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Abstract: Previous research showed that employing results from meta-analyses of relevant previous
fMRI studies can improve the performance of voxelwise Bayesian second-level fMRI analysis. In
this process, prior distributions for Bayesian analysis can be determined by information acquired
from the meta-analyses. However, only image-based meta-analysis, which is not widely accessible to
fMRI researchers due to the lack of shared statistical images, was tested in the previous study, so the
applicability of the prior determination method proposed by the previous study might be limited.
In the present study, whether determining prior distributions based on coordinate-based meta-
analysis, which is widely accessible to researchers, can also improve the performance of Bayesian
analysis, was examined. Three different types of coordinate-based meta-analyses, BrainMap and
Ginger ALE, and NeuroQuery, were tested as information sources for prior determination. Five
different datasets addressing three task conditions, i.e., working memory, speech, and face processing,
were analyzed via Bayesian analysis with a meta-analysis informed prior distribution, Bayesian
analysis with a default Cauchy prior adjusted for multiple comparisons, and frequentist analysis
with familywise error correction. The findings from the aforementioned analyses suggest that use of
coordinate-based meta-analysis also significantly enhanced performance of Bayesian analysis as did
image-based meta-analysis.

Keywords: Bayesian fMRI analysis; coordinate-based meta-analysis; image-based meta-analysis;
informative priors

1. Introduction

In fMRI analysis, how to threshold a statistical image resulting from the analysis has
been a significant issue. As fMRI analysis involves testing more than a hundred thousand
voxels in a simultaneous manner, fMRI researchers have been concerned about how to
address the potential inflation of false positives originating from multiple comparisons [1].
For instance, one recent study reported that multiple comparison correction methods
implemented in widely used fMRI analysis tools, such as AFNI, SPM, and FSL, are likely
to inflate false positives [2]. Following this study, researchers have retested the validity
of the tools and attempted to address the aforementioned issue in various ways [3–5].
Hence, it would be necessary to consider and examine how to address potential issues and
problems associated with multiple comparison correction and inflated false positives in
fMRI analysis, which involves simultaneous multiple tests.

In addition to the aforementioned issue associated with inflated false positives and
thresholding, the interpretation of resultant p-values could also be problematic in tradi-
tional frequentist fMRI analysis. Even if it is possible to control potential false positives
through multiple comparison correction, it is still unclear whether resultant p-values can be
used to examine whether a hypothesis of interest, instead of a null hypothesis, is supported
by evidence [6]. Thus, the use of p-values could be epistemologically inappropriate for
hypothesis testing [7]. For example, even if a t-test reports p < 0.01, the resultant p-value

Mathematics 2022, 10, 356. https://doi.org/10.3390/math10030356 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10030356
https://doi.org/10.3390/math10030356
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-7181-2565
https://doi.org/10.3390/math10030356
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10030356?type=check_update&version=1


Mathematics 2022, 10, 356 2 of 22

does not mean that the likelihood that a hypothesis of interest, i.e., there is a significant
non-zero difference or effect, is the case is 99%. Instead, the p-value can only indicate
whether a null hypothesis is likely to be rejected [6,8]. Even if the null hypothesis is highly
likely to be rejected, such as fact does not directly support an alternative hypothesis. Given
that researchers are primarily interested in whether evidence supports their alternative hy-
pothesis regarding the presence of a significant effect, this epistemological issue, associated
with traditional frequentist fMRI analysis, shall be carefully considered.

As a possible way to address the aforementioned issues associated with traditional
frequentist fMRI analysis, several researchers have suggested the use of the Bayesian
approach in fMRI analysis. At the epistemological level, the Bayesian approach is more
suitable for directly testing a hypothesis of interest in lieu of a null hypothesis. Frequentist
analysis employing p-values is primarily concerned about the extremity of the observed
data given a hypothesis, P(D|H). However, Bayesian analysis is more interested in a
posterior probability, which is about to what extent a hypothesis is likely to be the case
given specific data, P(H|D) [6,7,9]. Furthermore, Bayesian statisticians argue that the
Bayesian approach is not very susceptible to the inflated false positives associated with
multiple comparisons, since it is not based on frequentist assumptions. For example, the
Bayesian approach does not strongly rely on the Type I error paradigm, which is about
false positives [10].

In fact, as an alternative approach in fMRI analysis with methodological and epistemo-
logical merits, the Bayesian approach has been implemented in analysis tools in the field.
Some widely used analysis tools, such as SPM, have implemented the Bayesian approach
possessing the aforementioned methodological merits [11]. A recent study demonstrated
that the Bayesian analysis implemented in SPM 12 outperformed frequentist analysis in
terms of consistency [12]. Moreover, researchers have also developed open source tools,
such as BayesfMRI and BayesFactorFMRI, that are customized and specialized for the
Bayesian analysis of fMRI data [13,14].

