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Abstract: Entropy is essential. Entropy is a measure of a system’s molecular disorder or unpre-
dictability, since work is produced by organized molecular motion. Entropy theory offers a profound
understanding of the direction of spontaneous change for many commonplace events. A formal
definition of a random graph exists. It deals with relational data’s probabilistic and structural prop-
erties. The lower-order distribution of an ensemble of attributed graphs may be used to describe
the ensemble by considering it to be the results of a random graph. Shannon’s entropy metric is
applied to represent a random graph’s variability. A structural or physicochemical characteristic
of a molecule or component of a molecule is known as a molecular descriptor. A mathematical
correlation between a chemical’s quantitative molecular descriptors and its toxicological endpoint
is known as a QSAR model for predictive toxicology. Numerous physicochemical, toxicological,
and pharmacological characteristics of chemical substances help to foretell their type and mode of
action. Topological indices were developed some 150 years ago as an alternative to the Herculean,
and arduous testing is needed to examine these features. This article uses various computational and
mathematical techniques to calculate atom—bond connectivity entropy, atom-bond sum connectivity
entropy, the newly defined Albertson entropy using the Albertson index, and the IRM entropy using
the IRM index. We use the subdivision and line graph of the H3 BO3 layer structure, which contains
one boron atom and three oxygen atoms to form the chemical boric acid.

Keywords: entropies via various molecular descriptors; H3BOs3 layer structure; subdivision of
H3BOj3; line graph of H3BO3

MSC: 05C07; 05C09; 05C31; 05C76; 05C99

1. Introduction

Theoretical chemistry and graph theory are combined in chemical graph theory (CGT).
It makes a contribution to the modeling of actual and fictitious chemical substances, ex-
amines the mathematical structure and connectedness, and then unifies the mathematical
and chemical notions [1]. A chemical compound is modeled by displaying its structural
formula as a chemical graph, in which atoms are represented by vertices and chemical
bonds by edges [2].

We determine a structure’s distance-based entropy by using some well-known topo-
logical indices, which are the numbers that help characterize its topological features after
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it has been reproduced. The many pharmacological, physicochemical (such as melting
point, boiling temperature, volume, molecular weight, density, etc.), and toxicological
properties of a chemical molecule have a link with these invariants [3-5]. Topological
indices have the amazing feature of remaining constant over graph isomorphisms, making
them typically graph-invariant [6-14]. Numerous topological indices based on chemical
graphs that rely on the number of vertices have been discovered and studied [15-19]. The
atom-bond connectivity index and its modified form, the atom—bond sum connectivity
index, the Albertson index, and the IRM index, as well as their mathematical equations, are
introduced and defined in this section. For more explanation, see [20-27].

The atom-bond connectivity index was established by Estrada et al. [28] and is a
modified version of the connectivity index. It is described as

(Vay +Vay 2)
2)

ABC(G,x) = Y «x Vi %ig & ABC= Y Vay + Vi, =2)

(le x Vﬂz) o

a1~u2 Ii] N(lz

Zhou and Trinajstic [29] proposed the sum-connectivity index, }_, ez —L— an al-
8\ fVaitVa;

ternative to the connectivity index. The atom-bond sum-connectivity (ABS) index is a

recently proposed modification of the atom-bond connectivity index that makes use of the
fundamental concept of the sum-connectivity index [30]. A definition of the ABS index is

(Va; +Va] -2)

ABS(G,x)= Y« e ABS= ¥

ﬂZNR ll,'NlZ]'

@

To determine a graph’s irregularity, the authors in [31] established the Albertson index

A(G).
Z x Vay = Vay & Z |Va, — (3)

a;~a; a;~a;

The irregularities of the graph are gauged using the Albertson, Bell, and IRM indices [32].
The definition of IRM(G) is

IRM(G,x) = Y »"4~ W e IRM(G) = Y Vo — Vo 4)

IZ,NIZ] ﬂ,’Nﬂ]'

In this paper, we work with Boric acid H3BOs. It is an acid made up of four oxygen atoms,
one phosphorus atom, and three hydrogen atoms. Boric acid is sometimes referred to as
orthoboric acid, boracic acid, hydrogen borate, or acidum boricum. It possesses antiviral,
antifungal, and antiseptic qualities and is a weak acid. Figure 1 depicts the boric acid
complex, which consists of one boron atom, three oxygen atoms, and three hydrogen atoms.
The floral pattern structure (base unit) depicted in Figure 1 is created by polymerizing the
H3BOj3 unit structure, which consists of six repeating units of H3BOs.

