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Abstract: We study the regional controllability problem for delayed fractional control systems through
the use of the standard Caputo derivative. First, we recall several fundamental results and introduce
the family of fractional-order systems under consideration. Afterward, we formulate the notion of
regional controllability for fractional systems with control delays and give some of their important
properties. Our main method consists of defining an attainable set, which allows us to prove exact
and weak controllability. Moreover, the main results include not only those of controllability but
also a powerful Hilbert uniqueness method, which allows us to solve the minimum energy optimal
control problem. More precisely, an explicit control is obtained that drives the system from an initial
given state to a desired regional state with minimum energy. Two examples are given to illustrate the
obtained theoretical results.
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1. Introduction

The celebrated letter addressed by L’Hopital to Leibniz about the possibilities that can
be obtained when the order n of the derivative is a fraction 1/2, revolutionized calculus
and marked the birth of fractional calculus [1]. Since its beginnings, fractional calculus
has attracted many great mathematicians, who directly or indirectly contributed to its
development [2]. Today, many researchers consider fractional calculus an important tool
for solving different problems in various fields, e.g., physics, thermodynamics, chemistry,
biology, classical and quantum mechanics, viscoelasticity, finance, engineering, signal and
image processing, and automatics and control [3–5].

Let Ω be a bounded subset of Rn with a regular boundary ∂Ω, the final time be τ > 0,
Q = Ω× [0, τ], and Σ = ∂Ω× [0, τ]. We then consider the system

C
0 Dr

t z(x, t) = Az(x, t) +Bu(t− h), t ≥ 0,
z(x, 0) = z0(x),
u(t) = ϕ(t), −h ≤ t ≤ 0,

(1)

where C
0 Dr

t denotes the left-sided Caputo fractional order derivative of order r ∈ (0, 1) [6,7].
Note that z is a function of two parameters but the derivative is an operator that acts
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on t. The linear operator A is an infinitesimal generator of a C0-semi-group (T (t))t≥0

on the Hilbert state space L2(Ω) [8,9]. Here, h > 0 is the time control delay and ϕ(t) is
the initial control function. In the sequel, we have z(x, t) ∈ Z = L2(0, τ; L2(Ω)) and the
control u ∈ U = L2(0, τ;Rp). The initial state z0 ∈ L2(Ω) and the linear control operator
B : Rp → L2(Ω), which might be unbounded, depend on the number p and the structure
of the actuators.

The notion of controllability seeks to find a command or control that brings the system
under study from an initial state to a desired final state. This is generally difficult to
achieve, in particular, for fractional order diffusion systems. This explains why a large
number of scholars have been investigating control problems using the notion of “regional
controllability”. This concept was first introduced by El Jai et al. in 1995 [10] for parabolic
systems and was then extended to the case of hyperbolic systems [11]. The concept is
widely used to investigate problems where the target of interest is not fully specified as a
state and relates only to a smaller internal region ω of the system domain Ω. It is especially
crucial when it comes to real-world problems since the transfer costs are lower in a regional
case, for instance, in the case of wildfires, where the main purpose is to control it in a
smaller region and one tries to minimize the costs [12–14].

In various processes, future states are dependent on the current and previous states
of the system, which implies that the models describing these processes should include
delays, either in the state or control variables or both. If the delays are in the inputs, we are
faced with systems with delayed commands. Due to the number of mathematical models
describing dynamical systems with delays in the controls, solving controllability problems
for such systems is of great importance. In particular, controllability problems for linear
continuous-time fractional systems with a delayed control have been the subject of several
works [15–18]. However, it should be noted that the majority of research in this area deals
with the global case, that is, controllability is treated on the whole evolution domain. Here,
we are interested in studying the concept in a specific region ω ∈ Ω.

Fractional delayed differential equations are equations involving fractional derivatives
and delays. Unlike ordinary derivatives, they are nonlocal derivatives by nature and are
able to model memory effects. Indeed, time delays express the history of a past state [19].
Many real-world problems can be modeled more accurately by including fractional deriva-
tives and delays in a specific subregion ω of the whole evolution domain of the system
Ω. For instance, when it comes to modeling several epidemiological problems, regional
controllability of fractional delayed differential systems can be more plausible. In the case
of monitoring glucose rates, fractional-order models provide a reasonable rate of movement
of glucose from the blood into the environment [20,21].

Over the years, numerous mathematicians, utilizing their own notations and ap-
proaches, have defined different types of fractional derivatives and integrals. In this paper,
we treat the controllability problem of a fractional diffusion equation in the sense of Caputo
with a delay in the control. Recent works were expanded to solve optimal control problems
with delays by combining conformable and Caputo–Fabrizio fractional derivatives via
artificial neural networks [22]. Here, we define the regional controllability in the exact and
weak senses; we give the necessary and sufficient conditions under which the system is
controllable and we obtain the control that minimizes the energy cost functional.

The rest of this paper is structured as follows. Some definitions and fundamentals of
fractional calculus are given in Section 2. In Section 3, a definition of regional fractional
controllability for delayed systems is given and a necessary and sufficient condition to
verify it is proved. Our main findings on controllability and optimal control are then
formulated and proved in Section 4. In Section 5, we provide illustrative examples for
cases of both a bounded and an unbounded control operator. We conclude with Section 6,
providing a summary of the main conclusions and some insightful open questions that still
deserve in-depth investigations.
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2. Preliminary Results

We begin with some definitions, properties, and known results of fractional calculus
that are used to study System (1). In particular, we recall the two more standard notions for
fractional derivatives: the concept of the solution to System (1) and the fractional Green
formula. In what follows, g : R+ → R is a given function.

