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Abstract: Flow of a liquid in an enclosure with heat transfer has drawn special focus of researchers
due to the abundant thermal engineering applications. So, the aim of present communication is to
explore thermal characteristics of natural convective power-law liquid flow in a square enclosure
rooted with a T-shaped fin. The formulation of the problem is executed in the form of partial
differential expressions by incorporating the rheological relation of the power-law fluid. The lower
wall of the enclosure along with the fin is uniformly heated and vertical walls are prescribed with cold
temperature. For effective heat transfer within the cavity the upper boundary is considered thermally
insulated. A finite element based commercial software known as COMSOL is used for simulations and
discretization of differential equations and is executed incorporating a weak formulation. Domain
discretization is performed by dividing it into triangular and rectangular elements at different
refinement levels. A grid independence test is accomplished for quantities of engineering interest
like local and average Nusselt numbers to attain accuracy and validity in results. Variation in the
momentum and thermal distributions against pertinent parameters is analyzed through stream lines
and isothermal contour plots. Measurement of the heat flux coefficient along with the calculation
of kinetic energy against involved parameters is displayed through graphs and tables. After the
comprehensive overview of attained results it is deduced that kinetic energy elevates against the
upsurging magnitude of the Rayleigh number, whereas contrary behavior is encapsulated versus
power-law index (n). Elevation in the Nusselt number for the shear thinning case (i.e., n = 0.5)
adheres as compared to Newtonian (i.e., n = 1) and shear thickening cases (i.e., n = 1.5). It is
perceived that by the upsurging power-law index viscosity augmentations and circulation zones
increases. Heat is transferred quickly against Rayleigh number (Ra) due to production of temperature
difference in flow domain.

Keywords: laminar free convection; square cavity; heated T-fin; power-law fluid; finite element method

1. Introduction

The heat transfer phenomenon has always been regarded as an important challenge in
engineering and its various mechanisms have been studied accordingly. The procedures
are based on heat exchange mechanisms such as electronic cooling, solar collectors, heat
exchangers, pollution removal and solar systems. In view of the mentioned practical essence
of heat transfer processes researchers are focusing on optimization of the heat transfer
process. Like, Eckert and Carlson [1] examined convective flow of air enclosed between
two isothermal vertical plates and determined that convection generates fluctuations and
wave motion within the flow domain. In addition, they determined that natural convection
is dependent on Grashof number. A two-dimensional free convective isothermal flow of
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air enclosed in a horizontal cavity by prescribing temperature flux conditions at the wall
was investigated computationally by Newel and Schdmit [2]. Bonnett and Mclntire [3]
tested flow stability in the convective flow of the power law and Ellis models by employing
the computational technique. They calculated the critical magnitude of Rayleigh numbers
for which free convection converts to forced convection. Tamotusu et al. [4] presented
analytical study on 2D laminar natural convection in a cavity filled with viscous liquid by
providing heat at the base wall. Flack et al. [5] experimentally measured laminar convection
in air flow in a triangular enclosure by providing heat at two side walls and considering the
adiabatic bottom wall. Davis [6] computationally investigated the 2D natural convection
phenomenon in a square enclosure with differentially heated boundaries. Hasnaoui et al. [7]
discussed the convective heat transfer in a cavity by fixing the localized heater at the
bottom wall for provision of uniform heat distribution and computed multiple steady state
solutions elucidating oscillatory behavior against involved variables. To raise the interest
of readers, some of the latest studies on heat transfer are recommended and gathered in
references [8–10].