The degree of unpredictability (or disorder) in a system is measured by entropy. It may
also be considered a measurement of how evenly the molecules in the system distribute
their energy. The number of alternative configurations of molecule position and the amount
of kinetic energy at a specific thermodynamic state is known as a microstate.
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Figure 1. Boric acid H3BO3.

Entropies via Various Molecular Descriptors

Ghani et al. in [33] and Manzoor et al. in [34] recently offered another strategy that is
a little bit novel in the literature: applying the idea of Shannon’s entropy [35] in terms of
topological indices. The following formula represents the graph entropy:

©)

V(Vﬂivﬂj) V(Vﬂ;vﬂj)
1 .
L‘lZNZu] al;ﬂ lfl(Vaqu]> { Z V(Vulvﬂj) }

j ai~aj

ENTye) = —

where a1, a; represents atoms, ¢ represents the edge set, and i(Vy, Vs, ) represents the edge
weight of edge (V, Vi)
*  Entropy related to ABC index

Vo Va2 , o
Let p((a;)(a;)) = { W} Then ABC index (1) is given by

Vo + Vo —2
apce = % | V+Xv}= Y ul(a)(a).

a;,0;€4G 2;,0;€8G

Adding the parameters of ABCg into Equation (5), then the atom-bond connectivity
(ENTapc) entropy is

ENTABCG = log (ABCG) -

< Va; +Va; 2
1 Val- + Va]- -2 Va; xVaj
ABCg tog{ I1 (\/ 37 ) boo®

zz,-,a]-ECG

*  Entropy related to ABS index

Vaﬁ’va]-*z . . .
Let p((a;)(a;)) = { W} Then the ABS index (2) is given by

ABSg = ).

2;,8;€8G

= Y ul(a;)(a)). )

2;,0;€8G

Adding the parameters of ABS; into Equation (5), then the atom-bond sum connectivity
(ENT4pc(c)) entropy is

Vgi+ng—2
1 Vo, +Va, =2 < Va; +Va; )
ENTags, = log (ABSG) — ——=—1 L .
NTass = log (ABSe) ~ Zpg- og{ II <\/ Vo, + Va, > Joo®

a;,8;€8c
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*  Entropy related to Albertson index
Let p((a;)(a;)) = {|Va,- — Va } Then the Alberston entropy (3) is given by
A = L Ava-vl}= T wl@)@)).
ai,u]'ECG ui,quCG

Adding the parameters of A ¢ into Equation (5), then the Alberston (ENTj) ) entropy is

1 Vi —Va,|
ENTa =log(4e) = 7 = log{ 1 (IVa,-—Vaj|)( f>}. ©)

u,',ﬂjEl:G

*  Entropy related to IRM index
Let p((a;)(a;)) = {[Vui - Va],]z}. Then the IRM entropy (4) is given by

M) = ¥ {Va-Vel?} = ¥ (@),

2;,0;€8G 2;,1;€4G

Adding the parameters of IRM g, into Equation (5), then the IRM (ENTjgy) entropy is

1 (Ve Vi ?)
ENTirM,,, = log IRM g — RV log {alﬂl;[gc ([Vai - Vuj}z) j } (10)
ity

2. Layer Structure of H3BO3(s, t)

In this section, we discuss the H3BO3(s, t) layer structure, which serves as the foun-
dation for its subdivision and line graph. The H3BOj3(s, t) unit structure polymerizes to
generate the floral pattern structure (base unit) seen in Figure 2, which is made up of six
repeating H3BOj3 units. This layer structure may be stretched to whatever number of rows
and columns is desired. The horizontal lines of floral pattern structures are character-
ized as rows “s”, while the vertical lines are designated as columns “t”. Figure 2 depicts
H3BOj3(s, t) with one row and two columns, s =1 and t = 2.