Definition 1 (Caputo fractional derivatives; see, e.g., [6]). The Caputo fractional derivative of
order r > 0 of a function g : [0, ∞)→ R is defined as

C
0 Dr

t g(t) := 0 In−r
t g(n)(t) :=

1
Γ(n− r)

∫ t

0
(t− σ)n−r−1g(n)(σ)dσ, (2)

where n = −[−r], provided the right side is pointwise, is defined on R+ and 0 In−r
t is the left-sided

Riemann–Liouville fractional integral of order n− r > 0 defined by

0 In−r
t g(t) :=

1
Γ(n− r)

∫ t

0
(t− σ)n−r−1g(σ)dσ, t > 0. (3)

Definition 2 (Riemann–Liouville fractional derivatives; see, e.g., [23–25]). The left- and right-
hand sides of the Riemann–Liouville fractional derivatives of order r of function g are expressed by

0Dr
t g(t) :=

(
d
dt

)n

0 In−r
t g(t) :=

1
Γ(n− r)

dn

dtn

∫ t

0
(t− σ)n−r−1g(σ)dσ, t > 0, (4)

and

tDr
τ g(t) :=

1
Γ(n− r)

(
− d

dt

)n ∫ τ

t
(σ− t)n−r−1g(σ)dσ, t < τ, (5)

respectively, where r ∈ (n− 1, n), n ∈ N.

Definition 3 (Mittag–Leffler function; see, e.g., [26]). The generalized Mittag–Leffler function
is defined by

Er,s(y) :=
∞

∑
i=1

yi

Γ(ri + s)
, Re(r) > 0, s, y ∈ C. (6)

Definition 4 (Three-parameter Mittag–Leffler function [7]). The Prabhakar generalized Mittag–
Leffler function is given by

Eγ
α,β(y) :=

1
Γ(γ)

∞

∑
n=0

Γ(γ + n)yn

n!Γ(αn + β)
, Re(α) > 0, α, β, γ ∈ C. (7)

Definition 5 (See, e.g., [27]). For any given F(x, t) ∈ Z , 0 < r < 1, a function z(x, t) ∈ Z is
said to be the general solution of{

C
0 Dr

t z(x, t) = Az(x, t) + F(x, t), t ≥ 0,
z(x, 0) = z0(x),

and is expressed by

z(x, t) = Rr (t)z0(x) +
∫ t

0
(t− σ)r−1Sr (t− σ)F(σ)dσ,

where
Rr (t) =

∫ ∞

0
Φr (α)T (trα)dα, (8)
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and
Sr (t) = r

∫ ∞

0
αΦr (α)T (trα)dα. (9)

Here, {T (t)}t≥0 is the strongly continuous semigroup generated by operator A,

Φr (α) =
1
r

α−1−1/rψr (α
−1/r),

and ψr is the probability density function defined by

ψr (α) =
1
π

∞

∑
n=1

(−1)n−1α−rn−1 Γ(nr + 1)
n!

sin(nπr), α ∈ (0, ∞). (10)

Remark 1. The density function given by (10) satisfies the properties∫ ∞

0
e−υαψr (α)dα = e−υr

,
∫ ∞

0
ψr (α)dα = 1, r ∈ (0, 1), (11)

and ∫ ∞

0
ανΦr (α)dα =

Γ(1 + ν)

Γ(1 + rν)
, ν ≥ 0. (12)

The following hypotheses are used in our results:

(H1) The control operator B is dense and B∗ exists;
(H2) (BSr(t))

∗ exists and (BSr(t))
∗ = S∗r (t)B∗.

Note that (H1) and (H2) hold when B is bounded and linear. Throughout this paper,
we use z(x, t) for the state of the system. Next, we introduce the notion of a mild solution
of System (1), using for it the notation zu(x, t).

Definition 6 (Mild solution of System (1) [28]). We say that a function zu(x, t) ∈ Z is a mild
solution of System (1) if it satisfies

zu(x, t) = Rr (t)z0(x) +
∫ t−h

0
(t− σ− h)r−1Sr (t− σ− h)Bu(σ)dσ

+
∫ 0

−h
(t− σ− h)r−1Sr (t− σ− h)Bϕ(σ)dσ. (13)

We defineH : L2(0, τ − h;Rp)→ L2(Ω) by

Hu =
∫ τ−h

0
(τ − σ− h)r−1Sr (τ − σ− h)Bu(σ)dσ, for all u ∈ L2(0, τ − h;Rp). (14)

Assume that (H1)–(H2) hold and (T ∗(t))t≥0 is a semigroup generated byA∗ on L2(Ω),
which is strong and continuous. For ν ∈ L2(Ω), we have

〈Hu, ν〉 =

〈∫ τ−h

0
(τ − σ− h)r−1Sr(τ − σ− h)Bu(σ)dσ, ν

〉
L2(Ω)

=
∫ τ−h

0

〈
(τ − σ− h)r−1Sr(τ − σ− h)Bu(σ), ν

〉
L2(Ω)

dσ

=
∫ τ−h

0

〈
u(σ),B∗(τ − σ− h)r−1S∗r (τ − σ− h)ν

〉
U

dσ

= 〈u,H∗ν〉,

(15)

where 〈·, ·〉 is the inner product on the vector space and

S ∗r (t) = r
∫ ∞

0
αΦr (α)T ∗(trα)dα.
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Then, one has

H∗ν = B∗(τ − σ− h)r−1S∗r (τ − σ− h)ν, for all ν ∈ L2(Ω). (16)

LetH be defined as in (14) and let us define the operator Lϕ in such a way that

Lϕ : L2(−h, 0; L2(Ω)
)
−→ L2(Ω)

ϕ 7−→
∫ 0

−h
(τ − σ− h)r−1Sr (τ − σ− h)Bϕ(σ)dσ.

