

Article

Pre-Hausdorffness and Hausdorffness in Quantale-Valued Gauge Spaces

Samed Özkan ¹, Samirah Alsulami ², Tesnim Meryem Baran ³ and Muhammad Qasim ⁴,*

- Department of Mathematics, Nevsehir Hacı Bektaş Veli University, Nevsehir 50300, Turkey
- Department of Mathematics, Collage of Science, University of Jeddah, Jeddah 21577, Saudi Arabia
- ³ MEB, Kayseri 38170, Turkey
- Department of Mathematics, National University of Sciences & Technology (NUST), H-12 Islamabad 44000, Pakistan
- * Correspondence: muhammad.qasim@sns.nust.edu.pk or qasim99956@gmail.com

Abstract: In this paper, we characterize each of T_0 , T_1 , Pre-Hausdorff and Hausdorff separation properties for the category **L-GS** of quantale-valued gauge spaces and \mathcal{L} -gauge morphisms. Moreover, we investigate how these concepts are related to each other in this category. We show that T_0 , T_1 and T_2 are equivalent in the realm of Pre-Hausdorff quantale-valued gauge spaces. Finally, we compare our results with the ones in some other categories.

Keywords: *L*-gauge space; topological category; separation; Hausdorffness

MSC: 54A05; 54B30; 54D10; 54A40; 18F60

Citation: Özkan, S.; Alsulami, S.; Baran, T.M.; Qasim, M. Pre-Hausdorffness and Hausdorffness in Quantale-Valued Gauge Spaces. *Mathematics* **2022**, *10*, 4819. https://doi.org/10.3390/ math10244819

Academic Editors: Salvador Romaguera, Dimitrios Georgiou and Manuel Sanchis

Received: 30 October 2022 Accepted: 12 December 2022 Published: 19 December 2022

Publisher's Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

1. Introduction

In 1989, Lowen [1,2] introduced approach spaces as a common framework for both metric and topological spaces. More precisely, let X be a set and let $pqMet^{\infty}(X)$ be the set of all extended pseudo-quasi metrics (pseudo-reflexive property and triangular inequality) on X, $\mathfrak{D} \subseteq pqMet^{\infty}(X)$ and $d \in pqMet^{\infty}(X)$, then

- (i) \mathfrak{D} is called ideal if it is closed under the formation of finite suprema and if it is closed under the operation of taking smaller function.
- (ii) $\mathfrak D$ dominates d if $\forall x \in X, \epsilon > 0$ and $\omega < \infty$ there exists $e \in \mathfrak D$ such that $d(x, \cdot) \wedge \omega \le e(x, \cdot) + \epsilon$ and if $\mathfrak D$ dominates d, then $\mathfrak D$ is called saturated.

If $\mathfrak D$ is an ideal in $pqMet^\infty(X)$ and saturated, then $\mathfrak D$ is called gauge. The pair $(X,\mathfrak D)$ is called a gauge-approach space [2]. Approach spaces can be defined by various distinct structures such as gauges, approach distances, approach systems or limit operators. Although these structures are conceptually different, they are equivalent, see [2].

Note that **Top**, the category of topological spaces and continuous maps, and **Met**, the category of metric spaces and non-expansive maps, can be embedded as a full and isomorphism-closed subcategory of **App**, the topological category of approach spaces and contractions. Therefore, metric and topological spaces are mostly studied in **App**.

Approach spaces are closely related to various disciplines and have several applications in practically all branches of mathematics, such as fixed point theory [3], convergence theory [4], domain theory [5] and probability theory [6]. Due to the widely recognized usefulness of approach spaces in research, several generalizations of approach spaces have emerged recently, including quantale-valued gauge spaces [7] and probabilistic approach spaces [8]. Quantale-valued bounded strong topological spaces and bounded interior spaces, which are frequently used by fuzzy mathematicians, have recently been used to characterize some quantale-valued approach spaces [9]. Although the classical approach structures (gauges, approach distances and approach systems) are equivalent, their arbitrary quantale generalizations are different, see Example 5.11 of [7,10].

Mathematics 2022, 10, 4819 2 of 14

Classical T_0 separation of topology has been extended to the topological category [11–13]. In 1991, Weck-Schwarz [14] and in 1995, Mehmet Baran and Hüseyin Altındiş [15] analyzed the relationship among these various generalizations of T_0 objects. T_0 objects are widely used to define and characterize various forms of Hausdorff [11] and sober [16] objects in topological categories.

Recall that a topological space (B, τ) is called a Pre-Hausdorff space if for each distinct pair $x, y \in B$, the subspace $(\{x, y\}, \tau_{\{x, y\}})$ is not indiscrete; then there exist disjoint neigbourhoods of x and y [11].

In 1994, Mielke [17] showed the important role of $Pre-T_2$ objects in general theory of geometric realization, their associated intervals and corresponding homotopic structures. In addition, in 1999, Mielke [18] used $Pre-T_2$ objects of topological categories to characterize decidable objects in Topos theory [19]. Another uses of Pre-Hausdorff objects is to define $Pre-T_2$ structures and partitions in some categories [20,21].

Note that there is no relationship between T_0 property and $\text{Pre-}T_2$ property. For example, let B be a set with at least two elements and τ be the indiscrete topology on B, then (B, τ) is $\text{Pre-}T_2$, but it is not T_0 . If we take the cofinite topology τ_c on the set of real numbers \mathbb{R} , then (\mathbb{R}, τ_c) is T_0 , but it is not $\text{Pre-}T_2$. However, if (B, τ) is a Pre-Hausdorff space, then by Theorem 3.5 of [22], all of T_0 , T_1 and T_2 are equivalent.

The salient objectives of the paper are stated:

- (i) To explicitly characterize each of T_0 , $\overline{T_0}$ and T_1 separation properties in the category **L-GS** of quantale-valued gauge spaces and \mathcal{L} -gauge morphisms;
- (ii) To give the characterization of each of Pre- $\overline{T_2}$, $\overline{T_2}$ and NT_2 in the category **L-GS**;
- (iii) To examine the mutual relationship among all these separation axioms;
- (iv) To compare our results with the ones in some other categories.

2. Preliminaries

In order theory, the *join* of a subset A of a partially ordered set (L, \leq) where \leq is any order on L, is the least upper bound (supremum) of A, denoted $\bigvee A$, and the *meet* of A is the greatest lower bound (infimum), denoted $\bigwedge A$. A *complete lattice* is a partially ordered set in which all subsets have both a join (\bigvee) and a meet (\bigwedge) . For any complete lattice, the top and bottom elements are denoted by \top and \bot , respectively. A complete lattice in which arbitrary joins distribute over arbitrary meets is said to be *completely distributive*.

Definition 1 ([23]). A quantale $\mathcal{L} = (L, \leq, *)$ is a complete lattice (L, \leq) endowed with a binary operation * satisfying the following:

- *(i)* (*L*, *) *is a semi group;*
- (ii) $(\bigvee_{i \in I} a_i) * b = \bigvee_{i \in I} (a_i * b)$ and $b * (\bigvee_{i \in I} a_i) = \bigvee_{i \in I} (b * a_i)$ for all $a_i, b \in L$ and index-set I, i.e., * is distributive over arbitrary joins.

Definition 2. Let (L, \leq) be a complete lattice, then the well-below relation \triangleleft and the well-above relation \triangleleft are defined by

- (i) $a \triangleleft b$ if $\forall K \subseteq L$ such that $b \subseteq \bigvee K$ there exists $k \in K$ such that $a \le k$;
- (ii) $a \prec b$ if $\forall K \subseteq L$ such that $\bigwedge K \leq a$ there exists $k \in K$ such that $k \leq b$.

Definition 3 ([23]). A quantale $\mathcal{L} = (L, \leq, *)$ is said to be

- (i) a commutative quantale if (L, *) is a commutative semi-group;
- (ii) an integral quantale if $a * \top = \top * a = a$ for all $a \in L$;
- (iii) a value quantale if \mathcal{L} is commutative and integral quantale with an underlying completely distributive lattice (L, \leq) such that $\bot \lhd \top$ and $a \lor b \lhd \top$ for all $a, b \lhd \top$;
- (iv) a linearly ordered quantale if either $a \le b$ or $b \le a$ for all $a, b \in L$.