Although the Bayesian approach has methodological merits and has demonstrated
improvements in the performance of fMRI analysis, as reported in the previous stud-
ies [12], several issues that can emerge while applying the approach in fMRI analysis
should be carefully examined. First, in the previous studies, how to address the multiple
comparison correction in Bayesian analysis was not clearly addressed. Although Bayesian
statisticians are not very concerned about the issue of inflated false positives, as previously
mentioned [10], due to the nature of fMRI analysis, which is involved in the simultaneous
tests of numerous voxels, some have been concerned about whether the Bayesian approach
is capable of resolving the problem of inflated false positives in a straightforward manner.
As one possible solution, one recent study [15] has attempted to implement multiple com-
parison correction in voxelwise fMRI analysis by adjusting prior distributions based on the
number of voxels to be tested [16,17].

Second, although the issue of multiple comparison was able to be addressed, whether
the prior distributions to be used are reasonably and plausibly determined could also be
problematic. As even slight changes in prior distributions may significantly alter the out-
comes of Bayesian analysis [18,19], prior distributions should be carefully determined. The
prior distributions employed in the previous study [20] were in fact default Cauchy prior
distributions, which were not actually informed by the previous information. In fact, there
have been concerns regarding the potential arbitrariness existing in default priors [21]. As a
way to address the issue, the use of informative priors, priors determined based on results
from relevant previous studies, can be considered. Researchers who applied the aforemen-
tioned approach to determine prior distributions have reported that the use of informative
priors resulted in fewer biased outcomes and improved analysis performance [22–24]. In
addition, in the case of voxelwise Bayesian fMRI analysis, when prior distributions were
determined based on the results from the Bayesian image-based meta-analyses of relevant
previous fMRI studies, the performance was significantly improved in terms of sensitivity
and selectivity [20].
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Although the concerns regarding Bayesian fMRI analysis, those associated with multi-
ple comparison correction and the determination of prior distributions, can be addressed
by determining prior distributions based on meta-analysis [15,20], a major practical issue
may hinder the wide employment of the method in the field. In a previous study [20], the
determination of informed prior distributions was performed with results from image-
based fMRI meta-analyses that could not be easily performed in ordinary cases. To perform
image-based meta-analysis, researchers must have access to statistical images produced by
relevant previous studies conducted by other researchers. Although there are several open
repositories to share such images (e.g., NeuroVault, OpenfMRI), it is difficult to acquire
large scale image data for every research topic [20,25]. Of course, compared with coordinate-
based meta-analysis, which is more accessible to researchers and has been widely employed
in the field, image-based meta-analysis possesses methodological advantages [25,26]. For
instance, image-based meta-analysis is performed with actual statistical images, instead of
information of peak voxel coordinate information, so it does not estimate significant cluster
information (e.g., size, shape), but meta-analyzes the real activity information reported
in previous studies. As a result, image-based meta-analysis shows a better analysis per-
formance compared with coordinate-based meta-analysis. Despite such superiority, the
lack of accessible large scale statistical image data may prohibit researchers from feasibly
performing image-based meta-analysis, and, thus, determining prior distributions based
on such meta-analysis could also be difficult.

Hence, to address the aforementioned issue related to image-based meta-analysis
and its application in prior determination, in the present study, the use of coordinate-
based meta-analysis for prior determination was implemented and tested. First, based
on the procedures that were used to determine informative priors based on image-based
meta-analysis, how to design informative priors with a result from coordinate-based
meta-analyses was considered. While developing the procedure for prior determination,
two tools for large scale coordinate-based fMRI meta-analysis, Ginger ALE (activation
likelihood estimation) [27–29] and NeuroQuery [30], were utilized. Second, after perform-
ing voxelwise Bayesian second-level fMRI analyses with prior distributions determined
by coordinate-based meta-analyses, whether the use of coordinate-based meta-analyses,
instead of image-based meta-analyses, in a prior determination resulted in a significant re-
duction of performance of Bayesian fMRI analysis was tested. In the present study, to what
extent the analysis results overlapped with results from large scale fMRI meta-analyses
was examined. Based on the performance evaluation results, the potential values, impli-
cations, and limitations of the prior determination procedure based on coordinate-based
meta-analysis were discussed.

2. Experimental Procedure
2.1. Materials

Source code and data files to test the features introduced in the present study are
available via GitHub (https://github.com/hyemin-han/Prior-Adjustment-CBM (accessed
on 13 January 2022)).

2.1.1. Statistical Image Datasets for Analyses

To apply and test different prior determination methods, in the present study, a total
of five different datasets containing statistical brain images that were created from first-
level fMRI analyses addressing three different categories of task conditions were used.
The employed datasets are available via open repositories (e.g., NeuroVault, SPM tutorial
file repository; see Table 1 further details about how to obtain them). All datasets used
in the analyses in the present study are available for free download under CC0 License
(NeuroVault) or the GNU General Public License (SPM). First, three different datasets
with statistical images were created from three fMRI experiments focusing on the working
memory [31–34]. Second, one dataset containing statistical images was generated from an
fMRI experiment that examined the neural correlates of speech processing [34]. Third, one

https://github.com/hyemin-han/Prior-Adjustment-CBM
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dataset with statistical images files were created by an fMRI experiment that focused on
the neural correlates of face processing [35]. Further details, including the bibliographic
information, sample size, task condition, and repository link, regarding each dataset are
presented in Table 1. All image files to be analyzed were acquired in the format of NIfTI.