(17)

Following the same steps in the computation ofH∗, we obtain

L∗ϕv = B∗(τ − σ− h)r−1S∗r (τ − σ− h)v, for all v ∈ L2(Ω).

Remark 2. The solutions of (1) are considered in the weak sense.

The subsequent lemmas are necessary to demonstrate our main results: Lemma 1 is
used in the proof of Theorem 1, whereas Lemma 3 is useful for proving Theorem 2.

Lemma 1 (See [29,30]). The operators Rr(t) and Sr(t) are bounded and linear. Moreover, for
every z ∈ L2(Ω), we have

‖Rr(t)z‖ ≤ M‖z‖, and ‖Sr(t)z‖ ≤
rM

Γ(1 + r)
‖z‖. (18)

Lemma 2 (See, e.g., [31]). If the reflection operator Q on [0, τ] is defined for a differentiable and
integrable function g by

Qg(t) := g(τ − t), (19)

then it satisfies the properties

Q0 Ir
t g(t) = t Ir

τQg(t), Q0Dr
t g(t) = tDr

τQg(t),

0 Ir
tQg(t) = Qt Ir

τ g(t), 0Dr
tQg(t) = QtDr

τ g(t).
(20)

In the following lemmas, we recall the integration by parts and the fractional Green for-
mulas that relate the left-sided Caputo derivatives with the right-sided Riemann–Liouville
derivatives.

Lemma 3 (Fractional integration by parts formula; see, e.g., [32]). For t ∈ [0, τ] and r ∈
(n− 1, n), n ∈ N, the integration by parts relation,

∫ τ

0
f (t)C

0 Dr
t g(t)dt =

n−1

∑
i=0

(−1)n−1−i
[

gi(t)tDr−1−i
τ f (t)

]τ

0
+ (−1)n

∫ τ

0
g(t)tDr

τ f (t)dt (21)

holds.

Remark 3. If 0 < r < 1, we obtain from Lemma 3∫ τ

0
f (t)C

0 Dr
t g(t)dt =

[
g(t)t I1−r

τ f (t)
]τ

0
−
∫ τ

0
g(t)tDr

τ f (t)dt. (22)
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Lemma 4 (Fractional Green formula; see, e.g., [24,33]). Let 0 < r ≤ 1 and t ∈ [0, τ]. Then,∫ τ

0

∫
Ω

(C
0 Dr

t z(x, t)−Az(x, t)
)
φ(x, t)dxdt

=
∫ τ

0

∫
Ω

z(x, t)(−0Dr
τφ(x, t)−A∗φ(x, t))dxdt

+
∫

∂Ω
z(x, τ)t I1−r

τ φ(x, τ)dΓ−
∫

∂Ω
z(x, 0)t I1−r

τ φ(x, 0)dΓ

+
∫ τ

0

∫
∂Ω

z(x, t)
∂φ(x, t)

∂νA
dΓdt−

∫ τ

0

∫
∂Ω

∂z(x, t)
∂νA

φ(x, t)dΓ,

(23)

for any φ ∈ C∞(Q).

As a corollary of Lemma 4, the following result can be derived.

Corollary 1. Let 0 < r < 1. Then, for any φ ∈ C∞(Q) such that φ(x, τ) = 0 in Ω and φ = 0 on
Σ, we obtain∫ τ

0

∫
Ω

(C
0 Dr

t z(x, t)−Az(x, t)
)
φ(x, t)dxdt

= −
∫

Ω
z(x, 0)t I1−r

τ φ(x, 0)dx +
∫ τ

0

∫
∂Ω

z(x, t)
∂φ(x, t)

∂vA
dΓdt

+
∫ τ

0

∫
Ω

z(x, t)(−0Dr
τφ(x, t)−A∗φ(x, t))dx dt.

(24)

3. Regional Fractional Controllability

Let ω be a given region and a subset of Ω with a positive Lebesgue measure. The
projection operator on ω is denoted by the restriction mapping

Pω : L2(Ω) −→ L2(ω)
y 7−→ Pω y = y|ω .

(25)

Definition 7 (Regional exact controllability at time τ). We say that System (1) is ω-exactly
controllable at time τ if, for any zd ∈ L2(ω), there exists a control u ∈ U such that

Pω zu(x, τ) = zd . (26)

Definition 8 (Regional weak controllability at time τ). We say that System (1) is ω-weakly
controllable at time τ if, for every zd ∈ L2(ω), given ε > 0, there is a control u ∈ U such that

‖Pω zu(x, τ)− zd‖L2(ω) ≤ ε. (27)

Remark 4. It is equivalent saying that System (1) is regionally exactly (resp. regionally weakly)
controllable or that System (1) is ω-exactly (resp. ω-weakly) controllable.

Taking into account that System (1) is linear, for u ∈ U, let us consider the attainable
set A(t) in L2(Ω) defined by

A(t) =
{

a(·, t) ∈ L2(Ω) | a(x, t) = Hu+ Lϕ ϕ
}

, (28)

where operators H and Lϕ are defined by Equations (14) and (17), respectively. The
following result holds.