//tll

Figure 2. Layer structure of H3BOj3.

2.1. Subdivision of the Layer Structure H3BO5(s, t)

Figure 3 shows the subdivision of H3BOs(s, t), the layer structure achieved by in-
stalling one atom between each atom-bond of Figure 2.
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Figure 3. Subdivision of H3BOs.

Result and Discussion

In subdivision of the layer structure H3BOs(s, t), the atom-bond E(G) is divided into
three groups based on the degree of each edge’s end vertices. The set that is disjointed is
shown by the symbols ¢ (d(u;) A(V;))- The first set that is disjointed is {4 5), the second set that
is disjointed is {(, 5), and the third set that is disjointed is {(; 3). The table below describes
the different types of edges as well as the equations for calculating the number of edges in
each type of the SH3BOs(s, t) layer structure.

*  Entropy related to the ABC index of subdivision H3BO3

Let S(H3BO3) be a subdivision of H3BOj3(s, t). Then by using Equation (1) and Table 1, the
atom-bond connectivity index is

1422 212-2 2132
ABC(S(H3BOs)) = Y xV' 17 4+ ¥ xVm2 4 ¥ V5

C(1~2) C2~2) C2~3)

1 1

= 2(s+t+ l)x\/; +12(st+s + t)x\/;

\/I
+ 6(83s+3t+4st—1)xV? (11)
Differentiate (11) at x = 1; we get the atom-bond connectivity index
1

ABCS(H3BO3) = \[2 (325 + 32t + 365t — 4) (12)

Here, we determine the atom-bond connectivity entropy by using Table 1 and
Equation (12) in Equation (6) according to the following:

Table 1. Edge division based on vertices in the layer structure of subdivision H3BO3(s, t).

Atomic bond type ¢(1,2) &) Go~3
Number of atom bonds 2(s+t+1) 12(st+s+1t) 6(3s + 3t +4st — 1)
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ENTapcS(H3BO3)

ENTzps(S(H3BO3))

[ (Vai+Vaj*2)}
(Va; xVa;)
1 (Va, + Vo, — 2) i
= log(ABC) — lo —r
8 (ABC) — 7pe g{gl(gw (Vay % Va)) ]
: (\(/avﬁvifz)] : (V»:;+V¢‘a;fz)]
y (Vi + Vaj -2) ) y (Vi + Vaj —2) ) }
$22) (Va; x Vuf) C23) (Va, x Vaf)

1 1
= log (\/;(325 + 32t 4 36st — 4) —
/1325 432t + 365t —4)

x 1og{2(s+t+1)(\/§)ﬁx12(st+s+t)(ﬁ)ﬁ
x 6(35+3t+4st—1)(\/g)\/€}. (13)

¢  Entropy related to the ABS index of subdivision H3BO3

Let S(H3BO3) be a subdivision of H3BOj3(s, t). Then by using Equation (2) and Table 1, the
atom-bond sum connectivity is

142-2 242-2 243-2
ABSS(HzBO3) = Y xV 17 4 ¥ VT ¥ Ve
G(1~2) C2~2) C2~3)
1 1
= 2(s+t+1)x\£+12(st+s+t)x\/;
\/5
+ 6(3s+3t+4st—1)xV? (14)

Taking the first derivative of Equation (14) at x = 1, we get the atom—bond sum connectivity
index

ABS(S(H3BO3)) = 2(s + t + 1)\/§+ 12(st +5 + t)\/}r 6(3s + 3t + 4st — 1))\/? (15)

Here, we determine the atom-bond sum connectivity entropy by using Table 1 and
Equation (15) in Equation (6) according to the following:

[ (Vai+an*2)]
(Va; +Va,)
1 (Vi + Vo, — 2) b
— log(ABS) — ——log { [T [,| ——P =
ABS {Cu,z) (Vay + Vi)
: (Va; +Va;—2) (Vai+v,,.72)]
(Vay + Vo —2) V) (Vi + Vo, —2) V0
< TN —wsviy ! < ~wvi vy }
$22) i a4 C23) i a
= o L3 \F Vi
— log (ABS) ABSlog{Z(s—l—t—l—l)(\/;) x 12(st +5 4+ 6)(y/ 2)
x 6(3s+3t+4st—1)(\/§)\/§}. (16)

e Entropy related to the Albertson index S(H3BO3)
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ENTA(G,X)