Mathematics 2022, 10, 4819 3 of 14

Example 1. (i) Lawvere's quantale, $L = [0, \infty]$ with the opposite order and addition as the quantale operation, where $c + \infty = \infty + c = \infty$ for all $c \in L$, is a linearly ordered value quantale [23,24].

- (ii) Let $\mathcal{L} = ([0,1], \leq, *)$ be a triangular norm with a binary operation * defined as $\forall a,b \in [0,1]$, a*b=a.b and named as a product triangular norm [25]. The triple $\mathcal{L} = ([0,1], \leq, .)$ is a commutative and integral quantale.
- (iii) Let $\mathcal{L} = (\triangle^+, \leq, *)$ (a probabilistic quantale) where $\varphi * \Psi = \varphi.\Psi$ for all $\varphi, \Psi \in \triangle^+$, then \mathcal{L} is not linearly ordered quantale [7].

In this sequel, we consider only integral and commutative quantales \mathcal{L} with underlying completely distributive lattices.

Definition 4 (cf. [7]). Let X be a nonempty set. A map $m: X \times X \to \mathcal{L} = (L, \leq, *)$ is called an \mathcal{L} -metric on X if it satisfies for all $s \in X$, $m(s,s) = \top$, and for all $s, t, y \in X$, $m(s,t) * m(t,y) \leq m(s,y)$. The pair (X,m) is called an \mathcal{L} -metric space.

A map $f:(X,m_X)\to (Y,m_Y)$ is called an \mathcal{L} -metric morphism if $m_X(s_1,s_2)\leq m_Y(f(s_1),f(s_2))$ for all $s_1,s_2\in X$.

The category whose objects are \mathcal{L} -metric spaces and morphisms are \mathcal{L} -metric morphisms is denoted by **L-MET**. Furthermore, we define **L-MET**(**X**) as the set of all \mathcal{L} -metrics on X.

Example 2. (i) If $\mathcal{L} = (\{0,1\}, \leq, \wedge)$, then an \mathcal{L} -metric space is a preordered set.

- (ii) If \mathcal{L} is a Lawvere's quantale, then an \mathcal{L} -metric space is an extended pseudo-quasi metric space.
- (iii) If $\mathcal{L} = (\triangle^+, \leq, *)$, then an \mathcal{L} -metric space is a probabilistic quasi metric space [23].

Definition 5 (cf. [7]). *Let* $\mathcal{H} \subseteq L$ -*MET(X) and* $m \in L$ -*MET(X).*

- (i) m is called locally supported by $\mathcal H$ if for all $s \in X$, $a \triangleleft \top$, $\bot \prec \omega$, there is $n \in \mathcal H$ such that $n(s,.) * a \le m(s,.) \lor \omega$.
- (ii) \mathcal{H} is called locally directed if for all finite subsets $\mathcal{H}_0 \subseteq \mathcal{H}$, $\bigwedge_{m \in \mathcal{H}_0} m$ is locally supported by \mathcal{H} .
- (iii) \mathcal{H} is called locally saturated if for all $m \in L$ -MET(X) we have $m \in \mathcal{H}$ whenever m is locally supported by \mathcal{H} .
- (iv) The set $\mathcal{H} = \{m \in \mathbf{L}\text{-MET}(\mathbf{X}) : m \text{ is locally supported by } \mathcal{H}\}$ is called local saturation of \mathcal{H} .

Definition 6 (cf. [7]). Let X be a set. $\mathcal{G} \subseteq L$ -MET(X) is called an \mathcal{L} -gauge if \mathcal{G} satisfies the following:

- (i) $\mathcal{G} \neq \emptyset$.
- (ii) $m \in \mathcal{G}$ and $m \leq n$ implies $n \in \mathcal{G}$.
- (iii) $m, n \in \mathcal{G}$ implies $m \land n \in \mathcal{G}$.
- (iv) G is locally saturated.

The pair (X, \mathcal{G}) is called an \mathcal{L} -gauge space.

A map $f:(X,\mathcal{G})\to (X',\mathcal{G}')$ is called an \mathcal{L} -gauge morphism if $m'\circ (f\times f)\in \mathcal{G}$ whenever $m'\in \mathcal{G}'$.

The category whose objects are \mathcal{L} -gauge spaces and morphisms are \mathcal{L} -gauge morphisms is denoted by **L-GS** (cf. [7]).

Definition 7 (cf. [7]). Let (X, \mathcal{G}) be an \mathcal{L} -gauge space and let $\mathcal{H} \subseteq \mathbf{L}$ -MET(X). If $\tilde{\mathcal{H}} = \mathcal{G}$, then \mathcal{H} is called a basis for the gauge \mathcal{G} .

Proposition 1 (cf. [7]). Let $\mathcal{L} = (L, \leq, *)$ be a value quantale. If $\emptyset \neq \mathcal{H} \subseteq \mathbf{L}\text{-MET}(X)$ is locally directed, then $\mathcal{G} = \tilde{\mathcal{H}}$ is a gauge with \mathcal{H} as a basis.

Mathematics 2022, 10, 4819 4 of 14

Lemma 1 (pcf. [7]). Let $\mathcal{L} = (L, \leq, *)$ be a value quantale, (X_i, \mathfrak{B}_i) be the collection of \mathcal{L} -approach spaces and let $f_i : X \to (X_i, \mathfrak{B}_i)$ be a source. A basis for the initial \mathcal{L} -gauge on X is given by

$$\mathcal{H} = \{ \bigwedge_{i \in K} m_i \circ (f_i \times f_i) : K \subseteq I \text{ finite, } m_i \in \mathcal{G}_i, \forall i \in I \}$$

Lemma 2. Let X be a nonempty set and (X, \mathcal{G}) be an \mathcal{L} -gauge space.

- (i) The discrete \mathcal{L} -gauge structure on X is given by $\mathcal{G}_{dis} = \mathbf{L}$ -MET(X) [26].
- (ii) The indiscrete \mathcal{L} -gauge structure on X is given by $\mathcal{G}_{ind} = \{\top\}$ [7].

Note that for a value quantale \mathcal{L} , the category **L-GS** is a topological category [27,28] over **Set** (the category of sets and functions) [7].

3. T_0 and T_1 Quantale-Valued Approach Spaces

Let *X* be a non-empty set and the wedge $X^2 \mathbb{V}_{\triangle} X^2$ be the pushout of the diagonal $\triangle : X \to X^2$ along itself [11].

A point (s,t) in $X^2 \mathbb{V}_{\triangle} X^2$ is denoted as $(s,t)_1$ if it lies in the first component and as $(s,t)_2$ if it lies in the second component. Note that $(s,t)_1 = (s,t)_2$ if s = t.

Definition 8 (cf. [11]). $A: X^2 \mathbb{V}_{\triangle} X^2 \to X^3$, the principal axis map is defined by

$$A(s,t)_i = \begin{cases} (s,t,s), & i = 1\\ (s,s,t), & i = 2, \end{cases}$$

 $S: X^2 \mathbb{V}_{\triangle} X^2 \to X^3$, the skewed axis map is defined by

$$S(s,t)_i = \begin{cases} (s,t,t), & i = 1\\ (s,s,t), & i = 2, \end{cases}$$

and $\nabla: X^2 \mathbb{V}_{\wedge} X^2 \to X^2$, the fold map is defined by $\nabla(s,t)_i = (s,t)$ for i=1,2.

Definition 9. Let $U : \mathcal{E} \to \mathbf{Set}$ be a topological functor and $X \in Ob(\mathcal{E})$ with U(X) = B.

- (i) X is $\overline{T_0}$ if the initial lift of the U-source $\{A: B^2 \mathbb{V}_{\triangle} B^2 \to U(X^3) = B^3 \text{ and } \nabla: B^2 \mathbb{V}_{\triangle} B^2 \to UD(B^2) = B^2\}$ is discrete, where D is the discrete functor [11].
- (ii) X is T_0 if X does not contain an indiscrete subspace with at least two points [13].
- (iii) X is T_1 if the initial lift of the U-source $\{S: B^2 \mathbb{V}_{\triangle} B^2 \to U(X^3) = B^3 \text{ and } \nabla: B^2 \mathbb{V}_{\triangle} B^2 \to UD(B^2) = B^2\}$ is discrete [11].

In **Top**, both $\overline{T_0}$ and T_0 are equivalent, and they reduce to the usual T_0 separation property [11,13]. Similarly, T_1 reduces to classical T_1 property [11].