Theorem 1 (Necessary and sufficient conditions for regional controllability). For any given
τ > 0, System (1) is regionally exactly (resp. regionally approximately) controllable if, and only if,

PωA(τ) = L2(ω) (resp. PωA(τ) = L2(ω)).
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Proof. We prove the approximate controllability case. Using the same proof as in [34,35]
and assuming that u ≡ 0 for all t, System (1) admits a unique solution

X (z0)(x, t) ∈ Z , such that X (z0)(x, t) = Rr(t)z0(x). (29)

Then, using Lemma 1, ∃c > 0 that satisfies ‖X (z0)‖L2(Ω) ≤ c‖z0‖L2(Ω). Hence, (29) is
well defined. For every ν ∈ L2(ω), since PωX (z0)(·, τ) ∈ L2(ω), we obtain

(ν− PωX (z0))(·, τ) ∈ L2(ω),

and

‖Pωz(x, τ)− ν‖L2(ω) = ‖Pω z(x, τ) + PωX (z0)(x, τ)− (PωX (z0)− ν)(x, τ)‖L2(ω)

= ‖(Pωz− PωX (z0))(x, τ)− (ν− PωX (z0))(x, τ)‖L2(ω)

= ‖Pω a(x, τ)− (ν− PωX (z0))(x, τ)‖L2(ω).

If PωA(τ) = L2(ω), for any ε > 0, we can find that u ∈ U satisfies

‖Pωa(·, τ)− (ν− PωX (z0))(·, τ)‖ ≤ ε,

where a(·, ·) is an element of the attainable set (28). This implies that ‖Pωzu(·, τ)− ν‖ ≤ ε,
where zu(·, τ) = X (z0)(·, τ) + a(·, τ) is the mild solution of System (1). Then, System (1) is
ω-weakly controllable at time τ.

On the other hand, for a given τ > 0, System (1) is ω-weakly controllable if for any
zd ∈ L2(ω), given ε > 0, there is a control u ∈ U such that

‖Pωzu(x, τ)− zd‖L2(ω) = ‖Pωzu(·, τ) + PωX (z0)(·, τ)− PωX (z0)(·, τ)− zd‖L2(ω)

= ‖Pωzu(·, τ)− PωX (z0)(·, τ)− (zd − PωX (z0)(·, τ))‖L2(ω)

= ‖Pωa(·, τ)− (zd − PωX (z0)(·, τ))‖L2(ω)

≤ ε.

One has (Pωzu(·, τ)− PωX (z0)(·, τ)) ∈ PωA(τ). Then, (zd − PωX (z0)(·, τ)) ∈ L2(ω).
Thus PωA(τ) = L2(ω).

Proposition 1. The following properties are equivalent:

(1) System (1) is ω-exactly controllable;
(2) Im

(
Pω(H+ Lϕ)

)
= L2(ω);

(3) Ker(Pω) + Im
(
H+ Lϕ

)
= L2(Ω).

Proof. (1) ⇔ (2). Suppose that System (1) is ω-exactly controllable. Then, there exists
zd ∈ L2(ω) such that Pωzu(x, τ) = zd, which is equivalent to

PωRrz0 + PωHu+ PωLϕ ϕ = zd.

For z0 = 0, we have PωHu+ PωLϕ ϕ = zd ⇔ Im(PωH) + Im
(

PωLϕ

)
= L2(ω).

(2) ⇒ (3). For every z ∈ L2(ω), we designate by z̃ the prolongation of z to L2(Ω).
Given Im(PωH) + Im

(
PωLϕ

)
= L2(ω), there is a control u ∈ U, ϕ ∈ L2(−h, 0; L2(Ω)

)
, and

z1 ∈ Ker(Pω), such that z̃ = z1 +Hu+ Lϕ ϕ.
(3) ⇒ (2). For every z̃ ∈ L2(Ω), it follows from (3) that z̃ = z1 + z2 + z3, where

z1 ∈ Ker(Pω), z2 ∈ ImH, and z3 ∈ ImL. Then, there exists u ∈ U such that Hu = z2 and
ϕ ∈ L2(−h, 0; L2(Ω)) such that Lϕ ϕ = z3. Hence, it follows from (25) that

Im(PωH) + Im(PωLϕ) = L2(ω).

The proof is complete.
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Proposition 2. The following properties are equivalent:

(1) System (1) is ω-weakly controllable;
(2) Im

(
Pω(H+ Lϕ)

)
= L2(ω);

(3) Ker(Pω) + Im
(
H+ Lϕ

)
= L2(Ω).

Proof. The proof that (1)⇔ (2)⇔ (3) is similar to the proof of Proposition 1 and is left to
the reader.

We give an illustrative example of the application of our results.

Example 1. Consider the time fractional order differential system with a zonal actuator governed
by the state equation

C
0 Dr

t z(x, t) = ∆z(x, t) + P[β1,β2]u(t− h) in [0, 1]× [0, τ − h],
z(0) = z0,
u(t) = ϕ(t),

(30)

where 0 < r < 1, Bu = P[β1,β2]u and 0 ≤ β1 ≤ β2 ≤ 1. Moreover, since A =
∂2·
∂x2 is a

self-adjoint operator, we find that the eigenvalues of the operator A are given by υi = −i2π2 and its
eigenfunctions by ζi(x) =

√
2 sin(iπx). The uniformly continuous semigroup generated by A is

Ξ(t)z(x, t) =
∞

∑
i=1

e(υit)(z, ζi)L2(0,1)ζi(x).

It implies

Sr(t)z(x, t) = r
∫ ∞

0
θφr(θ)Ξ(trθ)z(x, t)dθ = r

∞

∑
i=1

E2
r,r+1(υitr)(z, ζi)L2(0,1)ζi(x),

and we obtain that

(
H+ Lϕ

)∗z(x, t) = 2
[
B∗(τ − σ− h)r−1S∗r (τ − σ− h)z

]
(x, t)

= 2rB∗(τ − σ− h)r−1
∞

∑
i=1

E2
r,r+1(υi(τ − σ− h)r)(z, ζi)L2(0,1)ζi(x)

= 2r(τ − σ− h)r−1
∞

∑
i=1

E2
r,r+1(υi(τ − σ− h)r)(z, ζi)L2(0,1)

∫ β2

β1

ζi(x)dx,

(31)

whereas from
∫ β2

β1

ζi(x)dx =

√
2

iπ
sin

iπ(β1 + β2)

2
sin

iπ(β1 − β2)

2
we obtain Ker

(
H+ Lϕ

)∗ 6= {0},
i.e., Im

(
H+ Lϕ

)
6= L2(ω), which means that System (30) is not controllable on Ω = [0, 1]. Let

[β1 = 0, β2 = 1/3]. We then have

∫ 1/3

0
ζi(x)dx =

∫ 1/3

0

√
2 sin(iπx)dx

=
√

2
[
−cos(iπx)

iπ

]1/3

0

=

√
2

iπ
(1− cos(iπ/3)).