Consideration of a fin for the purpose of controlled heat energy propagation in an
enclosure is highly recommendable and is a proven strategy. A few decades back, before the
advancement in the constructal design industry, different types of cylinder were utilized for
appropriate transfer of heat within the flow domain. Nowadays, the requirement of energy
in industrial frameworks is fulfilled with the installation of the structured fin. Applications
of fin are found in conventional furnaces, economizers, gas turbines, heat exchangers,
super conductive heaters, among many other things [11–13]. Optimization in convection
process in complex geometries with placement of fins was comprehensively explained by
Lorenzini et al. [14]. Abdi et al. [15] utilized vertical fins for enhancement in heat flux and
energy density in a thermal energy storage framework. Bendaraa et al. [16] explicated
advancement in convection in a square enclosure with the placement of conducting fins
positioned at different locations. Shi and Khodad [17] evaluated heat transfer attributes
of viscous liquid with the placement of a permeable fin fixed on the hot wall. Horbach
et al. [18] adumbrated thermal aspects of viscous fluid embedded in a square enclosure by
installing the Y-shaped fin and utilized the principle of optimal distribution to minimize
maximal excess of temperature for hot spot removal in the whole domain. Rehman et al. [19]
investigated buoyantly driven flow of Casson liquid filled in a rhombus shaped chamber
fitted with a T-shaped fin. Tavana et al. [20] demonstrated a comparative analysis by
computing heat transfer rate of fluid flow containing T and triangular shaped fins and
demarcated that the triangular fin is more influential in transferring energy than the T-
shaped fin. Insertion of cold fins to control convective heat diffusion in a partially heated
enclosure was depicted by Scozia and Frederick [21]. Facas et al. [22] scrutinized the
influence of fin length variation on thermal aspects of liquid bounded by a differentially
heated square enclosure. Bahiraei et al. [23] implemented a numerical approach to analyze
the impression of different fins on convective single-phase nano liquid flow in a micro
channel. Li et al. [24] probed the potential aspect of change in the length of rectangular
parallel fins on thermal performance of nano particles suspended in base fluid.

Materials depending on viscosity respond differently to the application of stresses.
The difference in behavior of liquid characterizes them into Newtonian and non-Newtonian
liquids. The liquids whose strains remain linear against stress factors are known as Newto-
nian fluids, whereas fluids showing non-linear attributes are known as non-Newtonian
fluids. Admirable applications of non-Newtonian liquids are accounted in oil-pipeline
friction, surfactant, cooling systems, flow traces, the mining industry, slurries, lubrica-
tion and biomedical flows. For comprehensive examination of non-Newtonian liquids
they are characterized into two main classes, namely, the shear thinning and thickening
liquids. This classification has raised the essence of non-Newtonian fluids in multiple
advanced processes like food formation, oil refining, heating and cooling systems and
nuclear power plant, polymerization, friction reduction, flow traces and so forth. In this
regard, the rheological experts have proposed various models to represent the classifi-
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cation. Among these propositions, there are various fluid models describing rheological
attributes on non-Newtonian models. Among these models the most generic one describing
the features comprehensively is the power-law fluid. Ozoe and Churchill [25] analyzed
convection in power law fluid flow in horizontal cavity by measuring hydrodynamic sta-
bility and circulating zones against model parameters. Kaddiry et al. [26] calculated the
range of the power-law index for which the fluid model depicts flow characteristics of
shear thinning and thickening materials by considering flow in a square enclosure. Kim
et al. [27] deliberated the buoyantly convective transient flow of the power-law liquid in
an isothermal square enclosure, prescribing different temperature at boundaries. Some
recent developments on non-viscous fluid flow in different domains are encapsulated in
references [28–30].

Natural convection is an abundant phenomenon generated by density differences
which may arise in many settings like air craft surfaces, melt spinning, drying and coating
technologies, computers chips, solar paneling, wind chiller, hydraulic pumps, molten
metals, heat dissipation fins, hydrothermal reservoirs, filtration processes, nuclear waste
storing, solidification of castings, liquefaction gases and biofilm growth. In view of their
superb practical utility, researchers have conducted studies. Like, Turan et al. [31] illumi-
nated natural convection generated by the provision of differentially heated side walls of
an enclosure filled completely with a non-Newtonian fluid obeying the power-law model.
Ternik and Rudolf [32] simulated results for hydrodynamic and thermal fields for the
power-law rheological model coupled with Boussinesq approximation by incorporating the
finite volume method. Sajoudi et al. [33] performed delineated convection in a trapezoidal
enclosure saturated with quiescent power-law liquid by keeping top and bottom surfaces
adiabatic. Turan et al. [34] manipulated the influence of the aspect ratio of heaters placed on
walls of a rectangular enclosure on steady state simulations of laminar natural convective
flow. Ternik and Buchmiester [35] revealed the buoyantly induced flow of the power-law
liquid in a square enclosure with Dirichlet heat flux conditions and measured variation in
heat transfer against the dimensionless Prandtl number. Alloui and Vesseur [36] examined
natural convection in a non-Newtonian liquid filled in a vertical enclosure by specifying
Neumann type of thermal conditions. Some of the latest work on free convective heat
transfer in power-law fluid is encapsulated in references [37–45].