Table 1. List of datasets analyzed in the present study.

Category Dataset Name Sample
Size

Compared Task
Conditions Link to Open Repository

Working memory

DeYoung et al. (2009)
(in Kragel et al.’s (2018)

repository)
15 3-back vs. fixation https://neurovault.org/collections/3324/

CBM (accessed on 13 January 2022)

Henson et al. (2002) 12
Famous vs.

non-famous face
memory

http://www.fil.ion.ucl.ac.uk/spm/
download/data/face_rfx/face_rfx.zip
(accessed on 13 January 2022) (under

“cons_can” subfolder)

Pinho et al. (2020) 13 2-back vs. 0-back https://neurovault.org/collections/6618/
(accessed on 13 January 2022)

Speech Pinho et al. (2020) 18 Speech vs. natural
sound listening

https://neurovault.org/collections/2138/
(accessed on 13 January 2022)

Face Gordon et al. (2017) 10 Face vs.word
identification

https://neurovault.org/collections/2447/
(accessed on 13 January 2022)

2.1.2. Meta-Analysis Results for Prior Determination and Performance Evaluation

In the present study, brain images reporting results from meta-analyses of previous
fMRI studies were employed for prior determination and performance evaluation (see
Table 2 for further details about the images). First, information required for prior determina-
tion, including the proportion of significant voxels within each image, mean and standard
deviation of voxel values, was extracted from each image before performing Bayesian
second-level fMRI analysis. Second, upon completion of Bayesian analysis, analysis result
images were compared with meta-analysis result images for performance evaluation.

For these purposes, four different meta-analysis methods were employed. First,
image-based Bayesian fMRI data meta-analysis was performed. Statistical images report-
ing results from previous fMRI studies were obtained from NeuroVault, and they were
meta-analyzed with a tool for image-based Bayesian fMRI meta-analysis implemented in
BayesFactorFMRI [14,25]. Bayesian image-based meta-analysis was applied only while
examining the three working memory datasets, because statistical images reporting results
from previous fMRI experiment relevant to two other topic, speech and face processing,
were not sufficiently available on NeuroVault.

Second, coordinate-based meta-analysis was performed by employing Sleuth, a tool
to search the BrainMap database, and Ginger ALE. The database containing coordinate
information of significant activation foci that has been reported in previous fMRI studies,
BrainMap, was explored with Sleuth [36]. By entering task condition or topic keywords,
activation foci information was automatically crawled from relevant previous studies
registered in BrainMap, and, then, was exported into text files. Then, the exported text
files containing coordinate information were imported by Ginger ALE for coordinate-
based meta-analysis [28,29,37]. Once all meta-analysis procedures were completed, one
unthresholded statistical image reporting activation likelihood in analyzed voxels and one
thresholded image were generated for each completed meta-analysis [27,38]. See Table 2
for further details about which search terms were used in Sleuth and which parameters
were used in Ginger ALE (e.g., cluster forming threshold, cluster level threshold).

Third, large-scale fMRI meta-analysis was conducted with NeuroSynth, a web-based
tool for automatized large-scale meta-analysis and synthesis of previous fMRI studies [39].
NeuroSynth (https://neurosynth.org/ (accessed on 13 January 2022)) performs meta-
analysis with activation foci coordinate information that has been automatically extracted
from previously published articles. Such information was associated with key terms

https://neurovault.org/collections/3324/
http://www.fil.ion.ucl.ac.uk/spm/download/data/face_rfx/face_rfx.zip
http://www.fil.ion.ucl.ac.uk/spm/download/data/face_rfx/face_rfx.zip
https://neurovault.org/collections/6618/
https://neurovault.org/collections/2138/
https://neurovault.org/collections/2447/
https://neurosynth.org/
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(e.g., “working memory,” “speech,” “face”) for further analyses (see Table 2 for further
details about key terms used in the present study). Once a key term was entered to Neu-
roSynth, it generated a statistical map reporting which voxels showed significant activity
associated with the entered key term. In the present study, a result from an association test,
which identifies voxels reporting significant activity within a specific key term condition
controlled for baseline activity across all other conditions, was used. According to previous
research, the association test based on large scale database is a possible way to examine
brain regions specifically associated with a psychological functionality of interest while
minimizing problems that can emerge from erroneous reverse inference [40,41]. The gener-
ated image was automatically thresholded with a false discovery rate corrected threshold
p < 0.01. NeuroSynth images were used only for evaluation performance, not for prior
determination, because unthresholded original statistical images were not available for
download at NeuroSynth.

Fourth, images generated with NeuroQuery were also used for prior determination
and performance evaluation. NeuroQuery is a web based tool to generate a statistical image
that reports which voxels are most likely to show activity when a query is entered [30].
Unlike NeuroSynth, which primarily tests consistency of activation foci reported across
different studies when a key term is given, NeuroQuery mainly intends to predict which
brain regions are more likely to report activity when a topic query is given [42]. To generate
NeuroQuery images, designated keyword queries were entered to the system (see Table 2
for further details about the used keywords). Generated NeuroQuery images reported the
predicted likelihood of activity in each voxel within the provided keyword condition in
terms of z statistics. Following the guidelines suggested by the developers, the generated z
maps were thresholded at z ≥ 3 [30].