Theorem 1. An \mathcal{L} -gauge space (X,\mathcal{G}) is $\overline{T_0}$ if for all $s,t \in X$ with $s \neq t$, there exists $m \in \mathcal{G}$ such that $m(s,t) \land m(t,s) = \bot$.

Proof. Suppose (X, \mathcal{G}) is $\overline{T_0}$ and $s, t \in X$ with $s \neq t$. Let $\mathcal{H}_{dis} = \{m_{dis}\}$ be a basis for the discrete \mathcal{L} -gauge where m_{dis} is the discrete \mathcal{L} -metric on $X^2 \mathbb{V}_{\triangle} X^2$. For $(s, t)_1, (s, t)_2 \in X^2 \mathbb{V}_{\triangle} X^2$ with $(s, t)_1 \neq (s, t)_2$. Note that

$$\begin{array}{lcl} m_{dis}(\nabla(s,t)_1,\nabla(s,t)_2) & = & m_{dis}((s,t),(s,t)) = \top \\ m(\pi_1A(s,t)_1,\pi_1A(s,t)_2) & = & m(\pi_1(s,t,s),\pi_1(s,s,t)) = m(s,s) = \top \\ m(\pi_2A(s,t)_1,\pi_2A(s,t)_2) & = & m(\pi_2(s,t,s),\pi_2(s,s,t)) = m(t,s) \\ m(\pi_3A(s,t)_1,\pi_3A(s,t)_2) & = & m(\pi_3(s,t,s),\pi_3(s,s,t)) = m(s,t) \end{array}$$

Mathematics 2022, 10, 4819 5 of 14

Since $(s,t)_1 \neq (s,t)_2$ and (X,\mathcal{G}) is $\overline{T_0}$, by Lemma 1 and Definition 9 (i),

$$\perp = \bigwedge \{ m_{dis}(\nabla(s,t)_{1}, \nabla(s,t)_{2}), m(\pi_{k}A(s,t)_{1}, \pi_{k}A(s,t)_{2})(k = 1,2,3) \}
= \bigwedge \{ \top, m(s,t), m(t,s) \}
= m(s,t) \wedge m(t,s)$$

Conversely, let $\overline{\mathcal{H}}$ be the initial \mathcal{L} -gauge basis on $X^2 \mathbb{V}_{\triangle} X^2$ induced by $A: X^2 \mathbb{V}_{\triangle} X^2 \to U(X^3, \mathcal{G}^3) = X^3$ and $\nabla: X^2 \mathbb{V}_{\triangle} X^2 \to U(X^2, \mathcal{G}_{dis}) = X^2$, where, by Lemma 2 (i), $\mathcal{G}_{dis} = \mathbf{L}$ -**MET(X)** is the discrete \mathcal{L} -gauge on X^2 , and \mathcal{G}^3 is the product structure on X^3 induced by the projection maps $\pi_k: X^3 \to X$ for k=1,2,3.

Suppose for all $s, t \in X$ with $s \neq t$, there exists $m \in \mathcal{G}$ such that $m(s, t) \land m(t, s) = \bot$. Let $\overline{m} \in \overline{\mathcal{H}}$ and $u, v \in X^2 \mathbb{V}_{\wedge} X^2$.

Case I: If u = v, then $\overline{m}(u, v) = \overline{m}(u, u) = \top$

Case II: If $u \neq v$ and $\nabla u \neq \nabla v$, then $m_{dis}(\nabla u, \nabla v) = \bot$ since m_{dis} is discrete. By Lemma 1,

$$\overline{m}(u,v) = \bigwedge \{m_{dis}(\nabla u, \nabla v), m(\pi_k A u, \pi_k A v)(k = 1,2,3)\}$$

$$= \bigwedge \{\bot, m(\pi_1 A u, \pi_1 A v), m(\pi_2 A u, \pi_2 A v), m(\pi_3 A u, \pi_3 A v)\} = \bot$$

Case III: Suppose $u \neq v$ and $\nabla u = \nabla v$. If $\nabla u = (s,t) = \nabla v$ for some $s,t \in X$ with $s \neq t$, then $u = (s,t)_1$ and $v = (s,t)_2$ or $u = (s,t)_2$ and $v = (s,t)_1$ since $u \neq v$. If $u = (s,t)_1$ and $v = (s,t)_2$, then

$$\begin{array}{rcl} m_{dis}(\nabla u, \nabla v) & = & m_{dis}(\nabla(s,t)_1, \nabla(s,t)_2) \\ & = & m_{dis}((s,t),(s,t)) = \top \\ m(\pi_1 A u, \pi_1 A v) & = & m(\pi_1 A(s,t)_1, \pi_1 A(s,t)_2) \\ & = & m(s,s) = \top \\ m(\pi_2 A u, \pi_2 A v) & = & m(\pi_2 A(s,t)_1, \pi_2 A(s,t)_2) = m(t,s) \\ m(\pi_3 A u, \pi_3 A v) & = & m(\pi_3 A(s,t)_1, \pi_3 A(s,t)_2) = m(s,t) \end{array}$$

It follows that

$$\begin{array}{ll} \overline{m}(u,v) & = & \overline{m}((s,t)_1,(s,t)_2) \\ & = & \bigwedge \left\{ m_{dis}(\nabla(s,t)_1,\nabla(s,t)_2), m(\pi_k A(s,t)_1,\pi_k A(s,t)_2)(k=1,2,3) \right\} \\ & = & \bigwedge \left\{ \top, m(s,t), m(t,s) \right\} \\ & = & m(s,t) \land m(t,s) \end{array}$$

By the assumption $m(s,t) \wedge m(t,s) = \bot$, and we have $\overline{m}(u,v) = \bot$. Similarly, if $u = (s,t)_2$ and $v = (s,t)_1$, then $\overline{m}(u,v) = \bot$. Therefore, for all $u,v \in X^2 \mathbb{V}_{\triangle} X^2$, we have

$$\overline{m}(u,v) = \begin{cases} \top, & u = v \\ \bot, & u \neq v \end{cases}$$

and by Lemma 2 (i), \overline{m} is the discrete \mathcal{L} -metric on $X^2 \mathbb{V}_{\triangle} X^2$. Hence, by Definition 9 (i), (X, \mathcal{G}) is $\overline{T_0}$. \square

Note that in a quantale $(L, \leq, *)$, if $p \in L$ and $p \neq \top$, then p is called a prime element if $a \land b \leq p$ implies $a \leq p$ or $b \leq p$ for all $a, b \in L$.

Corollary 1. Let (X, \mathcal{G}) be an \mathcal{L} -gauge space where \mathcal{L} has a prime bottom element. (X, \mathcal{G}) is $\overline{T_0}$ if for all $s, t \in X$ with $s \neq t$, there exists $m \in \mathcal{G}$ such that $m(s, t) = \bot$ or $m(t, s) = \bot$.

Mathematics 2022, 10, 4819 6 of 14

Proof. It follows from the definition of the prime bottom element and Theorem 1. \Box

Theorem 2. An \mathcal{L} -gauge space (X, \mathcal{G}) is T_0 if for all $s, t \in X$ with $s \neq t$, there exists $m \in \mathcal{G}$ such that $m(s,t) < \top$ or $m(t,s) < \top$.

Proof. Let (X, \mathcal{G}) be T_0 , $B = \{s, t\} \subset X$ and \mathcal{H}_B be the initial \mathcal{L} -gauge basis induced by $i: B \to (X, \mathcal{L})$ and $m_B \in \mathcal{H}_B$. For all $s, t \in X$ with $s \neq t$, $m_B(s, t) = m(i(s), i(t)) = m(s, t)$ or $m_B(t, s) = m(i(t), i(s)) = m(t, s)$. It follows that $m(s, t) < \top$ or $m(t, s) < \top$; otherwise $m(s, t) = \top = m(t, s)$, and X contains an indiscrete subspace with at least two elements.

Conversely, suppose the condition holds. Let B be an indiscrete subspace of X with at least two elements $s,t \in B$ with $s \neq t$. Let \mathcal{H}_B be the initial \mathcal{L} -gauge basis induced by $i: B \to (X, \mathcal{L})$ and $m_B \in \mathcal{H}_B$. It follows that $T = m_B(s,t) = m(i(s),i(t)) = m(s,t)$ and $T = m_B(t,s) = m(i(t),i(s)) = m(t,s)$ and consequently, m(s,t) = T = m(t,s), a contradiction to our assumption. Therefore, X does not contain an indiscrete subspace with at least two elements. Hence, by Definition 9 (ii), (X,\mathcal{G}) is T_0 . \square

Theorem 3. An \mathcal{L} -gauge space (X,\mathcal{G}) is T_1 if for all $s,t\in X$ with $s\neq t$, there exists $m\in \mathcal{G}$ such that $m(s,t)=\perp=m(t,s)$.