From the aforementioned literature it is easy to conclude that flow and heat transfer
characteristics of non-Newtonian power-law fluid in the presence of T-shaped fin have not
yet been considered. This work is an extension of the study conducted by Roy et al. [30] in
which they performed natural convection in a square enclosure filled with viscous fluid
by providing uniform and non-uniform heating. So, this document contains innovative
results and shows novelty concerning the investigation of the non-Newtonian model
describing features of shear thinning and thickening fluids with the installation of a T-
shaped fin. Formulation of the problem expressing the aspects of natural convection is
represented in the form of partial differential equations. Then, variables are used for their
non-dimensionalization for distinctive physical interpretation. Commercial software based
on a finite element method known as COMSOL is used to find the solution. Variation
in velocity and temperature against involved physical parameters is displayed through
graphs. Quantities of engineering interest like local and average Nusselt numbers, kinetic
energy and cutlines are shown through sketches and tables. Credibility of computed results
are delineated by performing a grid independence test along with the provision of reference
with published work. Agreement of the presently computed results is made by constructing
a comparison with results published by Roy et al. [30].

2. Problem Definition and Mathematical Formulation

Assume free convective 2D steady flow of an incompressible power-law fluid embed-
ded with T-shaped fin. The square shape enclosure is taken into consideration and bounded
by isothermal vertical walls along with uniformly heated lower wall. The T-shaped fin is
rooted at the bottom surface of the enclosure and prescribed with uniform heating at all
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faces and ribs. The enclosure is considered to be impermeable along with the assumption
of no wall motion. The physical configuration of the problem is illustrated in Figure 1.

Figure 1. Graphical illustration of the problem.

The governing constitutive equations [36] are as follows

∂u
∂x

+
∂v
∂y

= 0, (1)

ρ(u
∂u
∂x

+ v
∂u
∂y

) = −∂p
∂x

+
∂τxx

∂x
+

∂τxy

∂y
, (2)

ρ(u
∂v
∂x

+ v
∂v
∂y

) = −∂p
∂y

+
∂τxy

∂x
+

∂τyy

∂y
+ ρgβ(T − Tc), (3)

u
∂T
∂x

+ v
∂T
∂y

= α

(
∂2T
∂x2 +

∂2T
∂y2

)
. (4)

The stress tensor τij of a non-Newtonian fluid is stated as

τij = 2µaDij = µa

(
∂ui
∂xj

+
∂uj

∂xi

)
. (5)

where, Dij is the rate of the strain tensor; µa is the apparent viscosity for 2D Cartesian
coordinates.

µa = K

{
2

[(
∂u
∂x

)2
+

(
∂v
∂y

)2
]
+

(
∂v
∂x

+
∂u
∂y

)2
} n−1

2

. (6)
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The associate dimensional boundary conditions are as follows

u(x, 0) = u(x, L) = u(0, y) = u(L, y) = 0,
v(x, 0) = v(x, L) = v(0, y) = v(L, y) = 0,
T(x, 0) = Th, ∂T

∂y (x, L) = 0, T(0, y) = T(L, y) = Tc.
(7)

Dimensionless quantities are defined as below,

X =
x
L

, Y =
y
L

, U =
uL
α

, V =
vL
α

, (8)

P =
pL2

ρα2 , θ =
T − Tc

∆T
, ∆T =

qL
k

. (9)

Dimensionless representation of governing equations is defined as follows

∂U
∂X

+
∂V
∂Y

= 0, (10)

U
∂U
∂X

+ V
∂U
∂Y

= − ∂P
∂X

+ Pr
[

2
∂

∂X

(
µ∗a

∂U
∂X

)
+

∂

∂Y

(
µ∗a

(
∂U
∂Y

+
∂V
∂X

))]
, (11)