Table 2. Meta-analyses used for prior determination and performance evaluation.

Category Type Acquisition Method *

Working memory

Bayesian Meta-analysis

Han and Park’s (2018) meta-analysis
Acquired from Han (2021) GitHub:

https://github.com/hyemin-han/Prior-Adjustment-BayesFactorFMRI/tree/
master/Working_memory_fMRI/Performance_evaluation (accessed on

13 January 2022)

BrainMap + Ginger ALE Slueth: Normal Mapping & Activations Only & Paradigm Class = n-back
Ginger ALE: cluster forming p < 0.001, cluster-level FWE p < 0.01

NeuroSynth
term = “working memory”

https://neurosynth.org/analyses/terms/working%20memory/ (accessed on
13 January 2022)

NeuroQuery
term = “working memory”

https://neuroquery.org/query?text=working+memory+ (accessed on
13 January 2022)

Speech

BrainMap + Ginger ALE
Slueth: Normal Mapping & Activations Only &

Keywords = face | faces | face recognition | facial recognition
Ginger ALE: cluster forming p < 0.001, cluster-level FWE p < 0.01

NeuroSynth
term = “speech”

https://neurosynth.org/analyses/terms/speech/ (accessed on
13 January 2022)

NeuroQuery term = “speech”
https://neuroquery.org/query?text=speech+ (accessed on 13 January 2022)

https://github.com/hyemin-han/Prior-Adjustment-BayesFactorFMRI/tree/master/Working_memory_fMRI/Performance_evaluation
https://github.com/hyemin-han/Prior-Adjustment-BayesFactorFMRI/tree/master/Working_memory_fMRI/Performance_evaluation
https://neurosynth.org/analyses/terms/working%20memory/
https://neuroquery.org/query?text=working+memory
https://neurosynth.org/analyses/terms/speech/
https://neuroquery.org/query?text=speech
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Table 2. Cont.

Category Type Acquisition Method *

Face

BrainMap + Ginger ALE
Slueth: Normal Mapping & Activations Only &

Keywords = speaking | Speech | speech | speech processing
Ginger ALE: cluster forming p < 0.001, cluster-level FWE p < 0.01

NeuroSynth term = “face”
https://neurosynth.org/analyses/terms/face/ (accessed on 13 January 2022)

NeuroQuery term = “face”
https://neuroquery.org/query?text=face+ (accessed on 13 January 2022)

* For each case, further details about how meta-analysis was performed (e.g., keyword terms, links to NeuroSynth
or NeuroQuery results) were described. Bayesian image-based meta-analyses were performed only for three
datasets in the working memory task condition. Results from NeuroSynth were only utilized for evaluation
performance, not prior determination due to the unavailability of unthresholded images.

2.2. Basis of Voxelwise Second-Level fMRI Analysis

In the present study, the brain images reporting results from first-level (individual-
level) fMRI analysis were analyzed at the second (group) level. As explained above, five
datasets containing first-level analysis results across three task categories (i.e., working
memory, speech, face) were acquired from open repositories for this purpose. For inputs,
contrast images reporting differences in activity across two conditions (e.g., n-back vs.
control) at the individual level were used. These input images were converted with a
standard MNI space for further analyses.

Basically, the voxelwise second-level analysis was performed following the general
rules of t-test. Let us assume that we are interested in comparing brain activity in a specific
voxel between two conditions, Condition A and B. The current second-level fMRI analysis
is carried out by performing a one-sample t-test examining whether brain activity value
in a specific voxel is significantly higher (or lower) than zero. For each voxel, results
from first-level (or individual-level) fMRI analyses are used as inputs. Each input value,
a contrast value reported by a specific first-level fMRI analysis, represents the calculated
difference in brain activity in Condition A versus Condition B in a specific subject. Then,
with the input values, a one-sample t-test is performed following t = x

s/
√

n , where x is the
mean brain activity value, s is the standard deviation of brain activity values, and n is the
number of subjects analyzed at the first level. With the result from the conducted t-test, it is
possible to examine whether there is significant brain activity in a specific voxel of interest.

2.3. Voxelwise Bayesian Second-Level fMRI Analysis

In the present study, whether brain activity in a specific voxel of interest, which
was examined following the theme of a t-test, was significant was examined through
Bayesian approach. Voxelwise Bayesian second-level fMRI analysis, in the present study,
was performed with customized R and Python scripts that were modified from BayesFac-
torFMRI [14]. Bayesian second-level analysis performed in the present study produced
an output image that demonstrated the Bayes Factor value in each voxel. Bayes Factor
(BFab) indicates to what extent evidence supports a specific hypothesis of interest (Ha) over
another (Hb) [8,43]. To calculate Bayes Factor, we need to examine the posterior probability
of each hypothesis by updating its prior probability through observing data. Let us assume
that P(Ha) indicates the prior probability of Ha associated with our belief about whether
Ha is the case before observing data. In the same way, the prior probability of Hb, P(Hb),
can also be determined. Through observation, the posterior probability of each hypothesis
is updated from its prior probability. The posterior probability of Ha, P(Ha|D), means the
likelihood of Ha given data (D). In the same vein, the posterior probability of Hb, P(Hb|D),
can also be defined. To calculate the posterior probabilities, the Bayesian updating process
is performed following Bayes theorem as follows:

P(H|D) =
P(H)P(D|H)

P(D)
(1)

https://neurosynth.org/analyses/terms/face/
https://neuroquery.org/query?text=face
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where P(D|H) is the likelihood to observe data (D) given a hypothesis (H) and P(D) is the
marginal probability to normalize the constant of the numerator. Both P(D|H) and P(D)
can be acquired by observing data.