Proof. Suppose that (X, \mathcal{G}) is T_1 and $s, t \in X$ with $s \neq t$. Let $u = (s, t)_1$, $v = (s, t)_2 \in X^2 \mathbb{V}_{\wedge} X^2$. Note that

$$\begin{array}{lcl} m_{dis}(\nabla u, \nabla v) & = & m_{dis}((s,t),(s,t)) = \top \\ m(\pi_1 S u, \pi_1 S v) & = & m(\pi_1(s,t,t),\pi_1(s,s,t)) = m(s,s) = \top \\ m(\pi_2 S u, \pi_2 S v) & = & m(\pi_2(s,t,t),\pi_2(s,s,t)) = m(t,s) \\ m(\pi_3 S u, \pi_3 S v) & = & m(\pi_3(s,t,t),\pi_3(s,s,t)) = m(t,t) = \top \end{array}$$

where m_{dis} is the discrete \mathcal{L} -metric on $X^2 \mathbb{V}_{\triangle} X^2$ and $\pi_k : X^3 \to X$ are the projection maps for k = 1, 2, 3. Since $u \neq v$ and (X, \mathcal{G}) is T_1 , by Lemma 1 and Definition 9 (iii),

$$\perp = \bigwedge \{ m_{dis}(\nabla u, \nabla v), m(\pi_k S u, \pi_k S v)(k = 1, 2, 3) \} = \bigwedge \{ \top, m(t, s) \} = m(t, s)$$

Similarly, if $u = (s, t)_2$, $v = (s, t)_1 \in X^2 \mathbb{V}_{\triangle} X^2$, then

$$\bot = \bigwedge \{m_{dis}(\nabla u, \nabla v), m(\pi_k S u, \pi_k S v)(k = 1, 2, 3)\} = \bigwedge \{\top, m(s, t)\} = m(s, t)$$

Conversely, let $\overline{\mathcal{H}}$ be the initial \mathcal{L} -gauge basis on $X^2 \mathbb{V}_{\triangle} X^2$ induced by $S: X^2 \mathbb{V}_{\triangle} X^2 \to U(X^3, \mathcal{G}^3) = X^3$ and $\nabla: X^2 \mathbb{V}_{\triangle} X^2 \to U(X^2, \mathcal{G}_{dis}) = X^2$ where, by Proposition 2, $\mathcal{G}_{dis} = \mathbf{L}$ -**MET(X)** is the discrete \mathcal{L} -gauge on X^2 and \mathcal{G}^3 is the product structure on X^3 induced by the projection maps $\pi_k: X^3 \to X$ for k=1,2,3.

Suppose for all $s, t \in X$ with $s \neq t$, there exists $m \in \mathcal{G}$ such that $m(s, t) = \bot = m(t, s)$. Let $\overline{m} \in \overline{\mathcal{H}}$ and $u, v \in X^2 \mathbb{V}_{\wedge} X^2$.

Case I: If u = v, then $\overline{m}(u, v) = \overline{m}(u, u) = \top$

Case II: If $u \neq v$ and $\nabla u \neq \nabla v$, then $m_{dis}(\nabla u, \nabla v) = \bot$ since m_{dis} is a discrete structure on X^2 . By Lemma 1,

$$\overline{m}(u,v) = \bigwedge \{ m_{dis}(\nabla u, \nabla v), m(\pi_k S u, \pi_k S v)(k=1,2,3) \}$$

$$= \bigwedge \{ \bot, m(\pi_1 S u, \pi_1 S v), m(\pi_2 S u, \pi_2 S v), m(\pi_3 S u, \pi_3 S v) \} = \bot$$

Case III: Suppose $u \neq v$ and $\nabla u = \nabla v$. If $\nabla u = (s,t) = \nabla v$ for some $s,t \in X$ with $s \neq t$, then $u = (s,t)_1$ and $v = (s,t)_2$ or $u = (s,t)_2$ and $v = (s,t)_1$ since $u \neq v$.

Mathematics 2022, 10, 4819 7 of 14

If $u = (s, t)_1$ and $v = (s, t)_2$, then by Lemma 1,

$$\overline{m}(u,v) = \overline{m}((s,t)_{1},(s,t)_{2})
= \bigwedge \{m_{dis}(\nabla(s,t)_{1},\nabla(s,t)_{2}), m(\pi_{k}S(s,t)_{1},\pi_{k}S(s,t)_{2})(k=1,2,3)
= \bigwedge \{\top, m(t,s)\} = m(t,s) = \bot$$

since $s \neq t$ and $m(t,s) = \bot$.

Similarly, if $u = (s, t)_2$ and $v = (s, t)_1$, then $m(s, t) = \bot$. Hence, for all $u, v \in X^2 \mathbb{V}_{\wedge} X^2$, we obtain

$$\overline{m}(u,v) = \begin{cases} \top, & u = v \\ \bot, & u \neq v \end{cases}$$

and it follows that \overline{m} is the discrete \mathcal{L} -metric on $X^2 \mathbb{V}_{\triangle} X^2$. By Definition 9 (iii), (X, \mathcal{G}) is T_1 . \square

4. (Pre-)Hausdorff L-Gauge Spaces

Definition 10. *Let* $U : \mathcal{E} \to \mathbf{Set}$ *be a topological functor and* $X \in Ob(\mathcal{E})$ *with* U(X) = B.

- (i) X is $Pre-\overline{T_2}$ if the initial lifts of U-sources $\{A: B^2 \mathbb{V}_{\triangle} B^2 \rightarrow U(X^3) = B^3 \text{ and } \{S: B^2 \mathbb{V}_{\triangle} B^2 \rightarrow U(X^3) = B^3 \text{ coincide } [11].$
- (ii) X is $\overline{T_2}$ if X is $\overline{T_0}$ and $Pre-\overline{T_2}$ [11].
- (iii) X is NT_2 if X is T_0 and $Pre-\overline{T_2}$ [29].

In **Top**, both $\overline{T_2}$ and NT_2 are equivalent, and they reduce to the usual T_2 [11,13]. By Theorem 2.1 of [30], a topological space (B, τ) is Pre-Hausdorff if the initial topologies on $B^2 \mathbb{V}_{\triangle} B^2$ induced by the maps A and S agree.

Theorem 4. An \mathcal{L} -gauge space (X,\mathcal{G}) is $Pre-\overline{T_2}$ if there exists $m \in \mathcal{G}$ such that the following conditions are satisfied.

- (I) For all $s, t \in X$ with $s \neq t$, $m(s, t) \land m(t, s) = m(s, t) = m(t, s)$.
- (II) For any three distinct points $s, t, y \in X$, $m(t, s) \land m(y, s) \land m(t, y) = m(t, s) \land m(y, s) = m(s, t) \land m(y, t) = m(y, s) \land m(t, y)$.
- (III) For any four distinct points $s,t,y,z \in X$, $m(s,y) \wedge m(t,y) \wedge m(t,z) = m(s,y) \wedge m(t,y) \wedge m(s,z) = m(s,z) \wedge m(t,y) \wedge m(t,z) = m(s,y) \wedge m(t,z) \wedge m(s,z)$.

Proof. Suppose that (X, \mathcal{G}) is $\text{Pre-}\overline{T_2}$ and $s, t \in X$ with $s \neq t$. Let $\pi_k : X^3 \to X$, k = 1, 2, 3 be the projection maps.

