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Abstract: The significance of back-propagated intelligent neural networks (BINs) to investigate the
transmission of heat in spinning nanofluid over a rotating system is analyzed in this study. The
buoyancy effect is incorporated along with the constant thermophysical properties of nanofluids.
Levenberg–Marquardt intelligent networks (ANNLMBs) are employed to study heat transmission
by using a trained artificial neural network. The system of highly non-linear flow governing partial
differential equations (PDEs) is transformed into ordinary differential equations (ODEs) which is
taken as a system model. This achieved system model is utilized to generate data set using the
“Adams” method for distinct scenarios of heat transmission investigation in a spinning nanofluid
over a rotating system for the implementation of the proposed ANNLMB. Additionally, with the
help of training, testing, and validation, the approximate solution of heat transmission in a spinning
nanofluid in a rotating system is obtained using a BNN-based solver. The generated reference
data achieved employing the proposed artificial neural network based on a Levenberg–Marquardt
intelligent network is distributed in the following manner: training at 82%, testing at 9%, and
validation at 9%. Furthermore, MSE, histograms, and regression analyses are performed to depict and
discuss the impact of the varying influence of key parameters, such as unsteadiness “s” in spinning
flow, Prandtl number effect “pr”, the rotational ratio of nanofluid and cone α1 and buoyancy effect γ1

on velocities F′G and temperature Θ profiles. The mean square error confirms the accuracy of the
achieved results. Prandtl number and unsteadiness decrease the temperature profile and thermal
boundary layer of the rotating nanofluid.

Keywords: neural networks; Levenberg–Marquardt neural network; heat transmission; spinning
nanofluid; rotating system

MSC: 37M99

1. Introduction

Nanofluids have numerous applications in science and technology, such as wind
turbine energy, engineering fields, dental applications, paper production industries, heat
pipes, and solar collectors. Choi and Eastmann [1] coined the term “nanofluid” in 1995. In
their study, they discovered that adding a nanometer-sized nano-particle, either metallic
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or non-metallic, enhanced the thermal conductivity of the formed solution. Consequently,
the heat transfer feature of the formed solution was enhanced. They named this newly
formed solution “nanofluid.” Rehman et al. [2] discussed the challenges and applications
of nanofluids in various science and engineering fields. Wong and Leon [3] investigated
the current and future applications of nanofluids. Xuan and Li [4] provided a concrete
review of the heat transfer enhancement of nanofluids. Ganvir et al. [5] investigated the
heat transfer properties of nanofluids.

Gowda et al. [6] explored Marangoni-driven boundary layer flow for heat and mass
transfer with activation energy and chemical reactions. Varun Kumar et al. [7] analyzed
the Arrhenius activation energy influence over the curved stretchable surface with hybrid
nanofluids. Sarada et al. [8] investigated exponential heat generation with the Fourier heat
flux model for water-based ternary hybrid nanofluids. Gowda et al. [9] illustrated the effect
of the magnetic dipole on ferromagnetic fluid with a suction effect over a stretching surface.
Umavathi et al. [10] explained the squeezing magneto-hydrodynamic flow of Casson fluid
between convectively heated disks. Kumar et al. [11] investigated the Stefan blowing
effect with a magnetic dipole on nanofluid over a stretchable surface. Kumar et al. [12]
demonstrated three different nano-particle shape effects in a ternary hybrid nanofluid with
heat transfer under a magnetic field effect. Some recent studies on nanofluids provide
significant insight into heat transmission over distinct configurations [13–15].

