic Constraint
CBPDN Constrained Basis Pursuit Denoise (CBPDN)
LCA Locally Competitive Algorithm
KKT Karush Kuhn Tucker
MCP Minimax Concave Penalty
NIHT Normalized Iterative Hard Threshold
AMP Approximate Message Passing
`0-ZAP `0-norm Zero Attraction Projection
`0-ADMM `0-norm Alternating Direction Method of Multipliers
ECME Expectation Conditional Maximization Either

Appendix A. Proof of Property 3

P3.a
Recall that f (u) = 1

1+exp (−γ(|u|− 1
2 ))

, and that f (u) is an even function. Clearly, T(u) =

u f (u) is an odd function. First, since f (u) is an even function, the proof only presents the
case of u ≥ 1

2 + 1
γ log 1

ε .

In the case of u ≥ 1
2 + 1

γ log 1
ε , f (u) is monotonic increasing. Hence

f (u) ≥ f (
1
2
+

1
γ

log
1
ε
) =

1
1 + exp (− log 1

ε )
=

1
1 + ε

. (A1)

In addition, it is easy to show that f (u) is monotonic increasing, and that lim|u|→∞ f (u) =
1. In conclusion, we have 1

1+ε ≤ f (u) < 1. P3.a is proved.

P3.b
Since f (u) is an even function, the proof only presents that the case of u ≤ 1

2 −
1
γ log 1

ε .

In the case of u ≤ 1
2 −

1
γ log 1

ε , f (u) is monotonic increasing. Hence, we have

f (u) ≤ f (
1
2
− 1

γ
log

1
ε
) =

1
1 + exp (log 1

ε )
=

ε

1 + ε
. (A2)

Additionally, it is obvious that f (u) > 0. Therefore, 0 < f (u) ≤ ε
1+ε . P3.b is proved.

P3.c
For simplicity, let g(u) = exp (−γ(|u| − 1

2 )). Thus, the derivative of T(u) can be
rewritten as

dT(u)
du

=
1

1 + g(u)
+

γ|u|g(u)
(1 + g(u))2 (A3)

and the second derivative of T(u) is

d2T(u)
du2 =

2γsign(u)g(u)
(1+g(u))2 − γ2ug(u)

(1 + g(u))2 +
2γ2ug(u)2

(1 + g(u))3 . (A4)

Since T(u) is an odd function and dT(u)
du is an even function, we only present the

proof for the case of u > 1
2 + 1

γ log γ
ε . The proof consists of two parts. First, we show the

monotonic property of dT(u)
du for u > 1

2 + 1
γ log γ

ε . Second, the upper and lower bounds of
dT(u)

du are established.
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For the case of u > 1
2 + 1

γ log γ
ε , we have 0 < g(u) < ε

γ . The second derivative of T(u)
in (A4) can be rewritten as:

d2T(u)
du2 = g(u) · (2γ− γ2u)(1 + g(u)) + 2γ2ug(u)

(1 + g(u))3 . (A5)

Since 0 < g(u) < ε/γ, we can deduce that

(2γ− γ2u)(1 + g(u)) + 2γ2ug(u)

= 2γ−γ2u+(2γ+γ2u)g(u) < 2γ−γ2u+(2γ+γ2u)
ε

γ

= 2γ− γ2u + 2ε + 2γuε < (2− γ + 4ε)γu < 0. (A6)

From (A5), (A6), g(u) > 0, and (1 + g(u))3 > 0, we deduce that, if u > 1
2 + 1

γ log γ
ε ,

then d2T(u)/du2 < 0 and dT(u)
du is monotonic decreasing. Thus, for u > 1

2 + 1
γ log γ

ε , a

lower bound on dT(u)
du is dT(u)

du |u→∞. Since limu→∞ g(u) = 0 and dT(u)
du |u→∞ = 1, we have

dT(u)
du

> 1. (A7)

On the contrary, an upper bound in u > 1
2 +

1
γ log γ

ε , is dT(u)
du |u= 1

2+
1
γ log γ

ε
. The value of

dT(u)
du |u= 1

2+
1
γ log γ

ε
is

dT(u)
du |u= 1

2+
1
γ log γ

ε
= 1

1+ ε
γ
+

γu ε
γ

(1+ ε
γ )

2

= γ2+γε+uεγ2

(γ+ε)2 = (γ+ε)2+uεγ2−εγ−ε2

(γ+ε)2

= 1 +
1
2 γ2+γ log γ

ε−ε−γ

(γ+ε)2 ε

= 1 +
1
2 (γ+ε)2+(log γ

ε−1−ε)γ−ε− 1
2 ε2

(γ+ε)2 ε

< 1 + ε
2 +

(log γ
ε−1−ε)γ

(γ+ε)2 ε < 1 + 3ε
2 .