When two posterior probabilities, P(Ha|D) and P(Hb|D), are acquired, Bayes Factor
BFab can be calculated. We can start with considering the posterior odds, P(Ha|D)/P(Hb|D),
which indicate the relative ratio of P(Ha|D) versus P(Hb|D). These odds shall be calculated
as follows [6]:

P(Ha|D)

P(Hb|D)
=

P(Ha)P(D|Ha)
P(D)

P(Hb)P(D|Hb)
P(D)

=
P(Ha)

P(Hb)

P(D|Ha)

P(D|Hb)
(2)

In this equation, P(D|Ha)/P(D|Hb) indicates Bayes Factor, BFab, where P(Ha)/P(Hb)
is the prior odds. We can utilize the value, BFab = P(D|Ha)/P(D|Hb), to examine to what
extent evidence (D) supports Ha over Hb. If BFab exceeds 1, evidence is supposed to
favorably support Ha in lieu of Hb. If BFab < 1, Hb is deemed to be more likely to be the
case given evidence.

Bayesian statisticians have proposed some guidelines about how to interpret Bayes
Factors in Bayesian inference [7,8,43]. For instance, when 1/3 < BFab < 3, evidence is
deemed to be anecdotal so it would still be unclear whether evidence significantly supports
one hypothesis over the other. When BFab ≥ 3, evidence positively supports Ha over Hb.
In the same vein, BFab ≥ 10, ≥ 30, and ≥ 100 have been used as indicators for presence of
strong, very strong, and extremely strong evidence supporting Ha over Hb, respectively. If
BFab becomes smaller than 1/3, we can assume that evidence is more likely to support Hb
over Ha. BFab ≤ 1/3, 1/10, 1/30, and 1/100 are deemed to indicate the presence of positive,
strong, very strong, and extremely strong evidence supporting Hb over Ha, respectively.

Compared with p-values that have been widely used for frequentist inference, Bayes
factors have significant epistemological merit in fMRI research. Let us assume that our
hypothesis of interest, H1, is about whether there is a significant non-zero effect in a voxel
when two conditions are compared. Then, H0, a null hypothesis, is about whether there
is not a significant non-zero effect. If we conduct frequentist analysis, then a resultant
p-value indicates more about P(D|H), whether observed data is likely to be the case given
a hypothesis, rather than P(H|D), whether the hypothesis is likely to be the case given
the data, in which we, fMRI researchers are primarily interested, in most cases, unless we
intend to examine null effects. In fact, p-values do not inform us about whether H1, an
alternative hypothesis, shall be accepted; instead, they are only related to whether H0, a null
hypothesis, shall be rejected. Interpreting p-values is also challenging. Unlike Bayes factors,
which are about to what extent evidence supporting a hypothesis of interest, p-values are
about the extremity of the observed data given the hypothesis. As fMRI researchers are
primarily interested in testing presence of a significant non-zero effect (H1) instead of its
absence (H0), at the epistemological level, in terms of interpretation, Bayes factors would
be more useful than p-values.

Given voxelwise Bayesian second-level fMRI analysis was performed in the present
study, for each voxel, BF10, regarding to what extent evidence supporting presence of
a significant effect (activity difference) in the voxel, was calculated with input images.
Then, to identify voxels that reported significant activity, the resultant BF10 values were
thresholded at BF10 ≥ 3, indicating presence of positive evidence supporting a non-zero
effect in each voxel.

2.4. Prior Determination Based on Results from Meta-Analyses

Although Bayes factors have the aforementioned methodological merits, one funda-
mental issue should be considered and addressed while employing Bayesian inference in
fMRI analysis. To estimate a posterior probability, P(H|D), and Bayes factor, BF, researchers
need to determine a prior probability, P(H), which is updated with data, D. Given a change
in P(H) significantly impacts the resultant P(H|D) [18–20], determination of P(H) is critical,
and, thus, should not be arbitrary. As a possible way to address this issue, in the previous
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study that first employed multiple comparison correction in Bayesian second-level fMRI
analysis [15], one of the most widely used noninformative prior distributions, the default
Cauchy prior distribution, Cauchy (x0 = 0, σ = 0.707), was used [7–9]. The Cauchy distri-
bution has been employed as a default prior distribution in the fields of psychology and
neuroscience [9]. In fact, it has been utilized in statistical analysis tools for generic purposes
in psychological research, such as JASP and BayesFactor R package [8]. The Cauchy distri-
bution has several benefits, such as robustness in BF-based inference and less likelihood to
produce false positives compared with other noninformative priors [9], so the distribution
has been employed in the present study.