The flow configuration involving the rotation of both fluid (nanofluid) and geometry
(cone) has a plethora of applications in several fields. These applications include surgical
implants [16], material engineering [17], nonlinear oscillators [18], and heat transfer en-
hancement [19,20]. Rekha et al. [21] demonstrated a hybrid nanofluid for cone, wedge, and
plate under the activation energy effect. Hassan et al. [22] studied the thermal radiation
effect on a hybrid nanofluid for PWT over a rotating cone. The natural convection of
dusty nano-particles over a porous cone with non-linear temperature was discussed by
Nabwey and Mahdy [23]. Gul et al. [24] examined hybrid nanofluid flow between the
canonical gape between a cone and a rotating disk. Hussain et al. [25] elaborated on the
magneto-hydrodynamic flow of carbon nanotubes over a rotating cone with a thermal
radiation effect. Meena et al. [26] investigated mixed convection in the presence of a heat
source and sink over a rotating cone. Mahdy et al. [27] illustrated natural convection over
the porous cone with homogeneous and heterogeneous reactions. Heat and mass transfer in
Jeffery fluid were explained by Saleem et al. [28] using a heat source and a chemical reaction
over the cone. Here are some recent studies that involve rotating cone configurations for
knowledge gains [29–32].

In recent years, different analytical and numerical methods, such as the homotopy
analysis method, perturbation method, Rung–Kutta-4 method, finite difference schemes,
BVP-4c technique, shooting method, spectral method, Keller box method, lattice Boltzmann
method, finite volume method, and finite element method, have been extensively used
to study different flow problems over different physiques. Apart from these numerical
and analytical methods, scientists are now exploring the application of artificial neural
networks to achieve more optimized and accurate results. Karimipour et al. [33] predicted
the thermal conductivity of a hybrid nanofluid using an empirical data set and introduced
a novel regression model of SVR. Shoaib et al. [34] discussed a back-propagated neural
network to study ferro-fluid slip flow in the porous medium. Soomro et al. [35] studied
magneto-hydrodynamic slip flow using an artificial neural network. Shoaib et al. [36],
using intelligent neural networks, discussed entropy generation for Ree–Eyring fluid with
ohmic heating effects. Raja et al. [37] examined mixed convection in a porous medium with
entropy generation using intelligent neuro-computing.

He et al. [38] discussed the MHD effect on the slip velocity of nanofluid in a micro-
channel using an artificial neural network and the lattice Boltzmann method. Safaei et al. [39]
elaborated on the effect of temperature and concentration on the thermal conductivity of
a hybrid nanofluid utilizing an artificial neural network. Khan et al. [40] described the
nonlinear porous slip flow of nanofluids using artificial neural networks. Colak et al. [41]



Mathematics 2022, 10, 4833 3 of 20

modelled the bio-convective porous medium flow of Powell–Eyring nanofluid using an
artificial neural network. Reddy et al. [42] investigated the entropy generation of MHD
cross nanofluid using artificial neural networks. Toghraie et al. [43] predicted the viscosity
of nanofluid using an artificial neural network at different temperatures and concentrations
of nano-particles. Dey et al. [44] examined unsteady mixed convection over a circular
cylinder in the presence of nanofluids using artificial neural networks.

The above literature review suggests that rotating flows have a plethora of applications in
fields such as surgical implants [16], material engineering [17], nonlinear oscillators [18], and
enhancement of heat transmission [19,20]. Hussain et al. [19] used the BVP-4c technique to
discuss multi-based rotating nanofluids over a cone. Hassan et al. [20,22] analyzed the role
of hybrid nano-particles in heat transfer enhancement over a rotating cone under magnetic
and thermal radiation effects. The novelty of the present work is to examine heat transmission
in different nanofluids over a spinning cone using artificial neural networks and the BVP-4c
technique. Additionally, water is used as the base fluid for conveying silver (Ag) nano-particles.
The flow governing equations were obtained using the stress tensor along with the boundary
layer approximation. Additionally, the buoyancy effect is taken into account as a force that
induces the rotating flow due to the temperature difference. Furthermore, Shoaib et al. [36]
and Raja et al. [37] used ANN to investigate the impact of ohmic heating and mixed convection
on entropy generation. Shoaib et al. [36] used the homotopy analysis method, whereas
Raja et al. [37] employed the Adams method to generate reference data. Qureshi et al. [45]
illustrated a complete description of Adams–Bashforth’s method to generate the outcomes,
whereas in this attempt, we have generated the reference data sets using the Adams method.
Further, the novelty of this research is to design a soft computing artificial neural network
based on a single Levenberg–Marquardt (ANNLMB) intelligent network for heat transmission
in rotating Ag–water nanofluid in a spinning mechanism.