U
∂V
∂X

+ V
∂V
∂Y

= − ∂P
∂Y

+ Pr
[

2
∂

∂Y

(
µ∗a

∂V
∂Y

)
+

∂

∂X

(
µ∗a

(
∂U
∂Y

+
∂V
∂X

))]
+ RaPrθ, (12)

U
∂θ

∂X
+ V

∂θ

∂Y
=

∂2θ

∂X2 +
∂2θ

∂Y2 . (13)

where µ∗a is the non-dimensional apparent viscosity defined as,

µ∗a =

[
2

{(
∂U
∂X

)2
+

(
∂V
∂Y

)2
}
+

(
∂V
∂X

+
∂U
∂Y

)2
] n−1

2

. (14)

Associated boundary conditions in dimensionless form are as follows,

U(X, 0) = U(X, 1) = U(0, Y) = U(1, Y) = 0,
V(X, 0) = V(X, 1) = V(0, Y) = V(1, Y) = 0,
T(X, 0) = 1, ∂T

∂y (X, 1) = 0, T(0, Y) = T(1, Y) = 0.
(15)

Physical parameters are defined as under

Ra =
ρgβ∆TL2n+1

αnK
, Pr =

KL2−2n

ρα2−n . (16)

3. Numerical Details

Since the attained differential system presented in Equations (10)–(13) along with
the associated boundary constraints given in Equation (14) are non-linear in nature, so
analytical methods do not provide support for the solution of such complex coupled
problems. In this regards, the computational scheme like the finite element method is the
most efficient for finding the optimized solution along with the comprehensive physical
description of the underlying physics of the problem. For the implementation of the finite
element method firstly equations are discretized by incorporating weak formulation, then
the underlying discrete non-linear system of equations is solved by the Newton method and
the linear inner system in solved with the direct solver PARDISO (Advanced Computing
Laboratory, Institute of Computing, Università della Svizzera italiana, Lugano, Switzerland)
by accomplishing LU matrix factorization, reducing the number of iterations required for
the desired level of convergence. This reduces the number of the iterations required. The
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Lagrangian system is used for velocity discretization (second order) of elements, whereas
for pressure and temperature (linear order) the method is as shown in Figure 2.

Figure 2. Mesh analysis at finer level.

3.1. Discretization of Equations

This section is presented to discuss the basis of the finite element procedure, i.e.,
discretization of modelled governing continuity, momentum and energy couple partial
differential equations by constructing a weak formulation. The weak form is a mathematical
manipulation to relax strong requirements on a PDE by reducing the continuity condition
on basis functions. The weak form allows to capitalize on the lesser degree of polynomials
to approximate field variables. In addition, there are two attributes of this finite element
method; firstly it is based on the idea of partitioning bounded domain Ω into the IRn

number of the small non-overlapping domains over which functions are approximated
by test functions lying in the test spaces. Secondly, the systematic representation of the
approximation of function spaces by piecewise approximation over subdomains produces
the sequence of functions that can be approximated by Sobelev test spaces.

The test spaces for field variables like pressure, velocity and temperature are defined
by considering W =

[
H1(Ω)

]3 to be the test subspaces for u, v, θ and Q = L2(Ω) to be the
test space for pressure.

The weak form of the momentum equation in the x-direction for the whole domain Ω
is given as

∫
Ω

(
U

∂U
∂X

+ V
∂U
∂Y

)
w dΩ +

∫
Ω

∂P
∂X

w dΩ− Pr
∫
Ω

[
2

∂

∂X

(
µ∗a

∂U
∂X

)
+

∂

∂Y

(
µ∗a

(
∂U
∂Y

+
∂V
∂X

))]
wdΩ = 0 (17)

Weak formulation of the momentum equation in the y-direction including natural
convection over complete domain Ω is expressed as∫

Ω

(
U ∂V

∂X + V ∂V
∂Y

)
w dΩ +

∫
Ω

∂P
∂Y w dΩ− Pr

∫
Ω

[
2 ∂

∂Y

(
µ∗a

∂V
∂Y

)
+ ∂

∂X

(
µ∗a

(
∂U
∂Y + ∂V

∂X

))]
w dΩ

−Ra Pr
∫
Ω

θ w dΩ = 0,

(18)
The continuity equation in integral form is defined as below∫

Ω

(
∂U
∂X

+
∂V
∂Y

)
q dΩ = 0, (19)
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The heat equation after using the weak formulation is described as