This default Cauchy prior is centered around x0 = 0, while having a scale, σ = 0.707 [8].
Here, x0 determines where the peak of the distribution shall be located. A scale parameter,
σ, determines the width of the distribution and fattiness of tails. As σ increases, the distri-
bution becomes more dispersed and has fatter tails. When multiple comparison correction
was applied, the scale, σ, was computationally adjusted according to the number of voxels
to be tested to control potential false positives. As the number of voxels to be tested in-
creases, σ becomes smaller and the adjusted prior distributions has a steeper peak centered
around x0 = 0. Then, the resultant BF becomes smaller, and the thresholding becomes more
stringent. As reported, use of the adjusted default Cauchy prior distribution resulted in
significant decrease in false positive rates in Bayesian second-level fMRI analysis [15].

In addition to the aforementioned use of the default Cauchy prior distribution after
multiple comparison correction, a prior distribution was also determined by a priori
information extracted from meta-analysis of relevant previous fMRI studies. In fact, in
Bayesian analysis, a prior distribution is about the prior belief that one has before observing
actual data [23]. Hence, determining such a prior distribution based on what has found in
relevant previous studies is deemed to be philosophically appropriate and is reported to
improve analysis performance in general [20,23,44].

As meta-analysis of fMRI is one possible way to examine the pattern of neural activity
that can be commonly observable in the task condition of interest while possibly improving
statistical power [45,46], information from such meta-analysis should be considered as
one reliable and valid source to determine a prior distribution in Bayesian fMRI analysis.
There was a previous study that implemented prior determination based on information
from meta-analysis, i.e., contrast strength, noise strength (or standard deviation of signal
strength in voxels), proportion of significant voxels [20]. This study reported that voxelwise
Bayesian second-level fMRI analysis with a prior distribution determined by meta-analysis
showed better performance compared with Bayesian analysis with an adjusted default
Cauchy prior distribution as well as frequentist analysis.

However, the aforementioned previous study only tested image-based meta-analysis,
which is less feasible to conduct compared with coordinate-based meta-analysis due to the
lack of available open statistical fMRI images. Thus, in the present study, a prior distribution
was determined with results from coordinate-based meta-analysis for the improvement
of the applicability of the prior determination procedure in Bayesian fMRI analysis. As
mentioned previously, three pieces of information, a contrast strength, a standard deviation
of the voxel strength, and a proportion of significant voxels, acquired from meta-analysis,
was used for prior determination [20]. First, the contrast strength (C) was defined in terms
of the difference in the mean strength in significant voxels versus the mean strength in
nonsignificant voxels. Second, the standard deviation of the voxel strength (N) was simply
calculated in terms of the standard deviation of the values in all meta-analyzed voxels,
including both significant and nonsignificant voxels. Third, the proportion of significant
voxels (R) was determined in terms of the ratio of significant voxels to all meta-analyzed
voxels. Based on the aforementioned information, an expected effect size value, X, which
was used for determining a prior distribution, can be calculated as follows:

X =
C
N

R (3)
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Once X value was calculated, then a Cauchy scale, σ, to determine the prior distribution
was numerically calculated with the X value. In this process, σ should satisfy:

P =
∫ X

−∞
Cauchy(x0 = 0,σ) (4)

where P is a user-defined percentile value; in the previous study, P = 80%, 85%, 90%, and
95% were tested [20]. The P is a hyperparameter that was employed to let users change the
overall shape of the adjusted Cauchy prior distribution. When X is constant, a higher P
ends up with a smaller Cauchy distribution scale, σ, so the adjusted distribution becomes
less dispersed and has a steeper peak at x0. The P value is supposed to be determined by
users, so it allows them to customize the shape of the resulting adjusted prior distribution
to be used with rationale. As explained in the original study that developed and tested the
prior adjustment method [20], use of the P value would be a possible way to customize the
shape of the adjusted prior distribution in a less arbitrary manner based on expectation
about the overall strength of brain activity in voxels to be analyzed. Following the previous
study, the same four P values were applied and tested in the present study. Once σ was
calculated based on X, which was acquired with C, N, and R from meta-analysis, voxelwise
Bayesian second-level fMRI analysis was performed with a Cauchy distribution, Cauchy
(x0 = 0, σ).

2.5. Performance Evaluation
2.5.1. Overlap Index for Evaluation

To compare the performances of different analysis methods (i.e., voxelwise Bayesian
second-level fMRI analysis based on an adjusted default Cauchy prior distribution, vox-
elwise Bayesian second-level fMRI analysis based on a prior distribution determined by
meta-analysis, voxelwise frequentist analysis), the thresholded results were compared
with results from relevant meta-analyses. As real data, not simulated data, was examined
in the present study, it was practically difficult to assume true positives, so results from
meta-analyses were used as proxies for true positives. As meta-analyses, particularly those
based on large-scale database (i.e., BrainMap, NeuroSynth, NeuroQuery), are capable of
demonstrating activation patterns that appear commonly across different studies, they
might be practically accessible methods to acquire standards for evaluation although they
cannot reveal exact true positives associated with task conditions of interest [47]. Hence, in
the present study, following the present studies [47,48], to what extent a thresholded image
that generated by each analysis method overlapped with a meta-analysis result image was
examined for performance evaluation. As two images showed greater overlap, the tested
analysis method was deemed to possess better performance.