(A8)

From (A5) and (A6), and the fact that dT(u)
du is an even function, we can conclude that

for a sufficiently large γ, if |u| > 1
2 + 1

γ log γ
ε , then 1 < dT(u)

du < 1 + 3
2 ε. The proof of P3.c

is completed.

P3.d
The proof consists of two parts. First, we show the monotonic properties of dT(u)

du for

|u| < 1
2 −

1
γ log γ

ε . Second, the upper and lower bounds of dT(u)
du are established. Since T(u)

is an odd function and dT(u)
du is an even function, we only need to consider the region of

u < 1
2 −

1
γ log γ

ε .

For 0 < u < 1
2 −

1
γ log γ

ε , sign(u) > 0, g(u) is monotonic decreasing, and exp(γ) >
g(u) > γ

ε . In this region, the second derivative of T(u) is

d2T(u)
du2 = 2γg(u)

(1+g(u))2−
γ2ug(u)
(1+g(u))2 +

2γ2ug(u)2

(1+g(u))3

>− γ2g(u)u
(1+g(u))2 +

2γ2ug(u)2

(1+g(u))3

=(g(u)−1) · γ2g(u)u
(1+g(u))3 .

(A9)

Obviously, in this region, γ2g(u)u
(1+g(u))3 > 0, and

g(u)− 1 >
γ

ε
− 1 > 0. (A10)
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Hence, we can conclude that, for 0 < u < 1
2 −

1
γ log γ

ε , d2T(u)/du2 > 0 and then dT(u)
du

is monotonically increasing. For u < 1
2 −

1
γ log γ

ε , the upper bound of dT(u)/du exists

when u = 1
2 −

1
γ log γ

ε . The upper bound is

dT(u)
du |u= 1

2−
1
γ log γ

ε
= 1

1+γ
ε
+ γ2|u|

ε(1+γ
ε )

2 =
γ2|u|+ε+γ
(γ+ε)2 ε

<
1
2 γ2+ε+γ

(γ+ε)2 ε = 1
2 ε +

γ+ε+−2γε− 1
2 ε2

(γ+ε)2 ε

< 3
2 ε.

(A11)

In addition, a lower bound on dT(u)
du exists at u = 0,

dT(u)
du
|u=0 =

1
1 + exp(γ)

> 0 (A12)

To sum up, for a sufficiently large γ, if u < 1
2 −

1
γ log γ

ε , then 0 < dT(u)
du < 3

2 ε.
The proof of P3.d is completed.

Appendix B. Proof of Property 4

The continuity and differentiability of S(x) can be proved according to the following
lemma [54].

Lemma A1. (Inverse function) Let φ be a strictly monotone continuous function on [a, b], with φ

differentiable at x0 ∈ (a, b) and dφ
dx

∣∣
x=x0

6= 0. Then φ−1 exists and is continuous and strictly

monotone. Moreover, φ−1 is differentiable at y0 = φ(x0) and

dφ−1(y)
dy

∣∣
y=y0

=
1

dφ
dx |x=x0

. (A13)

From (A3), one can easily verify that dT(u)
du > 0, and that T(u) is a strictly monotone

increasing continuous function. Based on Lemma A1, T−1(x) exists. Additionally, it is
continuous and differentiable at every point. Hence 1

2 ∂S(x) = T−1(x)− x is a continuous
and differentiable function. The proof is completed.

Appendix C. Proof of Property 5

Boundness: Now, we use the Taylor series of S(x) to estimate the values of S(± 1
2 ). Since

S(x) is an even function, the proof only presents the case of u > 1
2 + 1

γ log 1
ε .