Suppose $u = (s, t)_1, v = (s, t)_2 \in X^2 \mathbb{V}_{\triangle} X^2$. Note that

$$\begin{array}{lcl} m(\pi_1 A u, \pi_1 A v) & = & m(\pi_1(s,t,s), \pi_1(s,s,t)) = m(s,s) = \top \\ m(\pi_2 A u, \pi_2 A v) & = & m(\pi_2(s,t,s), \pi_2(s,s,t)) = m(t,s) \\ m(\pi_3 A u, \pi_3 A v) & = & m(\pi_3(s,t,s), \pi_3(s,s,t)) = m(s,t) \end{array}$$

and

$$m(\pi_1 Su, \pi_1 Sv) = m(\pi_1(s, t, t), \pi_1(s, s, t)) = m(s, s) = \top$$

 $m(\pi_2 Su, \pi_2 Sv) = m(\pi_2(s, t, t), \pi_2(s, s, t)) = m(t, s)$
 $m(\pi_3 Su, \pi_3 Sv) = m(\pi_3(s, t, t), \pi_3(s, s, t)) = m(t, t) = \top$

Mathematics 2022, 10, 4819 8 of 14

Since (X, \mathcal{G}) is Pre- $\overline{T_2}$ and by Definition 10 (i), we have

Let $u=(s,t)_2, v=(s,t)_1 \in X^2 \mathbb{V}_{\triangle} X^2$. Similarly, since (X,\mathcal{G}) is $\operatorname{Pre-}\overline{T_2}$ and by Definition 10 (i), we have $m(s,t) \wedge m(t,s) = m(s,t)$, and consequently $m(s,t) \wedge m(t,s) = m(s,t) = m(t,s)$.

Let s, t, y be any three distinct points of X. Since (X, \mathcal{G}) is $\text{Pre-}\overline{T_2}$ and by Definition 10 (i), we have

and

By condition (I), we have $m(t,s) \wedge m(y,s) \wedge m(t,y) = m(t,s) \wedge m(y,s) = m(s,t) \wedge m(y,t) = m(y,s) \wedge m(t,y)$.

Let s, t, y, z be any four distinct points of X. Since (X, \mathcal{G}) is $\text{Pre-}\overline{T_2}$ and by Definition 10 (i), we have

and

By condition (I), we have $m(s,y) \wedge m(t,y) \wedge m(t,z) = m(s,y) \wedge m(t,y) \wedge m(s,z) = m(s,z) \wedge m(t,y) \wedge m(t,z) = m(s,y) \wedge m(t,z) \wedge m(s,z)$.

Conversely, suppose that the conditions hold. Then, we will show that (X,\mathcal{G}) is Pre $\overline{T_2}$. Let $\overline{\mathcal{H}}$ and \mathcal{H}' be two initial \mathcal{L} -gauge bases on $X^2\mathbb{V}_\triangle X^2$ induced by $A: X^2\mathbb{V}_\triangle X^2 \to U(X^3,\mathcal{G}^3) = X^3$ and $S: X^2\mathbb{V}_\triangle X^2 \to U(X^3,\mathcal{G}^3) = X^3$, respectively, and \mathcal{G}^3 be the product structure on X^3 induced by $\pi_k: X^3 \to X$ the projection map for k=1,2,3. Let \overline{m} and m' be any two \mathcal{L} -metrics in $\overline{\mathcal{H}}$ and \mathcal{H}' , respectively. We need to show that $\overline{m}=m'$.

First, note that \overline{m} and m' are symmetric by assumption (I), $m(s,t) \land m(t,s) = m(s,t) = m(t,s)$.

Suppose u and v are any two points in $X^2 \mathbb{V}_{\triangle} X^2$. If u = v, then $\overline{m}(u, v) = \overline{m}(u, u) = \top = m'(u, u) = m'(u, v)$. Mathematics 2022, 10, 4819 9 of 14

If $u \neq v$, and they are in the same component of $X^2 \mathbb{V}_{\triangle} X^2$, i.e., $u = (s,t)_i$ and $v = (y,z)_i$ for i = 1,2, then

$$\overline{m}(u,v) = \bigwedge \{m(\pi_k A u, \pi_k A v) : k = 1,2,3\}$$

$$= \bigwedge \{m(s,y), m(t,z)\}$$

$$= \bigwedge \{m(\pi_k S u, \pi_k S v) : k = 1,2,3\}$$

$$= m'(u,v)$$

Suppose $u \neq v$, and they are in the different component of $X^2 \mathbb{V}_{\triangle} X^2$. We have:

Case I: $u = (s, t)_1$ or $(t, s)_1$ and $v = (s, t)_2$ or $(t, s)_2$ for $s \neq t$. If $u = (s, t)_1$ and $v = (s, t)_2$ (resp. $v = (t, s)_2$), then

$$\overline{m}(u,v) = \bigwedge \{ m(\pi_k A u, \pi_k A v) : k = 1, 2, 3 \} = m(s,t) \land m(t,s) \text{ (resp. } m(s,t)),$$

$$m'(u,v) = \bigwedge \{ m(\pi_k Su, \pi_k Sv) : k = 1,2,3 \} = m(t,s) \ (resp. \ m(s,t) \land m(t,s))$$

Consequently, we have $\overline{m}(u,v) = m'(u,v)$ by assumption (I).

Similarly, if $u = (t, s)_1$ and $v = (s, t)_2$ (resp. $v = (t, s)_2$), then $\overline{m}(u, v) = m'(u, v)$.

Case II: $u = (s, t)_1$, $(s, y)_1$, $(t, y)_1$, $(t, s)_1$, $(y, s)_1$ or $(y, t)_1$ and $v = (s, t)_2$, $(s, y)_2$, $(t, s)_2$, $(y, s)_2$ or $(y, t)_2$ for three distinct points s, t, y of X.

If $u = (s, t)_1$ or $(t, s)_1$ and $v = (s, t)_2$ or $(t, s)_2$, $u = (s, y)_1$ or $(y, s)_1$ and $v = (s, y)_2$ or $(y, s)_2$, $u = (t, y)_1$ or $(y, t)_1$ and $v = (t, y)_2$ or $(y, t)_2$, then by case I, we have $\overline{m}(u, v) = m'(u, v)$.

If $u = (s, t)_1$ and $v = (s, y)_2$ or $(t, y)_2$ (resp. $u = (t, s)_1$ and $v = (s, y)_2$ or $(t, y)_2$), then by assumption (I),

$$\overline{m}(u,v) = \bigwedge \{ m(\pi_k A u, \pi_k A v) : k = 1,2,3 \} = m(t,s) \wedge m(s,y) \text{ (resp. } m(t,s) \wedge m(t,y)),$$

$$m'(u,v) = \bigwedge \{ m(\pi_k Su, \pi_k Sv) : k = 1,2,3 \} = m(t,s) \land m(t,y) \ (resp.\ m(t,s) \land m(s,y)),$$

and by assumption (II), we have $\overline{m}(u,v) = m'(u,v)$.

If $u = (s,t)_1$ and $v = (y,s)_2$ or $u = (t,s)_1$ and $v = (y,t)_2$ (resp. $u = (s,t)_1$ and $v = (y,t)_2$ or $u = (t,s)_1$ and $v = (y,s)_2$), then by assumption (I),

$$\overline{m}(u,v) = \bigwedge \{ m(\pi_k A u, \pi_k A v) : k = 1,2,3 \} = m(s,y) \land m(t,y) \ (resp.\ m(s,y) \land m(t,y) \land m(s,t)),$$

$$m'(u,v) = \bigwedge \{ m(\pi_k Su, \pi_k Sv) : k = 1,2,3 \} = m(s,y) \land m(t,y) \land m(s,t) \ (resp.\ m(s,y) \land m(t,y)),$$

and by assumption (II), we have $\overline{m}(u,v) = m'(u,v)$.

If $u = (s, y)_1$ and $v = (s, t)_2$ or $(y, t)_2$ (resp. $u = (y, s)_1$ and $v = (s, t)_2$ or $(y, t)_2$), then by assumption (I),

$$\overline{m}(u,v) = \bigwedge \{ m(\pi_k A u, \pi_k A v) : k = 1,2,3 \} = m(y,s) \wedge m(s,t) \text{ (resp. } m(y,s) \wedge m(y,t)),$$

$$m'(u,v) = \bigwedge \{ m(\pi_k Su, \pi_k Sv) : k = 1,2,3 \} = m(y,s) \land m(y,t) \text{ (resp. } m(y,s) \land m(s,t)),$$

and by assumption (II), we have $\overline{m}(u, v) = m'(u, v)$.