The following are key features of the present designed ANN procedures:

• The heat transmission in spinning nanofluids in a rotating system is investigated using
back propagated neural networks (BNN) adopting trained ANN using Levenberg–
Marquardt (LMB) through the mechanism of soft computing.

• The Adams’ numerical method is utilized to generate the reference data set for the
transmission of heat in spinning nanofluid over a rotating system by varying the
unsteadiness of flow, buoyancy effect, rotational ratio, and Prandtl number for the
designed BNNs-based ANNLMB scheme.

• To show the effectiveness, correctness, and characteristics of the designed artificial
neural network, mean squared error, error histograms, and convergence curves are
presented and discussed for the validity of the proposed scheme.

2. Mathematical Formulation of Rotating Flow
2.1. Problem Statement

Consider a rotating system in which a viscous, in-compressible flow is rotating about
the axis of a spinning cone, as explained in Figure 1 above. The coordinates and configura-
tion explained the direction and velocity components in their respective directions. The
u(t, x, z) component of velocity is in the tangential direction, the v(t, x, z) component is
considered along the circumference of the cone, and the w(t, x, z) component of velocity
is taken in the normal direction. Whereas α∗ is the subtended angle of the cone, Ω1, Ω2
denote the fluid and cone’s angular velocity, respectively.
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2.2. Methodology to Obtain Flow Governing Equations

Flow governing general equations of unsteady viscous in-compressible nanofluid are
given as follows [19,20,22]:

∇.V = 0, (1)

ρ
dV
dt

= divδ + fb , (2)

ρCp
dT
dt

= trace(δ.L)− divq. (3)

Here, V is the velocity vector, ∇ describes the divergence vector, ρ denotes density,
divδ shows the stress tensor matrix, fb depicts the body forces, Cp shows the heat capacity
at constant pressure, d

dt =
∂
∂t + V.∇ describes a material derivative of respective quantities,

T defines temperature, and divq denotes the heat flux, that is, q = −α∇T . The Cauchy
stress tensor used for the problem is as follows [19]:

δ = −PI + ε , ε = µA1, (4)

A1 = Π + Πt. (5)

The boundary layer approximation theory along with the suitable viscous tensor are
utilized to achieve the flow governing equations. This complete methodology is given by
Hussain et al. [19]. Final flow governing equations are given as follows [19,20,22]:

x
∂u
∂x

+ u + x
∂w
∂z

= 0, (6)

∂u
∂t

+ u
∂u
∂x

+ w
∂u
∂z
− ve

x
= −v2

e
x

+ νn f

(
∂2u
∂z2

)
+ gξcosα∗(T − T∞), (7)

∂v
∂t

+ u
∂v
∂x

+ w
∂v
∂z

+
vu
x

=
∂ve

∂t
+ νn f

(
∂2v
∂z2

)
, (8)

∂T
∂t

+ u
∂T
∂x

+ w
∂T
∂z

= αn f

(
∂2T
∂z2

)
. (9)
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Boundaries and initials conditions are given as [19,22]

I.Cs B.Cs
u(0, x, z) = ui = −

x(Ωsinα∗) f ′(η)
2 u(t, x, 0) = 0

v(0, x, z) = vi = x(Ωsinα∗)g(η) v(t, x, 0) = Ωsinα∗

(1−stΩsinα∗)

w(0, x, z) = wi =
(Ωsinα∗)

1
2 f (η)

ν
1
2

w(t, x, 0) = 0

T(0, x, z) = Ti =
xcosα∗ϑ(η)

L T(t, x, 0) = Tw

(10)

Defining the following transformations [19,22]:

η = z (Ωsinα∗)0.5

ν f
0.5(1−stΩsinα∗)0.5 , ve =

xΩ2sinα∗

(1−stΩsinα∗) , α1 = Ω1
Ω , t∗ = tΩsinα∗,

Pr =
ν f
α , u(t, x, z) = − x(Ωsinα∗) f ′(η)