The degree of overlap was quantified in terms of an overlap index. For each compar-
ison between an fMRI analysis result image and meta-analysis result image, an overlap
index, Iovl, was calculated as follows [47]:

Iovl =
2 VovlVovl

VresVmet
Vovl
Vres

+ Vovl
Vmet

(5)

where Vovl was the number of voxels that were significant in both the fMRI analysis result
and meta-analysis result images, Vres was the number of significant voxels in the fMRI
analysis result image, and Vmet was the number of significant voxels in the meta-analysis
result image. Iovl was calculated with a customized R code.

In the present study, performance evaluation was conducted to examine whether vox-
elwise Bayesian second-level fMRI analysis with a prior distribution determined by meta-
analysis showed better performance compared with the aforementioned two other analysis
methods. In addition, while analyzing the three working memory datasets, whether use
of coordinate-based meta-analysis for prior determination resulted in significant decrease
in performance was also tested. Unfortunately, the comparison between application of
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coordinate-based meta-analysis versus that of image-based meta-analysis was conducted
only for the three working memory datasets. Due to the lack of shared statistical images
related to the speech and face processing task conditions, the aforementioned comparison
could not be carried out in these two cases.

When performance evaluation was performed with the three working memory datasets,
results from different types of meta-analyses—Bayesian image-based meta-analysis, coordinate-
based meta-analysis with Ginger ALE, NeuroSynth, and NeuroQuery—were employed
as standards. For performance evaluation of two other datasets, the result from Bayesian
image-based meta-analysis was not used due to the aforementioned lack of available open
statistical images.

Similar to the previous studies [15,20], the performance of Bayesian analysis in general
was also compared with the performance of frequentist analysis. To conduct this additional
analysis, all five datasets were analyzed with SPM 12 [49]. As voxelwise analysis was the
main focus of the present study, while conducting frequentist analysis, thresholding was
performed with p < 0.05 after familywise error correction at the voxel level. Furthermore,
whether employing different P values (i.e., 80%, 85%, 90%, 95%) in prior distribution
determination significantly altered performance outcomes was also examined.

2.5.2. Statistical Analysis of Performance Outcomes

For statistical analysis of performance outcomes, frequentist and Bayesian mixed-
effects analyses were performed to examine whether the analysis type was significantly
associated with Iovl. Frequentist mixed-effects analysis was performed with an R pack-
age, lmerTest. In addition to ordinary frequentist mixed-effects analysis, which reports
p-values of tested predictors, Bayesian mixed-effect analysis was also performed with
BayesFactor. Bayesian mixed-effects analysis is suitable for identifying the best regression
model that predicts the dependent variable of interest in simple linear regression [50] as
well as multilevel modeling [51]. By employing this method, whether the best regression
model identified through Bayesian mixed-effects analysis included the analysis type as
a predictor was examined. If the analysis type was included, it was deemed that the
employment of different analysis methods was significantly associated with the difference
in performance outcomes.

While conducting main statistical analyses, first, whether Bayesian analysis with a
prior distribution based on meta-analysis performed significantly better than Bayesian
analysis with a default prior distribution and frequentist analysis was tested. This test
was conducted to examine whether the findings from the previous study that reported
better performance of Bayesian analysis with a prior distribution determined by meta-
analysis [20] were replicated in the present study. For this test, frequentist and Bayesian
mixed-effects analyses were performed while setting Iovl as the dependent variable, the
analysis method (Bayesian analysis with a prior distribution determined by meta-analysis
vs. Bayesian analysis with a default prior distribution vs. frequentist analysis) as the fixed
effect, and the analyzed dataset, task condition category, and type of meta-analysis result
used for performance evaluation as random effects. As explained previously, whether
the best regression model included the analysis type as a predictor and whether evidence
significantly supported inclusion of the analysis type in the model were tested. Moreover,
to conduct auxiliary analysis, the same mixed-effects analyses were performed while
employing a different fixed effect, the analysis type further differentiated by four different P
values used for prior distribution determination (Bayesian analysis with a prior distribution
determined by meta-analysis with four different P values (80%, 85%, 90%, 95%) vs. Bayesian
analysis with a default prior distribution vs. frequentist analysis).

Second, whether use of coordinate-based meta-analysis for prior determination in
Bayesian fMRI analysis resulted in significant decrease in analysis performance was also
examined. As image-based meta-analysis was conducted only with the three working
memory datasets, only the results from the analyses of the three working memory datasets
were analyzed. The same frequentist and Bayesian mixed-effects analyses were performed
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to answer the aforementioned question. In these analyses, Iovl was set as the dependent
variable, the analysis type (Bayesian analysis with a prior distribution determined by
meta-analysis vs. Bayesian analysis with a default prior vs. frequentist analysis) and the
type of meta-analysis used for prior determination (coordinate-based meta-analysis vs.
image-based meta-analysis) as the two fixed effects, and the analyzed dataset, and type of
meta-analysis result used for performance evaluation as random effects.