∫
Ω

(
U

∂θ

∂X
+ V

∂θ

∂Y

)
w dΩ−

∫
Ω

(
∂2θ

∂X2 +
∂2θ

∂Y2

)
w dΩ = 0, (20)

µ∗a =
∫
Ω

[
2

{(
∂U
∂X

)2
+

(
∂V
∂Y

)2
}
+

(
∂V
∂X

+
∂U
∂Y

)2
] n−1

2

wdΩ (21)

All physical phenomena are continuous, but solving a problem by using a computer
with a continuous approach is very difficult. So, the basis of numerical methods is to
discretize the continuous problem in discrete form for better understanding. The continuous
solution fields such as pressure, velocity and temperature are discretized by using finite
dimensional subspaces defined as below

U ≈ Uh ∈Wh
V ≈ Vh ∈Wh
θ ≈ θh ∈Wh
P ≈ Ph ∈ Qh

(22)

Using Equation (22) in Equations (18)–(20), the following discrete version is attained
Discretized form of momentum equation in the x-direction is represented as∫

Ω

(
Uh

∂Uh
∂X + Vh

∂Uh
∂Y

)
wh dΩ +

∫
Ω

∂Ph
∂X wh dΩ−

Pr
∫
Ω

[
2 ∂µ∗a

∂X
∂Uh
∂X + ∂µ∗a

∂Y

(
∂2Uh
∂Y2 + ∂2Vh

∂Y∂X

)]
whdΩ = 0

(23)

Discretized version of the momentum equation in the y-direction is given below∫
Ω

(
Uh

∂Vh
∂X + Vh

∂Vh
∂Y

)
wh dΩ +

∫
Ω

∂Ph
∂Y wh dΩ−

Pr
∫
Ω

[
2 ∂µ∗a

∂Y
∂2Vh
∂Y2 + ∂µ∗a

∂X

(
∂2Uh
∂X∂Y + ∂2Vh

∂X2

)]
wh dΩ− Ra Pr

∫
Ω

θh wh dΩ = 0,
(24)

The continuity equation in discretized form is represented as below∫
Ω

(
∂Uh
∂X

+
∂Vh
∂Y

)
qh dΩ = 0, (25)

The discretized form of the energy equation is described as below

∫
Ω

(
Uh

∂θh
∂X

+ Vh
∂θh
∂Y

)
wh dΩ−

∫
Ω

(
∂2θh
∂X2 +

∂2θh
∂Y2

)
wh dΩ = 0, (26)

The viscosity relation for the power-law fluid for each element is defined as below

µ∗a =
∫
Ω

[
2

{(
∂Uh
∂X

)2
+

(
∂Vh
∂Y

)2
}
+

(
∂Vh
∂X

+
∂Uh
∂Y

)2
] n−1

2

whdΩ (27)
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The discrete solution in the form of basis functions of linear functionals is

Uh ≈
ndof
∑

k=1
Uk ϕk(X, Y),

Vh ≈
ndof
∑

k=1
Vk ϕk(X, Y),

Ph ≈
ndof
∑

k=1
Pkψk(X, Y),

θh ≈
ndof
∑

k=1
θk ϕk(X, Y).

(28)

where ndof represents the number of degrees of freedom and then Equations (18)–(21)
give rise to the momentum equation in the x-direction at the element level for n degrees
of freedom

∫
Ω

(
Uh

∂Uh
∂X

+ Vh
∂Uh
∂Y

)
wh dΩ +

∫
Ω

∂Ph
∂X

wh dΩ− Pr
∫
Ω

[
2 ∂µ∗a

∂X
∂Uh
∂X

∂wh
∂X

+ ∂µ∗a
∂Y

(
∂2Uh
∂Y2

∂2wh
∂Y2 + ∂2Vh

∂Y∂X
∂2wh
∂Y∂X

) ]dΩ = 0 (29)

The momentum equation in the y-direction at the element level for n degrees of
freedom is