If $u = (s, y)_1$ and $v = (t, y)_2$ or $u = (y, s)_1$ and $v = (t, s)_2$ (resp. $u = (s, y)_1$ and $v = (t, s)_2$ or $u = (y, s)_1$ and $v = (t, y)_2$), then by assumption (I),

$$\overline{m}(u,v) = \bigwedge \{ m(\pi_k A u, \pi_k A v) : k = 1, 2, 3 \} = m(s,t) \land m(y,t) \land m(s,y) \ (resp.\ m(s,t) \land m(y,t)),$$

$$m'(u,v) = \bigwedge \{ m(\pi_k Su, \pi_k Sv) : k = 1, 2, 3 \} = m(s,t) \land m(y,t) \ (resp. \ m(s,t) \land m(y,t) \land m(s,y)), \}$$

and by assumption (II), we have $\overline{m}(u,v) = m'(u,v)$.

Mathematics 2022, 10, 4819

If
$$u = (t, y)_1$$
 and $v = (s, y)_2$ or $u = (y, t)_1$ and $v = (s, t)_2$ (resp. $u = (t, y)_1$ and $v = (s, t)_2$ or $u = (y, t)_1$ and $v = (s, y)_2$), then by assumption (I),

$$\overline{m}(u,v) = \bigwedge \{ m(\pi_k A u, \pi_k A v) : k = 1,2,3 \} = m(t,s) \wedge m(y,s) \wedge m(t,y) \text{ (resp. } m(t,s) \wedge m(y,s)),$$

$$m'(u,v) = \bigwedge \{ m(\pi_k Su, \pi_k Sv) : k = 1,2,3 \} = m(t,s) \land m(y,s) \ (resp.\ m(t,s) \land m(y,s) \land m(t,y)),$$

and by assumption (II), we have $\overline{m}(u, v) = m'(u, v)$.

If $u = (t, y)_1$ and $v = (t, s)_2$ or $(y, s)_2$ (resp. $u = (y, t)_1$ and $v = (t, s)_2$ or $(y, s)_2$), then by assumption (I),

$$\overline{m}(u,v) = \bigwedge \{ m(\pi_k A u, \pi_k A v) : k = 1,2,3 \} = m(y,t) \land m(t,s) \text{ (resp. } m(y,t) \land m(y,s)),$$

$$m'(u,v) = \bigwedge \{ m(\pi_k Su, \pi_k Sv) : k = 1,2,3 \} = m(y,t) \land m(y,s) \ (resp. m(y,t) \land m(t,s)),$$

and by assumption (II), we have $\overline{m}(u,v) = m'(u,v)$.

Case III: Let s, t, y, z be four distinct points of X.

If $u = (s, t)_1$ and $v = (y, z)_2$ (resp. $u = (y, z)_1$ and $v = (s, t)_2$), then by assumption (I),

$$\overline{m}(u,v) = \bigwedge \{ m(\pi_k A u, \pi_k A v) : k = 1,2,3 \}$$
$$= m(s,y) \wedge m(t,y) \wedge m(s,z)$$

$$m'(u,v) = \bigwedge \{ m(\pi_k Su, \pi_k Sv) : k = 1,2,3 \}$$

= $m(s,y) \land m(t,y) \land m(t,z)$
= $(resp. m(s,y) \land m(t,z) \land m(s,z))$

and by assumption (III), we have $\overline{m}(u, v) = m'(u, v)$.

If $u = (s,t)_1$ and $v = (z,y)_2$ (resp. $u = (z,y)_1$ and $v = (s,t)_2$), then by assumption (I),

$$\overline{m}(u,v) = \bigwedge \{ m(\pi_k A u, \pi_k A v) : k = 1,2,3 \}$$
$$= m(s,y) \wedge m(t,z) \wedge m(s,z)$$

$$m'(u,v) = \bigwedge \{ m(\pi_k Su, \pi_k Sv) : k = 1,2,3 \}$$

= $m(s,z) \land m(t,y) \land m(t,z)$
= $(resp. m(s,y) \land m(t,y) \land m(s,z))$

and by assumption (III), we have $\overline{m}(u, v) = m'(u, v)$.

If $u = (t, s)_1$ and $v = (y, z)_2$ (resp. $u = (y, z)_1$ and $v = (t, s)_2$), then by assumption (I),

$$\overline{m}(u,v) = \bigwedge \{ m(\pi_k A u, \pi_k A v) : k = 1,2,3 \}$$
$$= m(s,y) \wedge m(t,y) \wedge m(t,z)$$

$$m'(u,v) = \bigwedge \{ m(\pi_k Su, \pi_k Sv) : k = 1,2,3 \}$$

= $m(s,y) \land m(t,y) \land m(s,z)$
= $(resp. m(s,z) \land m(t,y) \land m(t,z))$

and by assumption (III), we have $\overline{m}(u,v) = m'(u,v)$.

If $u = (t, s)_1$ and $v = (z, y)_2$ (resp. $u = (z, y)_1$ and $v = (t, s)_2$), then by assumption (I),

$$\overline{m}(u,v) = \bigwedge \{ m(\pi_k A u, \pi_k A v) : k = 1,2,3 \}$$
$$= m(s,z) \wedge m(t,y) \wedge m(t,z)$$

Mathematics 2022, 10, 4819 11 of 14

$$m'(u,v) = \bigwedge \{ m(\pi_k Su, \pi_k Sv) : k = 1,2,3 \}$$

= $m(s,y) \land m(t,z) \land m(s,z)$
= $(resp. m(s,y) \land m(t,y) \land m(t,z))$

and by assumption (III), we have $\overline{m}(u, v) = m'(u, v)$.

Similarly, if $u = (s, y)_1$ and $v = (t, z)_2$, $u = (t, z)_1$ and $v = (s, y)_2$, $u = (s, y)_1$ and $v = (z, t)_2$, $u = (z, t)_1$ and $v = (s, y)_2$, $u = (y, s)_1$ and $v = (t, z)_2$, $u = (t, z)_1$ and $v = (y, s)_2$, $u = (y, s)_1$ and $v = (z, t)_2$, $u = (z, t)_1$ and $v = (y, s)_2$, and if $u = (s, z)_1$ and $v = (t, y)_2$, $u = (t, y)_1$ and $v = (s, z)_2$, $u = (s, z)_1$ and $v = (y, t)_2$, $u = (y, t)_1$ and $v = (y, t)_2$, $u = (y, t)_1$ and $v = (y, t)_2$, $u = (y, t)_1$ and $v = (y, t)_2$, $u = (y, t)_1$ and $v = (z, s)_2$, then by assumption (III), we have $\overline{m}(u, v) = m'(u, v)$.

Hence, for all points $u,v \in X^2 \mathbb{V}_{\triangle} X^2$, we obtain $\overline{m}(u,v) = m'(u,v)$, and by Lemma 1 and Definition 10 (i), (X,\mathcal{G}) is $\operatorname{Pre-}\overline{T_2}$. \square

Corollary 2. Let (X, \mathcal{G}) be an \mathcal{L} -gauge space, where \mathcal{L} is a linearly ordered quantale. (X, \mathcal{G}) is $Pre-\overline{T_2}$ if there exists $m \in \mathcal{G}$ such that for any distinct points $s, t, y, z \in X$, the following conditions are satisfied.

- (I) m(s,t) = m(t,s).
- (II) $m(s,t) = m(s,y) \le m(t,y)$ or $m(s,t) = m(t,y) \le m(s,y)$ or $m(s,y) = m(t,y) \le m(s,t)$.
- (III) $m(s,y) = m(t,y) \le m(s,z), m(t,z) \text{ or } m(s,y) = m(s,z) \le m(t,y), m(t,z) \text{ or } m(s,y) = m(t,z) \le m(t,y), m(s,z) \text{ or } m(t,y) = m(s,z) \le m(s,y), m(t,z) \text{ or } m(t,y) = m(t,z) \le m(s,y), m(s,z) \text{ or } m(s,z) = m(t,z) \le m(s,y), m(t,y).$

Theorem 5. An \mathcal{L} -gauge space (X, \mathcal{G}) is $\overline{T_2}$ if (X, \mathcal{G}) is discrete.

Proof. By Definition 10 (ii), Theorems 1 and 4, the condition $m(s,t) = m(t,s) = \bot$ for all $s \neq t$ implies that m is the discrete \mathcal{L} -metric and if such a $m \in \mathcal{G}$ exists, then \mathcal{G} contains all \mathcal{L} -metrics on X, i.e., $\mathcal{G}_{dis} = \{d \in \mathbf{L}\text{-MET}(\mathbf{X}) : d \geq m\}$, and consequently, (X,\mathcal{G}) is discrete. \square

Theorem 6. An \mathcal{L} -gauge space (X,\mathcal{G}) is NT_2 if there exists $m \in \mathcal{G}$ such that the following conditions are satisfied.