ENTigue,,

Let S(H3BO3) be a subdivision of H3BOs(s, t). Then by using Equation (3) and Table 1, the
atom-bond connectivity index is

Ay (S(H3BO3)) = Y x1724 ° x272p Y= 4273
S(1~2) $(2~2) C2~3)

= 2(s+t+1)x+12(st+s+1t) +6(3s+ 3t +4st —1)x (17)
Differentiate (17) at x = 1; we get the atom—bond connectivity index
A(G/x)S(HgBO;;) = 325 + 32t + 36st — 4 (18)

Here, we determine the atom-bond connectivity entropy by using Table 1 and
Equation (18) in Equation (9) according to the following:

(1Va; = Ve, ]
S(H3BOs) = log(Aguy) = ——log { TT[IVa = V[l "
(Gx) ¢12)
Vi, — H Va; = Vo,
% TT0Va = Vi) ><H|Va1 v )
S22
1
= log (32 321 + 365t —4) — 55— log {2(5 Ft+1)
+ 12(st+s+t)+6(3s+3t+4st—1)}. (19)
*  Entropy related to the IRM index of subdivision H3BO3
Let S(H3BO3) be a subdivision of H3BOj3(s, t). Then by using Equation (4) and Table 1, the
atom-bond connectivity index is
_2]2 _n2 a2
IRM(G ) (S(H3BO3)) = Y 27274 ¥ 12720 Y 4273
S~2) $(a~2) S(2~3)
= 2(s+t+1)x+12(st +s+1)
+ 6(3s+3t+4st —1)x (20)
Differentiate (20) at x = 1; we get the atom-bond connectivity index
IRM(G,x))S(H3BO3) = 32s + 32t + 36st — 4 (21)
Here, we determine the atom—bond connectivity entropy by using Table 1 and Equation (21)
in Equation (10) according to the following;:
S(H3BOs) = log(IRMg)) — ot — log { T [[Va, — Va 21" ¥/
: () 1RM<G,x>> fn
Ve, 2
x TT Ve, — Ve D TT Vi, — Vi) ! ]}
Z02) $23)
1
= 1 2 2 —4)— 1 2 1
0g (325 + 32t + 365t —4) — x og {2(s +t+1)
+ 12(st+s+1) +6(3s+3t+4st—1)}. (22)

2.2. Layer Structure of H3BOs3 in the Form of a Line Graph

In the line graph of the layer structure H3BOs(s, t), the atom—bond E(G) is divided
into five groups based on the degree of each edge’s end vertices. The set that is disjointed
is shown by the symbols &4 DAV)" The first set that is disjointed is ¢, 3), the second set
that is disjoint is &5 4), the thlrd set that is disjointed is &3 3), the fourth set that is disjointed
is {(34), and the fifth set that is disjointed is (4 4.
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ABCL(H3BO3)

Ly WE Y WALy Ry Wy o5
( (

+  2(5s + 5t 4 65t — l)x\/g +2(s+t+3st — Z)x\/g.

Figure 4 displays the H3BOs(s, t) layer structure as a line graph.

Figure 4. Line graph of H3BOs.

e Entropy related to the ABC index of L(H3BO3)

Let L(H3BOj3) be a line graph of H3BOj3(s, t)). Then by using Equation (1) and Table 2, the
ABC polynomial is

$(2~3) $(a~a) ¢3~3) $(3ma) C(ana)

1
= 614t s)xVE (s b 1)xd (s £+ 35t —2)6

(23)
Taking the first derivative of Equation (23) at x = 1, we get the ABC index
1 2 5
ABCL(H3BO3) = 6(1+t+5s) 5 + 5(24st +11s+ 11t — 5) + 2(5s + 5t 4+ 6st — 1) i
+ 2(s+t+3st—2)\/g (24)