∫
Ω

(
Uh

∂Vh
∂X + Vh

∂Vh
∂Y

)
wh dΩ +

∫
Ω

∂Ph
∂Y wh dΩ− Pr

∫
Ω

 2
(

∂µ∗a
∂Y

∂2Vh
∂Y2

∂2wh
∂Y2

)
+

∂µ∗a
∂X

(
∂2Uh
∂X∂Y

∂2wh
∂X∂Y + ∂Vh

∂X2
∂wh
∂X2

)  dΩ

−Ra Pr
∫
Ω

θh wh dΩ = 0,
(30)

The continuity equation at the element level for n degrees of freedom is∫
Ω

(
∂Uh
∂X

+
∂Vh
∂Y

)
qhdΩ = 0, (31)

The temperature equation at the element level for n degrees of freedom is∫
Ω

(
Uh

∂θh
∂X

+ Vh
∂θh
∂Y

)
whdΩ +

∫
Ω

(
∂θh
∂X

∂wh
∂X

+
∂θh
∂Y

∂wh
∂Y

)
dΩ = 0. (32)

The system of non-linear momentum and energy equations in matrix representation is
given as below


Pr. Lh + N(Uh, Vh) 0 B1 0

0 Pr. Lh + Nh(Uh, Vh) B2 −Ra Pr Mh
BT

1 BT
2 0 0

0 0 0 Lh + Nh(Uh, Vh)





U

−
V

−
P

−
θ

−


=


F1
F2
F3
F4

. (33)

which can be written as: Aξ=F
Lh: Discrete Laplace matrix; Nh: Non-linear convection matrix; Mh: Mass matrix;

ξ : Solution vector; F: Right-hand side after implementation of boundary condition. To
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compute the solution, this non-linear system is iterated till a specified convergence criterion
is met. The nonlinear iterations are stopped when the residual is dropped by 10−6.

3.2. Grid Independence Test
Quantities of Engineering Interest

Kinetic energy (K.E.) in the cavity, which is one of the global quantities, is defined
mathematically as follows

E =
1
2

∫
Ω
‖u2‖ dΩ. (34)

Average Nusselt number
(

NuAvg
)

is computed and formulated by the expression:

NuAvg =
1
s

∫
s

NuLocalds. (35)

The local Nusselt number (NuLocal) on the surface T shaped fin is estimated by the
following expression:

NuLocal = −
(

∂θ

∂n

)
s
. (36)

where (s) and (n) are the surfaces of the thermal region and the normal direction to
the surface.

Validation of the implemented computational scheme is assured by developing grid
independence and is presented in Table 1. The quantities of engineering interest like kinetic
energy and local Nusselt number defined in Equations (35)–(36) at different refinement
levels are listed in Table 1, fixing Ra = 1000, Pr = 6.2 and n = 1. From the attained
values of both physical quantities it is observed at the fine level that the values match the
magnitude at the finer level. These benchmark results disclose the fact that the results at
levels 6 and 7 are in close agreement. In view of this match all the simulations are computed
at level 6 to save computational and time cost.

Table 1. Grid independence test at different refinement levels.

Levels Number of
Elements

Degree of
Greedom NuLocal Kinetic Energy

Extremely Coarse 454 1264 5.7142 8.8560× 10−5

Extra Coarse 660 1808 6.2082 9.6805× 10−5

Coarser 1008 2636 6.6154 1.0247× 10−4

Coarse 1812 4556 7.2062 1.0625× 10−4

Normal 2675 6528 8.5638 1.0894× 10−4

Fine 4147 9772 8.8640 1.1283× 10−4

Finer 10,680 24,368 8.8644 1.1284× 10−4

3.3. Result Validation

The credibility of currently conducted computations is assured by comparing with
the work published by Roy and Basak [39]. For agreement of the present simulations,
restriction of physical parameters is made where n = 1. Graphical results for velocity
stream lines and isothermal contours against Prandtl number (Pr) and Rayleigh number
(Ra) are sketched. From graphical structures total agreement is accomplished. In addition,
tabular values of average Nusselt number against (n) are compared with previous work
published by Khezzar et al. [30] and Sojoudi et al. [33]. From the data it is also depicted
that the average Nusselt number magnitudes are in complete agreement with each other.
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4. Discussion of Results