- (I) For all $s, t \in X$ with $s \neq t$, $m(s, t) \land m(t, s) = m(s, t) = m(t, s) < \top$.
- (II) For any three distinct points $s, t, y \in X$, $m(t, s) \land m(y, s) \land m(t, y) = m(t, s) \land m(y, s) = m(s, t) \land m(y, t) = m(y, s) \land m(t, y)$.
- (III) For any four distinct points $s,t,y,z \in X$, $m(s,y) \land m(t,y) \land m(t,z) = m(s,y) \land m(t,y) \land m(s,z) = m(s,z) \land m(t,y) \land m(t,z) = m(s,y) \land m(t,z) \land m(s,z)$.

Proof. It follows from Definition 10 (iii), Theorems 2 and 4. \Box

Corollary 3. $A(X, \mathcal{G})$, where \mathcal{L} is a linearly ordered quantale, is NT_2 if there exists $m \in \mathcal{G}$ such that for any distinct points $s, t, y, z \in X$, the following conditions are satisfied.

- (I) $m(s,t) = m(t,s) < \top$.
- (II) $m(s,t) = m(s,y) \le m(t,y)$ or $m(s,t) = m(t,y) \le m(s,y)$ or $m(s,y) = m(t,y) \le m(s,t)$.
- (III) $m(s,y) = m(t,y) \le m(s,z), m(t,z) \text{ or } m(s,y) = m(s,z) \le m(t,y), m(t,z) \text{ or } m(s,y) = m(t,z) \le m(t,y), m(s,z) \text{ or } m(t,y) = m(s,z) \le m(s,y), m(t,z) \text{ or } m(t,y) = m(t,z) \le m(s,y), m(s,z) \text{ or } m(s,z) = m(t,z) \le m(s,y), m(t,y).$

Example 3. Let X be a set with at least two points and (X, \mathcal{G}) be an indiscrete \mathcal{L} -gauge space. Then, by Theorem 3.3 of [22], (X, \mathcal{G}) is $Pre-\overline{T_2}$, but by Theorems 1, 3 and 5, (X, \mathcal{G}) is neither T_0 , $\overline{T_0}$, T_1 , $\overline{T_2}$ nor NT_2 .

Mathematics 2022, 10, 4819 12 of 14

Theorem 7. Let (X, \mathcal{G}) be a $Pre-\overline{T_2}$ \mathcal{L} -gauge space, then the following are equivalent.

- 1. (X, \mathcal{G}) is $\overline{T_2}$.
- 2. (X, G) is T_1 .
- 3. (X, \mathcal{G}) is $\overline{T_0}$.

Proof. Combine Theorems 1 and 3–5. \square

5. Comparative Evaluation

In this section, we compare our results with the ones in some other categories.

Let \mathcal{E} be a topological category, and let $\mathbf{T}(\mathcal{E})$ be the full subcategory of \mathcal{E} consisting of all \mathbf{T} objects where \mathbf{T} is $\overline{T_0}$, T_1 , $\operatorname{Pre-}\overline{T_2}$ or $\overline{T_2}$.

By Theorem 3.4 of [22], the full subcategory $\operatorname{Pre-T_2}(\mathcal{E})$ of \mathcal{E} consisting of all $\operatorname{Pre-}\overline{T_2}$ objects in \mathcal{E} is a topological category.

Theorem 8. The following categories are isomorphic.

- 1. $\overline{T_0}$ (Pre-T₂(*L-GS*)).
- 2. T_1 (**Pre-T**₂(*L-GS*)).
- 3. $\overline{T_2}$ (Pre-T₂(*L-GS*)).
- 4. T_1 (**L-GS**).
- 5. $\overline{T_2}$ (**L-GS**).

Proof. It follows from Theorem 3.5 of [22] and Theorems 3, 5 and 7. \Box

We can infer the following:

- (1) In **L-GS**,
 - (a) By Theorems 1–3 and 5, $\overline{T_2} = T_1 \implies \overline{T_0} \implies T_0$.
 - (b) By Theorems 4–6, if an \mathcal{L} -gauge space (X, \mathcal{G}) is $\overline{T_2}$, then (X, \mathcal{G}) is both NT_2 and $Pre-\overline{T_2}$.
 - (c) By Theorem 7, (X, \mathcal{G}) is a Pre-Hausdorff \mathcal{L} -gauge space, then $\overline{T_0}$, T_1 and $\overline{T_2}$ are equivalent.
- (2) In the category **App** of approach spaces and contraction maps, T_0 , T_0 and T_1 separation axioms, given in [2,31] are the special forms of our results. For example, if we take Lawvere's quantale [23,24], then Theorems 1 and 3 reduce to Theorems 3.1.3 and 3.2.3 of [31], respectively.
- (3) For the category $\overline{\text{Top}}$, $\overline{T_2} = NT_2 \implies T_1 \implies \overline{T_0} = T_0$ and $\overline{T_2} = NT_2 \implies$ Pre- $\overline{T_2}$ [13,29,30]. Moreover, in the realm of Pre- T_2 property, by Theorem 3.5 of [22], all of T_0 , T_1 and T_2 are equivalent.
- (4) (a) In category **Prox** of proximity spaces and proximity maps, if a proximity space (X,z) is $\overline{T_0}$ or T_1 or $\overline{T_2}$, then (X,z) is $\operatorname{Pre-}\overline{T_2}$ [32]. Similarly, in category **CHY** of Cauchy spaces and Cauchy continuous maps, $T_0 = \overline{T_0} = T_1 = \overline{T_2} \Longrightarrow \operatorname{Pre-}\overline{T_2}$ [33].
 - (b) In category **Born** of bornological spaces and bounded maps, if a bornological space is T_0 , then it is $\overline{T_0}$ or T_1 or $\overline{T_2}$ or Pre- $\overline{T_2}$ [14,15,29]. However, in category **Lim** of limit spaces and filter convergence maps, $T_1 \implies T_0 = \overline{T_0}$ [15].
 - (c) In **ConFCO** (the category of constant filter convergence spaces and continuous maps), $T_0 = \overline{T_0} = T_1$ and $\overline{T_2} = NT_2 \implies \text{Pre-}\overline{T_2}$ [34]. In the realm of Pre- $\overline{T_2}$ property, $T_0 = \overline{T_0} = T_1 = \overline{T_2} = NT_2$ [22,34]. In **ConLFCO** (the category of constant local filter convergence spaces and continuous maps), $T_0 \implies \overline{T_0} = T_1$ and $T_0 = NT_2 \implies \overline{T_2} \implies \text{Pre-}\overline{T_2}$ [34]. In the realm of Pre- $\overline{T_2}$ property, $T_0 = NT_2 \implies \overline{T_2} = \overline{T_0} = T_1$ [22,34].
 - (d) In the category ∞ **pqsMet** of extended pseudo-quasi-semi-metric spaces and contraction maps, $T_1 = \overline{T_2} \implies \overline{T_0} \implies T_0$ and $\overline{T_2} \implies NT_2 \implies \text{Pre-}$

Mathematics 2022, 10, 4819 13 of 14

- $\overline{T_2}$ [20,35]. Furthermore, in the realm of Pre- $\overline{T_2}$ property, $\overline{T_0} = T_1 = \overline{T_2}$ and $NT_2 = T_0$ [20,35].
- (e) In category **CP** of pair spaces and pair preserving maps, all pair spaces are $\overline{T_0}$, T_1 , $\overline{T_2}$ and $\text{Pre-}\overline{T_2}$ [16]. Moreover, $T_0 = NT_2 \implies \overline{T_2} = \overline{T_0} = T_1 = \text{Pre-}\overline{T_2}$ [16].
- (5) (a) For any arbitrary topological category, there is no relationship between $\overline{T_0}$ and T_0 [15]. In addition, it is shown in [29] that the notions of $\overline{T_2}$ and NT_2 are independent of each other, in general. However, in the realm of Pre- T_2 property, by Theorem 3.5 of [22], all of $\overline{T_0}$, T_1 and $\overline{T_2}$ are equivalent.
 - (b) By Corollary 2.7 of [36], if $U: \mathcal{E} \to \mathbf{Set}$ is normalized (i.e., U is topological and there is only one structure on a one-point set and \emptyset , the empty set), then $\overline{T_0}$, T_1 , $\operatorname{Pre-}\overline{T_2}$ and $\overline{T_2}$ imply $\overline{T_0}$ at p, T_1 at p, $\operatorname{Pre-}\overline{T_2}$ at p and $\overline{T_2}$ at p, respectively. In **L-GS**, by Theorems 3.1–3.4 of [26], if an \mathcal{L} -gauge space (X,\mathcal{G}) is $\overline{T_0}$ (or T_1), then (X,\mathcal{G}) is $\overline{T_0}$ at p (or T_1 at p).