ENT =

Here, we determine the ABC entropy by using Table 2 and Equation (24) in Equation (6)
according to the following:

[y S,
Vo, + Vo, — 2 i
log (ABC) — ALBCIOg {él(})w W]
: &nga] (v(‘,;.+v,‘,;72)
s AL T (RAVEE T
Eon) (Va; X Vi) Con (Va; X Va,)
S )
I RCARCICT R (A RCRAIC
Enn) (Vi X Vi) Cun (Va; x Va,)

log (ABC) — AJlBS 10g{6(1+t+s)(\/§)¢15 +2(s+t+1)(%)%

4(s+t+35t_2)(\/2)\/g+2(55+5t+6st— 1)(\/5)\/5
2(s+t+3st—2)(\/§) %}_

(25)
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Table 2. Edge division based on vertices in the line graph H3BOs(s, f) layer structure.

Atomic bonds $23 Gt $3~3 G Cara
Cardinality 6(1+t+s)  2(s+t+1)  4(s+t+3st—2)  2(5s+5t+6st—1)  2(s+t+3st —2)
e Entropy related to the ABS index of L(H3BO3)
Let L(H3BOj3) be a line graph of H3BOj3(s, t)). Then by using Equation (2) and Table 2, the
ABS polynomial is
ABSL(H3BO3) = Zszﬁigz—k ZXV%-F Zx“ﬁigz—k va%—k va“ﬁf

+

C2~3) $(aa)

(3~3)

C(3~a)

6(1—l—t—l—s)x\/g—i-2(s—|—t—l—l)x\/g—O—él(s—i—iF—I—SSiF—Z)x\/g

5 3
2(5s 4 5t + 6st — 1)x\/; +2(s+t+3st — Z)x\/;.

C(a~a)

(26)

Taking the first derivative of Equation (26) at x = 1, we get the ABS index

ABS(L(H3BO3)) = 6(1+t+ s)\/§+ 2(6st + 35 + 3t — 3)\E+ 2(55 + 5t + 65t — 1)\/5

ENTps(L(H3BO3))

A(gL(H3BO3) =

+ 2(s+t+3st—2)\/§.

(27)

Here, we determine the ABS entropy by using Table 2 and Equation (27) in Equation (6)

according to the following:

: (Val-+Vuj—2)]
(Va; +Va,)
1 (Va, + Vo, = 2) i
= log(ABS) — lo A B
8 (ABS) ~ 755 g{ggw (Vi + V)
(Vai+Va]-—2)] (Vai+Vaj—2>]
H [ (Vﬂi + Vu] o 2) (Vl‘l,’+Va]-) [ (Vai + Vuj . 2) (Va]-+Vg].)
X — T X R
Sea) (Vi + Vi) £63) (Vo + Vay)
(Va; +Va; ~2) (Vay +Va;~2)
s (R Ty 1 Yat ¥ =2) i |
X — T X AR
Sea) (Va, +Vay) Clan) (Va; + Vay)
— log (ABS) — ——log {6(1+1 ENVERPY YN FX
o5 (4BS) — g log {6(1+ +S)(\@) +2(s +t+1)(1/3)

+ 4(5+t+3st—2)(\/§)\/g+2(5s+5t+6st— 1)(\/§)ﬁ
+ 2(s+t+3st—2)(\/z)\/§}.

e Entropy related to the Albertson index of L(H3BO3)
Let L(H3BO3) be a line graph of H3BO3(s, t)). Then by using Equation (3) and Table 2, the

Albertson index is

$(2~3) C(2~a)

C(3~3)

C(3~a) C(a~a)

= 6(14+t+s)x+2(s+t+1)x>+4(s+t+3st —2)
+ 2(5s+5t+6st —1)x +2(s+t + 3st — 2).