2(1−stΩsinα∗) , v = x(Ωsinα∗)g(η)
(1−stΩsinα∗) ,

w = (Ωsinα∗)0.5 f (η)
(1−stΩsinα∗)0.5v0.5 , T−T∞

Tw−T∞
= ϑ(η), Tw−T∞

T0−T∞
= x

L (1− st∗)−2 ,

Tw − T∞ = x(T0−T∞)cosα∗

L(1−stΩsinα∗)2 , Re2
L = Ωsinα∗ L2

ν f

Gr1 = gξcosα∗(Tw − T∞) L3

ν f
2 , γ1 = Gr1

Re2
L

.

(11)

Transformation methodology given in Equation (11) will transform Equations (7)–(9)
in the following dimensionless form:

F′′′ = (1− ϕ)2.5(1− ϕ + ϕ ∗ ( ρs

ρ f
))

[
s(F′ − 1

2
ηF′′ )− 1

2
F′

2
+ FF′′ + 2(G2 − (1− α1)

2) + 2γ1Θ

]
, (12)

G′′ = (1− ϕ)2.5(1− ϕ + ϕ(
ρs

ρ f
))

[
s(G− 1

2
ηG′)− GF′ + FG′ − s(1− α1)

]
, (13)

Θ′′ =

[
(1− ϕ) + ϕ

{
(ρCp)s
(ρCp) f

}]{
ks + (n− 1)k f − ϕ(k f − ks)

ks + (n− 1)k f − (n− 1)ϕ(k f − ks)

}
pr

[
s(2Θ +

1
2

ηΘ′) + FΘ′ − 1
2

F′Θ)

]
. (14)

Now the boundary conditions are:

F(0) = 0, F′(0) = 0 , G(0) = α1, Θ′(0) = −1,

F′(∞) = 0, G(∞) = 1− α1, Θ′(∞) = 0 .
(15)

3. Methodology

In this section, the overview of proposed ANNLMB is presented to solve transformed
flow governing Equations (12)–(14). The proposed ANNLMB is based on a single neural
model concept to simulate the flow governing equations. The complete methodology
is presented in two parts, the first part includes the generation of reference data set for
the formulated problem of heat transmission in a spinning nanofluid over a rotating
system. The reference datasets are generated with the help of Mathematica software using
“NDSolver” and by employing the Adams method.

The numerically generated reference data set for velocity and temperature profiles
is between 0 and 5, and the step size is taken as 0.05, i.e., 100 inputs for every varying
parameter that include, Pr, α1, γ1 and s and given Table 1. In the second part, the proposed
ANNLMB is demonstrated with the help of graphical user interface of neural network tool
box using the “nftool” function in MATLAB. Training, testing and validation using the
random values of inputs are set 82%, 9% and 9%, respectively.
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Table 1. Scenarios for heat transmission in spinning nanofluid in rotating system.

Nanofluid Thermophysical Properties Utilized to Generate Reference Data, ϕ = 0.01
ρs = 10490, ρf = 892, ks = 429, kf = 0.178

Numeric Values Used to Generate Reference Data

Scenario s α1 γ1 pr

1 2 1 0.2 199
2 1 1 0.5 199
3 1 1 1 199
4 2 1 0.5 190

4. Interpretation of Results and Numerical Computation

Here, in this part, the outcomes achieved with the help of the proposed ANNLMB
methodology for each scenario of heat transmission in a rotating nanofluid over a spinning
mechanism are presented. Additionally, interpretations of obtained outcomes are also
presented with graphical plots. Figure 2 depicts the structural configuration of the proposed
ANNLMB, exploiting hidden layers of the neural network. The mathematical expression
for the heat transmission of a spinning nanofluid in a rotating system for transformed flow
governing Equations (12)–(15) can be written in simplified form for scenario 1 with help of
numerical values presented in Table 1 below:

F′′′ = 1.03185593403 ∗
[
2×

(
F′ − 0.5× F′′

)
− 0.5× F′

2
+ FF′′ + 2×

(
G2
)
+ 2γ1Θ

]
, (16)

G′′ = 1.03185593403 ∗
[
2×

(
G− 0.5× G′

)
− GF′ + FG′ − 2× (1− α1)

]
, (17)

Θ′′ =
199

1.0407744214
[
2×

(
2Θ + 0.5× ηΘ′

)
+ FΘ′ − 0.5× F′Θ)

]
. (18)

Mathematics 2022, 10, x FOR PEER REVIEW 6 of 20 
 

 

Table 1. Scenarios for heat transmission in spinning nanofluid in rotating system. 