First, we can use x = 1
4 to obtain the Taylor series expansion of 1

2 S(x):

1
2

S(x) ≈ 1
2

S(
1
4
) +

1
2

S′(
1
4
)(x− 1

4
) +

1
2

1
2

S′′(
1
4
)(x− 1

4
)2, (A14)

where S′( 1
4 ) and S′′( 1

4 ) are the first and second order derivatives of S(x) at x = 1
4 , respec-

tively. Since 1
2 S′(x) = u− x = T−1(x)− x and T( 1

2 ) =
1
4 , we obtain

1
2

S′(
1
4
) =

1
2
− 1

4
=

1
4

. (A15)

Additionally, 1
2 S′′( 1

4 ) =
dT−1(x)

dx

∣∣
x=1/4 − 1. As T( 1

2 ) =
1
4 , from Lemma 2,

dT−1(x)
dx

∣∣
x=1/4 =

1
dT(u)

du

∣∣
u= 1

2

. (A16)
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Additionally, from (A3),
dT(u)

du
∣∣
u= 1

2
=

2 + γ

4
. (A17)

From (A14)–(A17), for a small ε and a sufficient large γ,

1
2

S(x) ≈ 1
2

S(
1
4
) +

1
4
(x− 1

4
) +

1
2
(

4
2 + γ

− 1)(x− 1
4
)2

≈ 1
2

S(
1
2
) +

1
4
(x− 1

4
)− 1

2
(x− 1

4
)2. (A18)

Thus, we have

1
2

S(
1
2
) ≈ 1

2
S(

1
4
) +

1
32

, and
1
2

S(0) ≈ 1
2

S(
1
4
)− 3

32
. (A19)

As 1
2 S(0) = 0, we obtain 1

2 S( 1
2 ) ≈

1
8 . Similarly, it is also easy to obtain that 1

2 S(− 1
2 ) ≈

1
8 .

Now we would like to know for u > 1
2 + 1

γ log 1
ε , i.e., x > T( 1

2 + 1
γ log 1

ε ), what the

value of 1
2 S(x) is.

Let u0 = 1
2 + 1

γ log 1
ε and x0 = T(u0). Since S(x) is an even function and is monotonic

increasing (for x > 0), for x ≥ x0, we have

1
2

S(x)− 1
2

S(x0) =
∫ x

x0

(u− χ)dχ. (A20)

From P3, we have u ≤ (1 + ε)x. Thus,

1
2

S(x)− 1
2

S(x0) ≤
∫ x

x0

εχdχ. (A21)

Thus, for a sufficient small ε, 1
2 S(x)− 1

2 S(x0) ≈ 0. In addition, for sufficient small ε

and sufficient large γ, u0 ≈ 1
2 . As 1

2 S( 1
2 ) ≈

1
8 , we have 1

2 S(x) ≈ 1
8 for u ≥ 1

2 + 1
γ log 1

ε .

Sparsity: Since 1
2 S(x) is an even function, we only show the proof for 0 < x < T( 1

2 −
1
γ log 1

ε ), i.e., the case of 0 < u < 1
2 −

1
γ log 1

ε . Let u0 = 1
2 −

1
γ log 1

ε and x0 = T(u0). For

x > 0, 1
2 S(x) is a monotonical increasing. Hence, we have 0 = 1

2 S(0) < 1
2 S(x) < 1

2 S(x0).
Therefore, we have

1
2

S(x0)−
1
2

S(0) =
∫ x0

0
u− χdχ.

From P3.b, we can deduce that 0 < x0 ≤ εu0
1+ε . For a sufficient small ε, x0 ≤ εu0

1+ε ≈ 0.
Obviously, in this region u− χ is bounded. Hence, we have 1

2 S(x0) ≈ 0. As 0 = 1
2 S(0) <

1
2 S(x) < 1

2 S(x0), we can say that 1
2 S(x) ≈ 0 for 0 ≤ x ≤ x0. In conclusion, 1

2 S(x) ≈ 0 if
|x| < T( 1

2 −
1
η log 1

ε ). The proof is completed.

References
1. Chua, L.; Lin, G.N. Nonlinear programming without computation. IEEE Trans. Circuits Syst. 1984, 31, 182–188. [CrossRef]
2. Tank, D.; Hopfield, J. Simple ‘neural’ optimization networks: An A/D converter, signal decision circuit, and a linear programming

circuit. IEEE Trans. Circuits Syst. 1986, 33, 533–541. [CrossRef]
3. Xia, Y.; Leung, H.; Wang, J. A projection neural network and its application to constrained optimization problems. IEEE Trans.