If ω = [1/3, 2/3] ⊂ [0, 1], then
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(
H+ Lϕ

)∗P∗ω(Pωζ j
)
= 2r(τ − σ− h)r−1

∞

∑
k=1

E2
r,r+1(υk(τ − σ− h)r)〈ζi, ζ j〉L2(ω)

∫ 1/3

0
ζi(x)dx

=
∞

∑
k=1

rE2
r,r+1(υk(τ − σ− h)r)

2(τ − σ− h)1−r 〈ζi, ζ j〉L2(ω)

∫ 1/3

0
ζi(x)dx

=
∞

∑
k=1

rE2
r,r+1(υk(τ − σ− h)r)

2(τ − σ− h)1−r

∫ 2/3

1/3
ζi(x)ζ j(x)dx

√
2

iπ
(1− cos(iπ/2))

=
∞

∑
k=1

rE2
r,r+1(υk(τ − σ− h)r)
√

2iπ(τ − σ− h)1−r

∫ 2/3

1/3
ζi(x)ζ j(x)dx[1− cos(iπ/2)]

6= 0.

(32)

We conclude that the state ζ j is reachable on ω.

4. Optimal Control with a Regional Target

Fractional optimal control is a rapidly developing topic (see, for instance, [36–39]). This
section is motivated by the results of [10,40–44] and is devoted to the proof that the steering
control is a minimizer of a suitable optimal control problem. For this, we use an extended
version of the Hilbert uniqueness method (HUM) first introduced by Lions [45,46].

Let F be a closed subspace of L2(Ω). Our extended optimal control problem consists
of seeking a minimum-norm control that drives the system to F at time τ. More precisely,
we consider

inf
u
J (u) = inf

u

{∫ τ

0

1
2
‖u(t)‖2

dt : u ∈ Uad

}
, (33)

where Uad =
{
u ∈ U | Pωzu(·, τ)− zd ∈ F

}
, and the set

F◦ =
{

f ∈ L2(Ω) | f = 0 in Ω \ω
}

.

For ψ0 ∈ F◦, we consider the system
C
t Dr

τQψ(t) = −A∗Qψ(t),
lim

t→τ−
t I1−r

τ Qψ(t) = ψ0 ⊂ L2(Ω), (34)

in L2(Ω) and let

‖ψ0‖
2

F◦
=
∫ τ

0
‖B∗(τ − σ− h)r−1S∗r (τ − σ− h)P∗

ω
ψ(σ)‖2dσ, (35)

which is a semi-norm on F◦.
Using Lemma 2, we can rewrite (34) as

C
0 Dr

t ψ(t) = −A∗ψ(t),
lim

t→0+
0 I1−r

t ψ(t) = ψ0 ⊂ L2(Ω), (36)

with the solution given by ψ(t) = −tr−1K∗r ψ0 .

Theorem 2. If u spans U, then zu(x, τ) = L2(Ω).

Proof. Take z(x, 0) = z0(x) = 0 and suppose that zu(x, τ) is not dense in L2(Ω). Conse-
quently, there is ψ0 ∈ L2(Ω), ψ0 6= 0, such that

〈zu(x, τ), ψ0〉 = 0, ∀u ∈ U. (37)
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By multiplying both sides of (34) by z(t) and then integrating it over Q, we obtain∫
Ω

∫ τ

0
z(x, t)C

0 Dr
tQψ(t)dtdx =

∫ τ

0
〈z(x, t),−A∗Qψ(t)〉Ωdt

= −
∫ τ

0
〈Az(x, t),Qψ(t)〉Ωdt.

(38)

From Lemma 3, we have∫
Ω

∫ τ

0
z(x, t)C

0 Dr
tQψ(t)dtdx =

∫
Ω

[
z(x, t)t I1−r

τ Qψ(t)
]τ

0
−
∫

Ω

∫ τ

0
Qψ(t)C

0 Dr
t z(x, t)dtdx

=

〈
z(x, τ), lim

t→τ
t I1−r

τ Qψ(t)
〉

Ω
−
〈

z(x, 0), lim
t→0

t I1−r
τ Qψ(t)

〉
Ω

−
∫ τ

0

〈
Qψ(t), C

0 Dr
t z(x, t)

〉
Ω

dt

= 〈z(x, τ), ψ0〉 −
∫ τ

0

〈
Qψ(t), C

0 Dr
t z(x, t)

〉
Ω

dt

= 〈z(x, τ), ψ0〉 −
∫ τ

0
〈Qψ(t),Az(x, t) +Bu(t− h)〉dt.

(39)

From Equations (38) and (39), one has

〈z(x, τ), ψ0〉 =
∫ τ

0
〈Qψ(t),Bu(t− h)〉dt. (40)

Using (37), we have∫ τ

0
〈Qψ(t),Bu(t− h)〉dt = 0⇔ Qψ(t) = ψ(τ − t) ≡ 0, in L2(Ω), ∀t ∈ [0, τ]. (41)

Then ψ0 = 0, which is a contradiction. The proof is complete.