Results were interpreted by executing the finite element approach via COMSOL Multi-
physics software regarding heat transfer attributes of power-law fluid enclosed in a square
enclosure including the fitting of a T-shape fin. Deviation in velocity and temperature
distribution against different magnitudes of involved parameters like Rayleigh number
(Ra), power-law index (n) and Prandtl number (Pr). In addition, local and average heat
transfer rates and kinetic energy measurements are enumerated against sundry variables.
Variation in the Nusselt number and kinetic energy against the power-law index (n) is
represented in Table 2. It is evaluated that by increasing (n), local heat transfer and kinetic
energy depreciate because of the fact that by increasing the power-law index fluid behavior
changes from shear thinning to thickening. So, as an output fluid viscosity increments slow
down the motion and heat transferring process from the flow domain. Deviation in local
Nusselt number and kinetic energy against (n) is evaluated in the form of line charts and is
represented in Figures 3–5. It is manifested from these sketches that by increasing (n) the
local Nusselt number as well as kinetic energy decreases because of the fact that by increas-
ing (n) the fluid’s viscosity enriches and causes a reduction in the movement of particles
and heat transfer within the flow domain. Table 3 demonstrates the behavior of the Nusselt
number against (Ra) and by specifying (n < 1), (n = 1) and (n > 1). The increasing
trend in the Nusselt number is depicted against the Rayleigh number (Ra), whereas it is
also disclosed that the magnitude of the Nusselt number is greater in the shear thinning
case, i.e., n < 1, than n > 1. This behavior is evidenced by the fact that an increment in (Ra)
increases thermal buoyancy forces due to which heat is transferred within the flow domain
from one part of the enclosure to the other. Table 4 exhibits the change in kinetic energy
against (Ra), fixing n = 0.5, 1, 1.5. By increasing (Ra) ranging from 102 − 105 kinetic
energy increments abruptly. This is because of the fact that by varying (Ra) molecular
diffusion occurs quickly due to temperature difference and hence the global quantity shows
elevation. In addition, the magnitude of the kinetic energy for (n = 1) compared to (n > 1)
and (n < 1) is scrutinized. Figure 6a–c represents the impact power law index (n) on
velocity distribution in the form of stream lines. The velocity profile for (n = 0.5) showing
the pseudo-plastic manner of the power-law fluid model is addressed in Figure 6a. The
compact circular patterns in the flow field are noticed showing less dominating aspects
of viscosity over inertial forces. Subsequently, it is found that fluid particles move with
more speed and are dispersed in the form of circular motion around the fin. In Figure 6b,c
elliptic shaped deformation zones are produced on all sides of the fin, which represents
the dominating effect of viscous forces instead of thermal buoyancy forces. So, from these
sketches it is revealed that at a lower magnitude of (n), shear stresses generated due to
viscous forces are impressive compared to the higher values of (n). Figure 7a–c describes
momentum distribution against (Ra), ranging from 104 ≤ Ra ≤ 106. Intensification in
stream line formation around the T-shaped fin is found. This is because of the fact that by
increasing (Ra), dominance in the diffusion of particles takes place within the flow, which
as an outcome raises the formation of the pattern around the fin. Figure 8a–d displays
the behavior of temperature distribution against the increasing value of (Ra) due to the
provision of uniform heating at the fin. It is seen from the corresponding figures that
by increasing the magnitude of (Ra), sharpness in the temperature profile is produced
due to the enrichment in thermal driven buoyancy forces. In addition, it is worthwhile to
mention that heat diffuses more quickly for higher magnitudes of (Ra). Figure 9 expresses
the comparative analysis between the average and local Nusselt numbers against flow
behavior index (n) and (Pr). It is manifested that by increasing (n) and (Pr) the magnitude
of local heat flux generated by the provision of uniform heating is extensive compared to
the measurement of the average Nusselt number within the whole domain. Here, it is also
measured that, by increasing (Pr), the Nusselt number is enhanced because the momentum
of the fluid raises compared to the thermal diffusion, whereas contrary behavior in the heat
flux against (n) is communicated for both local and average Nusselt numbers. Variation in
kinetic energy against (Ra) and for different (n) values by drawing a cutline at (X = 0.5)
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is displayed in Figure 10. It is scrutinized that the magnitude of kinetic energy for n = 0.5
against variation in (Ra) is comparatively higher than for (n = 1) and (n = 1.5). In ad-
dition, it is illustrated that for (Ra = 0), kinetic approaches to zero due to the absence of
temperature difference within the enclosure. Variation in kinetic is given in Table 5.