Circuits Syst. Fundam. Theory Appl. 2002, 49, 447–458.
4. Xia, Y.; Wang, J. A general projection neural network for solving monotone variational inequalities and related optimization

problems. IEEE Trans. Neural Netw. 2004, 15, 318–328. [CrossRef] [PubMed]
5. Wang, H.; Lee, C.M.; Feng, R.; Leung, C.S. An analog neural network approach for the least absolute shrinkage and selection

operator problem. Neural Comput. Appl. 2018, 29, 389–400. [CrossRef]
6. Wang, Y.; Li, X.; Wang, J. A neurodynamic optimization approach to supervised feature selection via fractional programming.

Neural Netw. 2021, 136, 194–206. [CrossRef]

http://doi.org/10.1109/TCS.1984.1085482
http://dx.doi.org/10.1109/TCS.1986.1085953
http://dx.doi.org/10.1109/TNN.2004.824252
http://www.ncbi.nlm.nih.gov/pubmed/15384525
http://dx.doi.org/10.1007/s00521-017-2863-5
http://dx.doi.org/10.1016/j.neunet.2021.01.004


Mathematics 2022, 10, 4801 21 of 22

7. Bouzerdoum, A.; Pattison, T.R. Neural network for quadratic optimization with bound constraints. IEEE Trans. Neural Netw.
1993, 4, 293–304. [CrossRef]

8. Feng, R.; Leung, C.S.; Constantinides, A.G.; Zeng, W.J. Lagrange Programming Neural Network for Nondifferentiable Optimiza-
tion Problems in Sparse Approximation. IEEE Trans. Neural Netw. Learn. Syst. 2017, 28, 2395–2407. [CrossRef]

9. Wang, H.; Feng, R.; Leung, A.C.S.; Tsang, K.F. Lagrange programming neural network approaches for robust time-of-arrival
localization. Cogn. Comput. 2018, 10, 23–34. [CrossRef]

10. Shi, Z.; Wang, H.; Leung, C.S.; So, H.C.; Member EURASIP. Robust MIMO radar target localization based on Lagrange
programming neural network. Signal Process. 2020, 174, 107574. [CrossRef]

11. Liu, Q.; Wang, J. L_{1}-minimization algorithms for sparse signal reconstruction based on a projection neural network. IEEE
Trans. Neural Netw. Learn. Syst. 2015, 27, 698–707. [CrossRef] [PubMed]

12. Yan, Z.; Le, X.; Wen, S.; Lu, J. A Continuous-Time Recurrent Neural Network for Sparse Signal Reconstruction Via `1 Minimization.
In Proceedings of the 2018 Eighth International Conference on Information Science and Technology (ICIST), Cordoba, Granada,
and Seville, Spain, 30 June–6 July 2018; pp. 43–49. [CrossRef]

13. Wen, H.; Wang, H.; He, X. A Neurodynamic Algorithm for Sparse Signal Reconstruction with Finite-Time Convergence. Circuits
Syst. Signal Process. 2020, 39, 6058–6072. [CrossRef]

14. Donoho, D.; Huo, X. Uncertainty principles and ideal atomic decomposition. IEEE Trans. Inf. Theory 1999, 47, 2845–2862.
[CrossRef]

15. Donoho, D.L.; Elad, M. Optimally sparse representation in general (nonorthogonal) dictionaries via l1 minimization. Proc. Natl.
Acad. Sci. USA 2003, 100, 2197–2202. [CrossRef] [PubMed]

16. Chartrand, R. Exact reconstruction of sparse signals via nonconvex minimization. IEEE Signal Process. Lett. 2007, 14, 707–710.
[CrossRef]

17. Blumensath, T.; Davies, M.E. Iterative thresholding for sparse approximations. J. Fourier Anal. Appl. 2008, 14, 629–654. [CrossRef]
18. Jin, D.; Yang, G.; Li, Z.; Liu, H. Sparse recovery algorithm for compressed sensing using smoothed `0-norm and randomized

coordinate descent. Mathematics 2019, 7, 834. [CrossRef]
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