Nanofluid Thermophysical Properties Utilized to Generate Reference Data, 𝝋 = 𝟎. 𝟎𝟏 𝝆𝒔 = 𝟏𝟎𝟒𝟗𝟎, 𝝆𝒇 = 𝟖𝟗𝟐, 𝒌𝒔 = 𝟒𝟐𝟗, 𝒌𝒇 = 𝟎. 𝟏𝟕𝟖 
 Numeric Values Used to Generate Reference Data  

Scenario 𝒔 𝜶𝟏 𝜸𝟏 𝒑𝒓 
1 2 1 0.2 199 
2 1 1 0.5 199 
3 1 1 1 199 
4 2 1 0.5 190 

4. Interpretation of Results and Numerical Computation 
Here, in this part, the outcomes achieved with the help of the proposed ANNLMB 

methodology for each scenario of heat transmission in a rotating nanofluid over a spin-
ning mechanism are presented. Additionally, interpretations of obtained outcomes are 
also presented with graphical plots. Figure 2 depicts the structural configuration of the 
proposed ANNLMB, exploiting hidden layers of the neural network. The mathematical 
expression for the heat transmission of a spinning nanofluid in a rotating system for trans-
formed flow governing Equations (12)–(15) can be written in simplified form for scenario 
1 with help of numerical values presented in Table 1 below: 𝐹ᇱᇱᇱ = 1.03185593403 ∗ ൣ2 × (𝐹ᇱ − 0.5 × 𝐹ᇱᇱ) − 0.5 × 𝐹ᇱమ + 𝐹𝐹ᇱᇱ + 2 × (𝐺ଶ) + 2𝛾ଵ𝛩൧, (16)𝐺ᇱᇱ = 1.03185593403 ∗ [2 × (𝐺 − 0.5 × 𝐺ᇱ) − 𝐺𝐹ᇱ + 𝐹𝐺ᇱ − 2 × (1 − 𝛼ଵ) ], (17)𝛩ᇱᇱ = 1991.0407744214 [2 × (2𝛩 + 0.5 × 𝜂𝛩ᇱ) + 𝐹𝛩ᇱ − 0.5 × 𝐹ᇱ𝛩)]. (18)

 
Figure 2. Networks structure of proposed ANNLMB Scheme. 

The boundary conditions are given as 𝐹(0) = 0, 𝐹ᇱ(0) = 0, 𝐺(0) = 1, 𝛩ᇱ(0) = −1 ,   𝐹ᇱ(∞) = 0, 𝐺(∞) = 0, 𝛩ᇱ(∞) = 0.  (19)

Similarly, mathematical expressions for all scenarios can be developed for heat trans-
mission in a spinning nanofluid in a rotating system using data in Table 1 and Equations 
(12)–(14). Table 2 illustrates the comparison between the outcomes achieved for the pre-
sent study and the previously published results by Hussain et al. [19], Raju and Sandeep 
[31]. The relations used in this study for the Nusselt number are similar to those used by 
[19]; therefore, we must omit them. 

Table 2. Comparison of Nusselt number (𝑁𝑢௫) with already published work of Hussain et al. [19]. 
Raju and Sandeep [31]. 

 𝑵𝒖𝒙 𝛾ଵ Raju and Sandeep [31] Hussain et al. [1] Present 
10 1.183409 1.37415 0.980211 

Figure 2. Networks structure of proposed ANNLMB Scheme.