Table 2. Comparison of average Nusselt number NuAvg against (n).

n NuAvg in [30] NuAvg in [33] NuAvg in Present work

0.6 6.9345 7.020 6.9872

0.8 5.5127 − 5.6200

1.0 4.6993 3.741 4.6990

1.2 3.1709 − 3.1705

1.4 3.7869 3.770 3.7870

Figure 3. Cont.
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Figure 3. Comparison of stream lines and isothermal contours with Roy and Basak [39].

Figure 4. Variation in Local Nusselt number against (n) at X = 0.5.

Table 3. Variation of Nusselt Number and Kinetic Energy with power-law index (n).

Power Law Index (n) Local Nusselt Number Kinetic Energy

0.5 9.214687249 105.4262823501

1 7.579833344 34.408781197

1.5 7.566853799 95.137400379
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Figure 5. Line chart for variation in kinetic energy against (n) at X = 0.5.

Table 4. Variation in local Nusselt number against (n) and (Ra) at X = 0.5.

Ra Shear Thinning
n = 0.5

Newtonian
n = 1

Shear Thickening
n = 1.5

100 9.214 7.579 7.566

1000 14,364 8.528 7.607

10,000 23,208 14,055 8.253

100,000 36,322 25,311 11,063

Figure 6. Variation in velocity distribution against (n).
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Figure 7. Variation in velocity distribution against (Ra).

Figure 8. Variation in temperature distribution against (Ra).
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Figure 9. Variation in Nusselt number against (Pr) and (n).

Figure 10. Variation in kinetic energy against (Ra) and (n) at X = 0.5.
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Table 5. Variation in kinetic energy against (n) and (Ra) at X = 0.5.

Rayleigh Number Shear Thinning
n = 0.5

Newtonian
n = 1

Shear Thickening
n = 1.5

100 105,426 34,408 95,137

1000 1,207,006 211,448 1,076,050

10,000 9,173,715 2,065,724 9,719,185

100,000 49,296,473 16,134,383 54,104,160

Variation in the vertical component of velocity by drawing the cutline at (Y = 0.5) is
inspected for different values of (n) in Figure 11. In this sketch, the motion of the power-
law fluid is expressed in the form of wave structures against three different magnitudes of
(n), i.e., n = 0.5, 1, 1.5, showing shear thinning, Newtonian and shear thickening aspects,
respectively. It is analyzed from the sketch that velocity along a cutline varies in a wave
form and a greater increase in the peaks of the profile is observed in the case of n = 0.5
than n = 1 and n = 1.5. In view of gaining an exclusive view concerning maxima or minima
of velocity profiles it is observed that absolute maxima are achieved at (X = 0.21) and
(X = 0.79), whereas absolute minima are achieved at (X = 0.005) and (X = 0.95).

Figure 11. Cutlines for V at Y = 0.5.

5. Conclusions

The current disquisition analyzes the thermal attributes of the power-law liquid
enclosed in a square cavity with the insertion of a uniformly heated T-fin. The formulation
of the problem is demonstrated in the context of intricate dimensionless partial differential
structuring. Finite element based software known as COMSOL is used to simulate results.
Some salient outcomes are enlisted as below:

• It is inferred that kinetic energy and heat flux coefficient increase with an increase in
the Rayleigh number.
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• It is deduced that the increment in the power-law index decreases the kinetic energy
and local and average Nusselt numbers.

• The magnitude of kinetic energy and Nusselt number for shear thinning fluid is
comparatively higher than for shear thickening and Newtonian cases.

• Increase in temperature distribution is observed against the Rayleigh number due to
the generation of temperature differences.

• Local and average heat transfer coefficients enhance with increases in the Prandtl number.
• Magnitude of heat transmission enriches with an increase in the Rayleigh number.
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