6. Conclusions

Firstly, we characterized T_0 , $\overline{T_0}$, T_1 , $\operatorname{Pre-}\overline{T_2}$, $\overline{T_2}$ and NT_2 \mathcal{L} -gauge spaces and showed that $\overline{T_2} = T_1 \Longrightarrow \overline{T_0} \Longrightarrow T_0$. Moreover, we obtained that an \mathcal{L} -gauge space (X,\mathcal{G}) is $\overline{T_2}$, then (X,\mathcal{G}) is both NT_2 and $\operatorname{Pre-}\overline{T_2}$, and in the realm of Pre-Hausdorff quantale-valued gauge spaces, $\overline{T_0}$, T_1 and $\overline{T_2}$ are equivalent. Finally, we compared our results with the ones in some other categories. Considering these results, the following can be treated as open research problems:

- (i) Can one characterize each of T_3 , T_4 , irreducible, compact, connected, sober and zero-dimensional quantale-valued gauge spaces?
- (ii) Can one present the Urysohn's Lemma, the Tietze Extension Theorem and the Tychonoff Theorem for the category **L-GS**?
- (iii) How can one characterize T_0 , $\overline{T_0}$, T_1 , $\text{Pre-}\overline{T_2}$, $\overline{T_2}$ and NT_2 separation axioms for quantale generalization of other approach structures such as approach distances and approach systems, and what would be their relation to each other?
- (iv) In the category **App** of approach spaces and contraction maps, what would be the characterization of Pre- $\overline{T_2}$, $\overline{T_2}$ and NT_2 properties?

Author Contributions: Conceptualization, S.Ö.; formal analysis, S.Ö., M.Q. and S.A; methodology, T.M.B.; investigation, M.Q.; writing—original draft preparation, S.Ö.; data curation, T.M.B.; writing—review and editing, S.Ö.; funding acquisition, S.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Acknowledgments: We would like to thank the referees for their valuable and helpful suggestions that improved the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Lowen, R. Approach spaces A common Supercategory of Top and Met. Math. Nachr. 1989, 141, 183–226. [CrossRef]
- 2. Lowen, R. Approach Spaces: The Missing Link in the Topology-Uniformity-Metric Triad; Oxford University Press: New York, NY, USA, 1997.
- 3. Colebunders, E.; De Wachter, S.; Lowen, R. Fixed points of contractive maps on dcpo's. *Math. Struct. Comput. Sci.* **2014**, 24, 18. [CrossRef]
- 4. Brock, P.; Kent, D. On convergence approach spaces. Appl. Categ. Struct. 1998, 6, 117–125. [CrossRef]
- 5. Colebunders, E.; De Wachter, S.; Lowen, R. Intrinsic approach spaces on domains. Topol. Appl. 2011, 158, 2343–2355. [CrossRef]
- 6. Berckmoes, B.; Lowen, R.; Van Casteren, J. Approach theory meets probability theory. Topol. Appl. 2011, 158, 836–852. [CrossRef]
- 7. Jäger, G.; Yao, W. Quantale-valued gauge spaces. Iran. J. Fuzzy Syst. 2018, 15, 103–122.
- 8. Jäger, G. Probabilistic approach spaces. Math. Bohem. 2017, 142, 277–298. [CrossRef]

Mathematics 2022, 10, 4819 14 of 14

9. Jäger, G. Quantale-valued generalizations of approach spaces and quantale-valued topological spaces. *Quaest. Math.* **2019**, 42, 1313–1333. [CrossRef]

- 10. Jäger, G. Quantale-valued generalization of approach spaces: L-Approach Systems. Topol. Proc. 2018, 51, 253–276.
- 11. Baran, M. Separation properties. Indian J. Pure Appl. Math. 1991, 23, 333–341.
- 12. Brümmer, G.C.L. A Categorical Study of Initiality in Uniform Topology. Ph.D. Thesis, University of Cape Town, Cape Town, South Africa, 1971.
- 13. Marny, T. Rechts-Bikategoriestrukturen in Topologischen Kategorien. Ph.D. Thesis, Freie Universität, Berlin, Germany, 1973.
- 14. Weck-Schwarz, S. T₀-objects and separated objects in topological categories. Quaest. Math. 1991, 14, 315–325. [CrossRef]
- 15. Baran, M.; Altındiş, H. T₀ objects in topological categories. J. Univ. Kuwait Sci. 1995, 22, 123–127.
- 16. Baran, M.; Abughalwa, H. Sober Spaces, Turk. J. Math. 2022, 46, 299-310.
- 17. Mielke, M.V. Separation Axioms and Geometric Realizations. Indian J. Pure Appl. Math. 1994, 25, 711–722.
- 18. Mielke, M.V. Hausdorff separations and decidability. In *Symposium on Categorical Topology*; University of Cape Town: Cape Town, South Africa, 1999; pp. 155–160.
- 19. Johnstone, P.T.; Stone Spaces. L.M.S. Mathematics Monograph: No. 10; Academic Press: New York, NY, USA, 1977.
- 20. Baran, T.M.; Kula, M. Separation Axioms, Urysohn's Lemma and Tietze Extention Theorem for Extended Pseudo-Quasi-Semi Metric Spaces. *Filomat* **2022**, *36*, 703–713. [CrossRef]
- 21. Stine, J. Initial hulls and zero dimensional objects. Publ. Math. Debr. 2013, 82, 359–371. [CrossRef]
- 22. Baran, M. PreT₂-objects in topological categories. Appl. Categ. Struct. 2009, 17, 591–602. [CrossRef]
- 23. Flagg, R.C. Quantales and continuity spaces. Algebra Universalis 1997, 37, 257–276. [CrossRef]
- 24. Lawvere, F.W. Metric spaces, generalized logic, and closed categories. Rend. Sem. Mat. Fis. Milano 1973, 43, 135–166. [CrossRef]
- 25. Klement, E.P.; Mesiar, R.; Pap, E. Triangular Norms; Springer: Dordrecht, The Netherlands, 2000.
- 26. Qasim, M.; Özkan, S. The notion of Closedness and *D*-connectedness in quantale-valued approach space. *Categories Gen. Algebraic Struct. Appl.* **2020**, 12, 149–173. [CrossRef]
- 27. Adámek, J.; Herrlich, H.; Strecker, G.E. Abstract and Concrete Categories: The Joy of Cats; John Wiley & Sons: New York, NY, USA, 1990.
- Preuss, G. Theory of Topological Structures: An Approach to Categorical Topology; D. Reidel Publishing Company: Dordrecht, The Netherlands, 1988.
- 29. Baran, M.; Altındiş, H. T₂ objects in topological categories. Acta Math. Hung. 1996, 22, 41–48. [CrossRef]
- 30. Baran, M. Separation Properties in Topological Categories. *Math. Balk.* **1996**, *10*, 39–48.
- 31. Qasim, M. T₀ and T₁ Approach Spaces. Ph.D. Thesis, Erciyes University, Kayseri, Turkey, 2018.
- 32. Kula, M.; Özkan, S.; Maraşlı, T. Pre-Hausdorff and Hausdorff proximity spaces. Filomat 2017, 31, 3837–3846. [CrossRef]
- 33. Kula, M. A note on Cauchy spaces. Acta Math. Hung. 2011, 133, 14–32. [CrossRef]
- 34. Baran, M. Separation Properties in Categories of Constant Convergence Spaces. Turk. J. Math. 1994, 18, 238–248.
- 35. Baran, T.M.; Kula, M. T₁ Extended Pseudo-Quasi-Semi Metric Spaces. Math. Sci. Appl. E-Notes 2017, 5, 40–45.
- 36. Baran, M. Generalized local separation properties. Indian J. Pure Appl. Math. 1994, 25, 615–620.