The boundary conditions are given as

F(0) = 0, F′(0) = 0, G(0) = 1, Θ′(0) = −1 ,

F′(∞) = 0, G(∞) = 0, Θ′(∞) = 0.
(19)

Similarly, mathematical expressions for all scenarios can be developed for heat transmis-
sion in a spinning nanofluid in a rotating system using data in Table 1 and Equations (12)–(14).
Table 2 illustrates the comparison between the outcomes achieved for the present study and
the previously published results by Hussain et al. [19], Raju and Sandeep [31]. The relations
used in this study for the Nusselt number are similar to those used by [19]; therefore, we
must omit them.
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Table 2. Comparison of Nusselt number (Nux) with already published work of Hussain et al. [19].
Raju and Sandeep [31].

Nux

γ1 Raju and Sandeep [31] Hussain et al. [1] Present

10 1.183409 1.37415 0.980211

15 1.337339 1.30846 1.202210

20 1.456372 1.34327 0.990011

Figure 3a–d represent MSE, mean square error, which is the average square value of
difference between predicted results and reference standard outcome of Adams–Bashforth
method, convergence performance or learning curves, i.e., update of MSE on step increment
of epochs index of networks along with state-transition results of ANNLMB for all four
scenarios, respectively. Figure 4a–d depict the state transition of the results. In these
plots’ gradient, step size Mu, and the maximum epochs performed are given for all four
scenarios, respectively. Additionally, the comparison between the outcomes of ANNLMB
and reference data for all four scenarios is presented in Figure 5a–d. The plots for histogram
errors are depicted in Figure 6a–d. Furthermore, regression errors for all four scenarios are
given in Figure 7a–d, respectively. The absolute error for all four scenarios is presented in
Figure 8a–d. Tables 2–5 gives variation of convergence in terms of mean square error and
time of execution.
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Table 3. ANNLMB outcomes of Scenario 1 for heat transfer in spinning nanofluid.

HLN
MSE Level Performance

Index
Value of
Gradient

Step Size
Mu

Executed
Epochs Time

Training Validation Testing

15 4.953× 10−11 6.259× 10−11 8.786× 10−10 4.95× 10−11 9.89× 10−8 1× 10−10 188 1 s

Table 4. ANNLMB outcomes of Scenario 2 for heat transfer in spinning nanofluid.

HLN
MSE Level Performance

Index
Value of
Gradient

Step Size
Mu

Executed
Epochs Time

Training Validation Testing

15 9.02241× 10−10 4.62417× 10−10 3.742× 10−10 2.90× 10−10 9.86× 10−8 1× 10−9 391 1 s
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Table 5. ANNLMB outcomes of Scenario 3 for heat transfer in spinning nanofluid.

HLN
MSE Level Performance

Index
Value of
Gradient

Step Size
Mu

Executed
Epochs Time

Training Validation Testing

15 2.0914× 10−10 4.62417× 10−10 2.41862× 10−10 2.09× 10−10 9.69× 10−8 1× 10−9 462 1 s

The convergence analysis in terms of MSE for training, testing and validation is
presented in Figure 3a–d for all four scenarios for the formulated heat transmission prob-
lem. It is observed from these plots that the convergence of the heat transmission prob-
lem is 10−10, 10−9, 10−9 and 10−9, and it is achieved at 188, 391, 462, and 51 epochs
for all four scenarios, respectively. Figure 4a–d demonstrate the gradient and step size
Mu for all the four scenarios, respectively. The gradient obtained for all six scenarios
are
[
9.8944× 10−8, 9.8602× 10−8, 9.6897× 10−8, and 3.0452× 10−6 ], whereas numerical

values of Mu are
[
10−10, 10−9, 10−9 and 10−10 ], respectively. These plots show the con-

vergence as well as the accuracy of the ANNLMB for the formulated problem of heat
transmission in a spinning nanofluid. Moreover, the stochastic nature of the ANNLMB
algorithm is also observed by attaining invariable high-level accuracy in terms of the MSE
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magnitude at different epoch numbers due to the randomness in the initialization of the
back-propagation algorithm based on the Levenberg–Marquardt methodology. It is worth
mentioning here that the outcomes obtained using proposed ANNLMB between 0 and 5
with a step size of 0.05 is compared with the reference solution using the “Adams” method.
To illustrate the error between these two methods, comparison graphs are presented in
Figure 5a–d for all four scenarios, respectively.