(28)

Z x‘2_3‘+ Z x|2_4|+ Z x‘3_3‘+ Z x|3_4‘+ Z x‘4_4‘

(29)
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Taking the first derivative of Equation (29) at x = 1, we get the Albertson index
AG ) (L(H3BO3)) = 2(15st+13s+ 13t —2) (30)

Here, we determine the A entropy by using Table 2 and Equation (30) in Equation (9)
according to the following:

1 “VH,‘_Va-]
ENTy, (L(H:BO3)) = log(4)— - log { TTIVa, — Vil j
$23)
Vi=Vi, VoV,
< TT Ve = Vil ! I H Vi, = Vi | J11Vai = Ve
C24)
V,; a Va n
< TV — VoIl ‘xnml vy
C(34) 4,4)
1

log2(15st + 135 + 13t —2) —

1 14t
2(15st + 13s + 13t —2) °8 {6+1+9)
+ 4(s+t+1)+4(s+t+3st—2)+2(5s+5t+6st —1)

+ 2s+t+3st—2)}. (31)
e Entropy related to the IRM index of L(H3BO3)

Let L(H3BO3) be a line graph of H3BOj3(s, t). Then by using Equation (4) and Table 2, the

IRM index is
IRM(gL(H3BO3) = Y x* R S o BT S A SR o T
$(2~3) (2~ $(3~3) $(3~4) C(ana)
= 6(14+t+s)x+2(s+t+1)x* +4(s+t+3st —2)
+ 2(5s+5t+6st —1)x +2(s + t + 3st — 2). (32)

Taking the first derivative of Equation (32) at x = 1, we get the IRM index
IRM G (L(H3BO3)) = 30s + 30t 4 30st. (33)

Here, we determine the IRM entropy by using Table 2 and Equation (33) in Equation (10)
according to the following:

Vn
ENTyru(L(H3BOs)) = log (IRM) — rotog { [T 11V, — Vi,
(23)
< T I1Ve = Va2 xH 2=
$24)
a; a Va. =V,
SR AL xH\Va v )
$(34)
1
= log(305+30t+305t)—mlog{6(l+t+s)+8(s+t+l)
+ 4(s+t+35t—2)+2(5s+5t+6st—1)+2(s+t+35t—2)}. (34)

3. Comparison and Conclusions

Here, molecular descriptors for the subdivision and line graph of the layer structure of
H3BOj3 that are multiplicative and degree-based have been studied. Using these molecular
descriptors, we compute the ABC entropy, ABS entropy, A entropy, and IRM entropy of the
subdivision and line graph of the layer structure of H3BO3. Our results (entropies) help
to describe the randomness and disorder of a molecule of H3BO3 based on the number
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of different arrangements available to it in a given system or reaction. For instance, the
atom-bond connectivity (ABC) index offers excellent calculations of the strain energy
of molecules via correlation. When the temperatures of the production of alkanes are
described using the ABC-index, a good quantitative structure—property relationship (QSPR)
model (r = 0.9970) is produced.

The values of four degree-based indices, namely, the ABC-index, ABS-index, A-index,
and IRM-index, are presented in this work, numerically in Table 3 and graphically in
Figure 5. As shown in Figure 5, the values of all indices are directly proportional to the
values of (s, t), with the values of (s, t) along the x-axes and the resultant of the indices
along the y-axes. The disparities between each topological index for a certain structure are
revealed by these charts. The results of the computations demonstrate that the degree-based
indices and entropy estimates depend greatly on the values of s and ¢ or the molecular
structure.

Table 3. Numerical comparison of molecular descriptors.

Values of (s,t) ABC-Index ABS-Index Albertson Index IRM-Index

1,2 115.948 120.98 164 164
@, 3) 263.004 275.844 372 372
3, 4) 460.964 484.636 652 652
@, 5) 709.828 747.356 1004 1004
(5, 6) 1009.596 1064.004 1428 1428
6,7) 1360.268 1434.58 1924 1924
(7, 8) 1761.844 1859.084 2492 2492
(8,9) 2214.324 2337516 3132 3132
9, 10) 2717.708 2869.876 3844 3844
(10, 11) 3271.996 3456.164 4628 4628
(11, 12) 3877.188 4096.38 5484 5484
(12, 13) 4533.284 4790.524 6412 6412

Graphical comparison of molecular descriptors
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Figure 5. Graphical Comparison of ABC-index, ABS-index, Albertson index and IRM-index.
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