To proceed with the HUM approach, we first need to prove that the semi-norm || · ||
on F◦ in (35) is a norm. We prove the next results.

Lemma 5. Assuming that (H1)–(H2) hold, (35) defines a norm of F◦ when System (1) is ω-weakly
controllable.

Proof. Suppose that system (1) is ω-weakly controllable. Then, Ker((H+ Lϕ)∗P∗ω ) = {0},
that is,

B∗(τ − σ− h)r−1S∗r (τ − σ− h)P∗
ω

ψ = 0 =⇒ ψ = 0.

Therefore, for every ψ0 ∈ F◦, it follows that

‖ψ0‖F◦ =
∫ τ

0
‖B∗(τ − t− h)r−1S∗r (τ − t− h)P∗

ω
ψ(t)‖2dt = 0

⇔ B∗(τ − t− h)r−1S∗r (τ − t− h)P∗
ω

ψ(t) = 0.

Then, (35) is a norm.

Furthermore, let us define an operatorM : F◦∗ → F◦ by

M f = P(φ(τ)), (42)

where P = P∗
ω

Pω and φ is defined by{
C
0 Dr

t φ(t) = Aφ(t) +BB∗(τ − t− h)r−1S∗r (τ − t− h)ψ(t),
φ(0) = z0 .

(43)



Mathematics 2022, 10, 4813 11 of 16

We then decomposeM as

M f = P(φ1(τ) + φ2(τ)),

where {
C
0 Dr

t φ1(t) = Aφ1(t),
φ1(0) = z0 ,

(44)

and{
C
0 Dr

t φ2(t) = Aφ2(t) +BB∗(τ − t− h)r−1S∗r (τ − t− h)ψ(t), t ∈ [0, τ − h],
φ2(0) = 0.

(45)

Let
Λψ0 = PωP(φ2(τ)). (46)

Then, the regional controllability problem leads to the resolution of the equation

Λψ0 = zd − PωP(φ1(τ)). (47)

For any f ∈ (F◦)∗ and g ∈ F, by Holder’s inequality we have that

〈Λ f , g〉 =
∫

Ω
Pω

∫ τ

0
(τ − σ− h)r−1Sr (τ − σ− h)BB∗(τ − σ− h)r−1

×S∗r (τ − σ− h)P∗
ω

f (σ)dσg(x)dx

≤
∫ τ

0
‖ B∗(τ − σ− h)r−1S∗r (τ − σ− h)P∗

ω
f (σ) ‖2 dσ ‖ g ‖

≤‖ f ‖‖ g ‖,

and ‖ Λ f ‖≤‖ f ‖. Moreover, for any f ∈ (F◦)∗, we obtain

〈Λψ0 , ψ0 〉F◦∗ ,F◦ = 〈PωP(φ2 (τ)), ψ0 〉

=

〈∫ τ

0
Pω(τ − σ− h)r−1Sr (τ − σ− h)BB∗(τ − σ− h)r−1S∗

r
(τ − σ− h)P∗

ω
ψ0 (σ)dσ, ψ0 (σ)

〉
=
∫ τ

0

〈
B∗(τ − σ− h)r−1S∗

r
(τ − σ− h)P∗

ω
ψ0 (σ),B

∗(τ − σ− h)r−1Sr(τ − σ− h)P∗ωψ0 (σ)
〉

dσ

=
∫ τ

0
‖B∗(τ − σ− h)r−1S∗

r
(τ − σ− h)P∗

ω
ψ0 (σ)‖2dσ

= ‖ψ0‖2
F◦ .

Consequently, if System (1) is ω-weakly controllable at τ, we find that ψ0 = 0. From
the uniqueness ofM, we find that Λ defined in (46) is an isomorphism.

Theorem 3. If System (1) is ω-weakly controllable, for any zd ∈ L2(ω), (47) has a unique solution
ψ0 ∈ F◦ and the control

u∗(t) =

{
B∗(τ − t− h)r−1S∗r (τ − t− h)P∗ωψ(t), 0 ≤ t ≤ τ − h,
ϕ(t), τ − h ≤ t ≤ τ,

(48)

steers the system to zd in ω. Moreover, u∗ solves the minimization optimal control problem in (33).

Proof. If System (1) is ω-weakly controllable, (35) is a norm. Let us consider the completion
of F◦ regarding the norm in (35) and let us denote it again by F◦. Now, we prove that (47)
admits a unique solution in F◦. For any ψ0 ∈ F◦, one has

〈Λψ0 , ψ0〉F◦∗ ,F◦ = 〈PωP(φ1(τ)), ψ0〉 = ‖ψ0‖2
F◦ .
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Using Theorems 1.1 and 2.1 in [45], one can see that (47) has a unique solution.
Moreover, by setting u = u∗ in System (1), we have Pωzu∗(x, τ) = zd . For u and v in Uad,
one has Pωzu(x, τ) = Pωzv(x, τ) = zd so Pω [zu(x, τ)− zv(x, τ)] = 0. We can easily find,
for any ψ0 ∈ F◦, that

〈ψ0 , Pω [zu(x, τ)− zv(x, τ)]〉 = 0

⇔ 〈ψ0 , Pω

∫ τ−h

0
(τ − σ− h)r−1Sr(τ − σ− h)B[u(σ)− v(σ)]dσ〉 = 0

⇔
∫ τ−h

0
〈B∗(τ − σ− h)r−1S∗r (τ − σ− h)P∗

ω
ψ0 , u(σ)− v(σ)〉dσ = 0,

and

J ′(u)(u− v) =
∫ τ−h

0
〈u(σ), u(σ)− v(σ)〉dσ

=
∫ τ−h

0
〈B∗(τ − σ− h)r−1S∗r (τ − σ− h)P∗ωψ0 , u(σ)− v(σ)〉dσ

= 0.