The maximum value of error obtained for training, testing and validation through the
proposed ANNLMB is found to be 1× 10−4, 2× 10−5, 4× 10−5 and 2× 10−5 for all four of
the scenarios of heat transmission in a spinning nanofluid in a rotating system, respectively.
The error analysis was further discussed with the help of histograms for all four of the
scenarios for training, testing and validation samples. Figure 6a–d illustrate histograms
for all the four scenarios, respectively. The error bin with respect to the zero line contains
error for all scenarios found to be with the range of 2.32× 10−6, 4.39× 10−6, 3.55× 10−7,
and −1× 10−5 for all three samples of training, testing and validation, which indicates the
consistent and invariable accuracy of the proposed ANNLMB to solve heat transmission in
a spinning nanofluid in a rotating system.

The co-relation studies are utilized to conduct the performance of regression. The
outcomes of regression are given in Figure 7a–d for all four scenarios of heat transmission
in a spinning nanofluid in a rotating system, respectively. The values of correlations of
R are found to be in unity, which indicates the accurate value modeling for train, testing
and validation. Moreover, this shows the perfect working environment of ANNLMB
to compute and analyze heat transmission in a spinning nanofluid in a rotating system.
Figure 8a–d depict the absolute error for the heat transmission in a nanofluid in a rotating
system. It is concluded from the plots (a–d) that errors are found to be in the range of
10−4 to 10−7, 10−4 to 10−6, 10−4 to 10−7, and 10−4 to 10−8, respectively. These generated
absolute error for all four scenarios confirms the validity of the obtained results for heat
transmission in a spinning nanofluid in a rotating system. The performance of ANNLMB
can be seen in Tables 2–5. The performance of scenario 1 is up to 10−11, for scenario 2,
10−10, for scenario 3, it is up to 10−10, and for scenario 4, it is 10−10 for heat transmission in
a spinning nanofluid in a rotating system. These outcomes illustrate that the performance
of ANNLMB is consistent throughout the varying scenarios for problem under observation.

Velocity and Temperature Profiles

Figure 9a,b describe the effect of the rotation ratio and unsteadiness on motion profiles
of a spinning nanofluid in a rotating system, respectively. Figure 9a depicts the impact of
the rotational ratio on the primary velocity profile. It is observed that when the rotation of
flow in the rotating flow mechanism is enhanced, the primary velocity profile decreases.
Additionally, the associated momentum boundary layer thickness also starts to decrease
with the increment in the rotational ratio of the fluid and cone. Figure 9b shows the effect
of the rotational ratio on the secondary velocity profile. The secondary velocity profile
is decreased with the increment in the flow rotational ratio. It is also worth noting here
that with increment in the rotational ratio, contraction in the thickness of the associated
momentum boundary layer is observed. Figure 9c,d demonstrate the effect of unsteadiness
in the motion profiles of a spinning nanofluid in a rotating system. Figure 9c describes
the effect of the unsteadiness parameter on the primary velocity. It is worth noting that
as the unsteadiness in the spinning nanofluid motion is enhanced, the thickness of the
momentum boundary expands dramatically. The motion of Ag/water nanofluid is abruptly
decreased. Furthermore, Figure 9d shows the impression of the unsteadiness influence
on the secondary velocity profile. The secondary velocity is increased abruptly with the
increment in unsteadiness in the motion of the spinning nanofluid flow.

Figure 9e illustrates the effect of the Prandtl number and unsteadiness on the temper-
ature profile, respectively. It is observed that with the increment in the Prandtl number,
the temperature profile starts to gradually decrease. Additionally, the associated thermal
boundary layer thickness is decreased with the increment in the Prandtl number. Figure 9f
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reports the influence of unsteadiness on the temperature profile of the rotating nanofluid. It
is worth noting here that with the increment in unsteadiness, the temperature profile is de-
creased. The thermal boundary of rotating nanofluid is decreased with the increment in the
unsteadiness parameter. Table 6 below illustrate heat transfer outcomes using ANN-LMB
for spinning nanofluids.

Table 6. ANNLMB outcomes of scenario 4 for heat transfer in spinning nanofluid.

HLN
MSE Level Performance

Index
Value of
Gradient

Step Size
Mu

Executed
Epochs Time

Training Validation Testing

15 2.90472× 10−10 7.99939× 10−10 7.07677× 10−10 8.47× 10−10 3.05× 10−6 1× 10−10 51 1 s
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5. Conclusions

In this study, heat transmission in a rotating Ag/water nanofluid in a spinning cone system
was investigated with the help of intelligent soft computing based on Levenberg–Marquardt
networks. Through the proposed ANN-LMB artificial neural networks, it is observed that
ANNs based on LMB provide more effective and accurate results. Additionally, the Adams
method is utilized in this study to generate the reference data for heat transmission in
nanofluid over a rotating cone system. The proposed ANNLMB is highly accurate and also
provides significant insight into the MSE, along with a comparison between the outcomes
of the Adams method and the results achieved through the proposed ANNLMB methodol-
ogy. Convergence analysis, illustration of mean square error outcomes, and performance
comparison are some of the key outcomes of the proposed ANNLMB methodology. There
are very few implications of the proposed ANNLMB, such as the unavailability of larger
reference data sets and errors in the generated data sets. The following are the major
outcomes of the study:

• The outcomes of proposed ANNLMB are in complete agreement with reference data
at 10−10 to 10−11. This fact verifies and validates the effectiveness and correctness of
the proposed ANNLMB to investigate the heat transmission in a spinning nanofluid
in a rotating system.

• Verification of proposed ANNLMB scheme is further validated by providing numerical
and graphical illustrations in terms of MSE, AH and index of regression.

• It is observed that with the increment in the rotational ratio, the primary velocity
decreases, whereas an inclination is attained for the secondary velocity profile. The
presence of high unsteadiness force in fluid motion dramatically declines the primary
motion profile, while a sharp increase is observed in the secondary motion profile.

• The momentum boundary layer expands with an increment in the rotational ratio and
unsteadiness in motion in the primary velocity profile. Additionally, contraction is
attained for secondary velocity profile.

• Augmentation in the Prandtl number and unsteadiness parameter decrease the tem-
perature profile sharply. Further, the thermal boundary layer thickness decreases with
the increment in the Prandtl number and unsteadiness parameter.
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Future Interest

The authors hope to use artificial neural networks (ANNs) in the future to investigate
fractional and integer-order fluid mechanics problems. Additionally, infectious disease
models could be an interesting area to explore using ANNs.
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Nomenclature

u, v, w Velocities components in respective direction
(
ms−1) (ρcp) f Volumetric heat capacity of base fluid

(
JK−1)

v f Kinematic viscosity of base fluid
(
m2s−1) (ρCp)n f Volumetric heat capacity of nanofluids

(
JK−1)

ρ f The density of base fluids
(
kgm−3) TW , T∞ Wall and Ambient temperature (K)

Cp Heat capacity at constant pressure
(

Jkg−1K−1) α∗ Angle of cone (degree)
ρn f Density of nanoparticles

(
kgm−3) µ f Dynamic viscosity

(
kgm−1s−1)

∇ Gradient vector V Velocity in vector form
(
ms−1)

F, G Primary and secondary velocity [−] Θ Temperature profile [−]
Ω Composite angular velocity [−] pr Prandtl Number [−]
Ω1, Ω2 Rotational velocity of cone and fluid, respectively [−] γ1 Buoyancy parameter [−]
α1 Rotation parameter [−] ReL Reynolds number [−]
η Similarity variable [−] ODE’s Ordinary differential equations
MSE Mean square error BLA Boundary layer approximation
PDE’s Partial differential equations
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