Because Uad is convex, by using Theorem 1.3 in [45], we establish the optimality of
u∗.

5. Examples

We provide two illustrative examples for cases of both a bounded (Section 5.1) and an
unbounded control operator (Section 5.2).

5.1. Example 1: Zonal Actuator

We consider the system
C
0 D0.3

t z(x, t) = ∆z(x, t) + P[β1,β2]
u(t− h), [0, 1]× [0, τ − h],

z(x, 0) = 0,
u(t) = ϕ(t), −h ≤ t ≤ 0,

(49)

with a fractional order r = 0.3. Here, the control operator B is bounded, [β1, β2] = [0, 1/2],

A = ∆ =
∂2·
∂x2 , and the semigroup (T (t))t≥0 is given by

T (t)z(x, t) =
∞

∑
i=1

eυit(z, ζi)ζi(x), x ∈ [0, 1],

where υi = −i2π2 and ζi(x) =
√

2 sin(iπx), i = 1, 2, . . . Then, (T (t))t≥0 is uniformly
bounded. Moreover, one has

S0.3(t)z(x, t) = 0.3
∫ ∞

0
θΦ0.3(θ)T (t0.3θ)z(x, t)dθ

= 0.3
∫ ∞

0
θΦ0.3(θ)

∞

∑
i=1

eυit0.3θ(z, ζi)ζi(x)dθ

= 0.3
∞

∑
i=1

∞

∑
n=0

∫ ∞

0

(
υit0.3)n

n!
θn+1Φ0.3(θ)dθ(z, ζi)ζi(x)

= 0.3
∞

∑
i=1

∞

∑
n=0

(
υit0.3)n

n!
Γ(n + 2)

Γ(1 + 0.3n + 0.3)
(z, ζi)ζi(x)

= 0.3
∞

∑
i=1

E2
0.3,1.3

(
υit0.3

)
(z, ζi)ζi(x).

(50)
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Similarly, we have

R0.3(t)z(x, t) =
∞

∑
i=1

(z, ζi)E0.3,1

(
υit0.3

)
ζi(x). (51)

Let ω = [0.25, 0.75]. We can easily verify that System (49) is [0.25, 0.75]-controllable
using the same arguments in (32) and, by Theorem 3, we obtain

‖ f ‖F◦ =
∫ τ−h

0
‖0.3(τ − σ− h)−0.7

∞

∑
i=1

E2
0.3,1.3

(
υi(τ − σ− h)0.3

)
(z, ζi)P∗ω

∫ 1/2

0
f (x)dx‖2dσ,

which defines a norm on F◦. Moreover, Λ f = PωP(φ2(τ)) is an isomorphism and we
obtain the control

u∗(t) = 0.3(τ − σ− h)−0.7
∞

∑
i=1

E2
0.3,1.3

(
υi(τ − σ− h)0.3

)
(z, ζi)P∗ω

∫ 1/2

0
f (x)dx,

steering system in (49) from z0(x) to zd with minimum energy.

5.2. Example 2: Pointwise Actuator

Let us now consider the same system as in Example 1 with the control operator
B = δ(x− b), where 0 < b < 1 is the control action point. The system is given by

C
0 D0.3

t z(x, t) = ∆z(x, t) + δ(x− b)u(t− h), [0, 1]× [0, τ − h],
z(x, 0) = 0,
u(t) = ϕ(t), −h ≤ t ≤ 0,

(52)

with δ the impulse function defined byδ(t) = 0, for t 6= 0,∫ +∞

−∞
δ(t)dt = 1.

(53)

Here the operator B is unbounded. Using Equations (50) and (51), one has(
H+ Lϕ

)∗z(x, t) = 2
[
B∗(τ − σ− h)r−1S∗r (τ − σ− h)z

]
(x, t)

= 0.6
∞

∑
i=1

E2
0.3,1.3

(
υi(τ − σ− h)0.3)(z, ζi)L2(0,1)ζi(b)

(τ − σ− h)0.7 ·
(54)

If b ∈ Q, System (52) is not Ω-controllable. Considering ω = [1/3, 3/4] and b = 1/2,
System (52) is ω-controllable. Indeed,

(
H+ Lϕ

)∗z(x, t) = 0.6
∞

∑
i=1

E2
0.3,1.3

(
υi(τ − σ− h)0.3)(z, ζi)L2(0,1)

√
2 sin

(
i
π

2

)
(τ − σ− h)0.7

= 0.6
√

2
∞

∑
i=1

E2
0.3,1.3

(
υi(τ − σ− h)0.3)(z, ζi)L2(0,1) sin

(
i
π

2

)
(τ − σ− h)0.7 ·
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Then,

(
H+ Lϕ

)∗P∗ω(Pωζ j
)
= 0.6

√
2

∞

∑
k=1

E2
0.3,1.3

(
υk(τ − σ− h)0.3)

2(τ − σ− h)0.7 〈ζi, ζ j〉L2(ω) sin
(

i
π

2

)
= 0.6

√
2

∞

∑
k=1

E2
0.3,1.3

(
υk(τ − σ− h)0.3)

2(τ − σ− h)0.7 sin
(

i
π

2

) ∫ 2/3

1/3
ζi(x)ζ j(x)dx

6= 0.

Moreover,

‖ψ0‖F◦ =
∫ τ−h

0

∥∥∥(τ − σ− h)−0.7S∗0.3(τ − σ− h)P∗[1/3,3/4]ψ(b)
∥∥∥2

dσ

=
∫ τ−h

0

∥∥∥∥∥∥0.3
∞

∑
i=1

E2
0.3,1.3

(
υi(τ − σ− h)0.3

)
(z, ζi)P∗ωψ(1/2)

(τ − σ− h)0.7

∥∥∥∥∥∥
2

dσ.
(55)

From Lemma 5, (55) defines a norm on F◦ and (46) is an isomorphism from F◦∗ to F◦,
where φ2(τ) is the solution of the system{

C
0 D0.3

t φ2(t) = ∆φ2(t) + (τ − t− h)−0.7S∗
0.3
(τ − t− h)ψ(b), t ∈ [0, τ − h],

φ2(0) = 0.
(56)

By Theorem 3, we obtain the control

u∗(t) = 0.3
∞

∑
i=1

E2
0.3,1.3

(
υi(τ − σ− h)0.3

)
(z, ζi)P∗ωψ(1/2)

(τ − σ− h)0.7 dσ, (57)

steering system in (52) to zd, which is simultaneously the solution of the minimization
problem in (33), where ψ is a solution of (47) and φ1(τ) is a solution of{

C
0 D0.3

t φ1(t) = ∆φ1(t),
φ1(0) = z0 .

(58)

6. Conclusions

In this paper, we dealt with a fractional Caputo diffusion equation defined in (1). We
studied regional controllability with a delay in the control. By defining an attainable set, we
proved the exact and weak controllability of such a system. We also formulated a minimum
optimal energy control problem subject to System (1) and computed its optimal control.
The solution of the optimal control problem was obtained via an extension of the Hilbert
uniqueness method.

In future work, we intend to extend the obtained results (i) to the case of fractional
semi-linear systems with delays in either the control, state variables, or both; (ii) to the
case of neutral evolution systems [47,48] by extending the notion of regional controllability
to such systems; (iii) to the case of the complete controllability of nonlinear fractional
neutral functional differential equations [49] with delays; and (iv) to the case of the regional
stability of fractional delay systems [50]. Another line of research consists of developing
the numerical part and providing suitable numerical simulations for real problems. This is
under investigation and will be addressed elsewhere.
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38. Eroğlu, B.B.; şkan, D.Y. Comparative analysis on fractional optimal control of an SLBS model. J. Comput. Appl. Math. 2023,
421, 114840. [CrossRef]

39. Mamehrashi, K. Ritz approximate method for solving delay fractional optimal control problems. J. Comput. Appl. Math. 2023,
417, 114606. [CrossRef]

40. Jai, A.E.; Pritchard, A.J. Sensors and Actuators in Distributed Systems Analysis; Wiley: New York, NY, USA, 1988.
41. Zerrik, E. Regional Analysis of Distributed Parameter Systems. PhD Thesis, University of Rabat, Rabat, Morocco, 1993.
42. Karite, T.; Boutoulout, A. Regional enlarged controllability for parabolic semilinear systems. Int. J. Appl. Pure Math. 2017,

113, 113–129. [CrossRef]
43. Karite, T.; Boutoulout, A. Regional boundary controllability of semilinear parabolic systems with state constraints. Int. J. Dyn.

Syst. Differ. Equ. 2018, 8, 150–159.
44. Karite, T.; Boutoulout, A.; Torres, D.F.M. Enlarged controllability of Riemann–Liouville fractional differential equations. J. Comput.

Nonlinear Dyn. 2018, 13, 6. [CrossRef]
45. Lions, J.L. Optimal Control of Systems Governed by Partial Differential Equations; Springer: New York, NY, USA, 1971.
46. Lions, J.-L. Contrôlabilité Exacte, Perturbations et Stabilisation de Systèmes Distribués. Tome 1; Recherches en Mathématiques

Appliquées: Paris, France, 1988.
47. Huang, H.; Fu, X. Optimal control problems for a neutral integro-differential system with infinite delay. Evol. Equ. Control Theory

2022, 11, 177–197. [CrossRef]
48. Xi, X.X.; Hou, M.; Zhou, X.F.; Wen, Y. Approximate controllability of fractional neutral evolution systems of hyperbolic type. Evol.

Equ. Control Theory 2022, 11, 1037–1069. [CrossRef]
49. Wen, Y.; Xi, X.X. Complete controllability of nonlinear fractional neutral functional differential equations. Adv. Contin. Discret.

Models 2022, 2022, 1–11. [CrossRef]
50. Elshenhab, A.M.; Wang, X.; Cesarano, C.; Almarri, B.; Moaaz, O. Finite-time stability analysis of fractional delay system.

Mathematics 2022, 10, 1883. [CrossRef]

http://dx.doi.org/10.1016/j.camwa.2010.10.030
http://dx.doi.org/10.1007/s13540-022-00047-x
http://dx.doi.org/10.1016/j.camwa.2012.02.065
http://dx.doi.org/10.1016/j.camwa.2009.06.026
http://dx.doi.org/10.1515/fca-2016-0065
http://dx.doi.org/10.1016/j.jmaa.2011.04.058
http://dx.doi.org/10.1016/j.sigpro.2010.07.016
http://dx.doi.org/10.1016/j.cam.2022.114840
http://dx.doi.org/10.1016/j.cam.2022.114606
http://dx.doi.org/10.12732/ijpam.v113i1.11
http://dx.doi.org/10.1115/1.4038450
http://dx.doi.org/10.3934/eect.2020107
http://dx.doi.org/10.3934/eect.2021035
http://dx.doi.org/10.1186/s13662-022-03706-8
http://dx.doi.org/10.3390/math10111883

	Introduction
	Preliminary Results
	Regional Fractional Controllability
	Optimal Control with a Regional Target
	Examples
	Example 1: Zonal Actuator
	Example 2: Pointwise Actuator

	Conclusions
	References