3. Results
3.1. Voxelwise Second-Level fMRI Analyses

Figure 1 demonstrates the results of the voxelwise second-level fMRI analyses of one
sample dataset, DeYoung et al. (2009)’s working memory dataset. The Bayesian analyses
based on prior distributions determined by three different information sources, image-
based Bayesian meta-analysis (Figure 1A), BrainMap and Ginger ALE (Figure 1B), and
NeuroQuery (Figure 1C), resulted in similar activity patterns. However, compared with
these cases, when Bayesian analysis with an adjusted default Cauchy prior (Figure 1D) or fre-
quentist analysis with familywise error correction (Figure 1E) was performed, significantly
fewer active voxels were reported.

The performance outcomes from all the voxelwise second-level analyses, in terms of
Iovl, are presented in Figures 2–6. The results are presented for each dataset, each type of
meta-analysis used for prior determination, and each analysis type. In Figures 2–4, the results
of the analyses of three working memory datasets, DeYoung et al. (2009), Henson et al.
(2002), and Pinho et al. (2020), respectively, are presented. In these cases, three subplots
report results from Bayesian analyses with prior distributions determined by image-based
meta-analysis (Figures 2A, 3A and 4A), BrainMap and Ginger ALE (Figures 2B, 3B and 4B),
and NeuroQuery (Figures 2C, 3C and 4C), respectively. In Figure 5A,B, the results from the
analyses of Pinho et al.’s (2020) speech dataset are presented. The results of the analyses of
Gordon et al.’s (2017) face dataset are demonstrated in Figure 6. In the analyses of these
two datasets, two different information sources, BrainMap and Ginger ALE (Figure 6A),
and NeuroQuery (Figure 6B), were employed for prior determination.

In general, Iovls resulting from meta-analysis-informed Bayesian analyses were sig-
nificantly higher than those resulting from Bayesian analyses with a default Cauchy prior
distribution or frequentist analyses. The aforementioned higher Iovls of Bayesian analyses
with prior distributions determined by meta-analyses were reported from the analyses of
all datasets, regardless of which type of meta-analysis was used for prior determination.



Mathematics 2022, 10, 356 12 of 22Mathematics 2022, 10, x FOR PEER REVIEW 12 of 23 
 

 

 
Figure 1. Results from the analyses of DeYoung et al.’s (2009) working memory dataset. Red: Voxels 
survived thresholding. (A) Bayesian analysis with a prior distribution determined by image-based 
meta-analysis. (B) Bayesian analysis with a prior distribution determined by coordinate-based meta-
analysis with BrainMap and Ginger ALE. (C) Bayesian analysis with a prior distribution determined 
by coordinate-based meta-analysis with NeuroQuery. (D) Bayesian analysis with an adjusted de-
fault Cauchy prior distribution. (E) Voxelwise frequentist analysis with familywise error correction. 

The performance outcomes from all the voxelwise second-level analyses, in terms of 
Iovl, are presented in Figures 2–6. The results are presented for each dataset, each type of 
meta-analysis used for prior determination, and each analysis type. In Figures 2–4, the 
results of the analyses of three working memory datasets, DeYoung et al. (2009), Henson 
et al. (2002), and Pinho et al. (2020), respectively, are presented. In these cases, three sub-
plots report results from Bayesian analyses with prior distributions determined by image-
based meta-analysis (Figures 2A, 3A, 4A), BrainMap and Ginger ALE (Figures 2B, 3B, 4B), 
and NeuroQuery (Figures 2C, 3C, 4C), respectively. In Figures 5A-5B, the results from the 
analyses of Pinho et al.’s (2020) speech dataset are presented. The results of the analyses 

Figure 1. Results from the analyses of DeYoung et al.’s (2009) working memory dataset. Red: Voxels
survived thresholding. (A) Bayesian analysis with a prior distribution determined by image-based
meta-analysis. (B) Bayesian analysis with a prior distribution determined by coordinate-based meta-
analysis with BrainMap and Ginger ALE. (C) Bayesian analysis with a prior distribution determined
by coordinate-based meta-analysis with NeuroQuery. (D) Bayesian analysis with an adjusted default
Cauchy prior distribution. (E) Voxelwise frequentist analysis with familywise error correction.
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Figure 2. Performance evaluation with DeYoung et al.’s (2009) dataset. (A) Analysis results when
image-based meta-analysis was used for prior determination. (B) Analysis results when coordinate-
based meta-analysis with BrainMap and Ginger ALE was used for prior determination. (C) Analysis
results when coordinate-based meta-analysis with NeuroQuery was used for prior determination.



Mathematics 2022, 10, 356 14 of 22Mathematics 2022, 10, x FOR PEER REVIEW 14 of 23 
 

 

 
Figure 3. Performance evaluation with Henson et al.’s (2002) dataset. (A) Analysis results when 
image-based meta-analysis was used for prior determination. (B) Analysis results when coordinate-
based meta-analysis with BrainMap and Ginger ALE was used for prior determination. (C) Analysis 
results when coordinate-based meta-analysis with NeuroQuery was used for prior determination. 

Figure 3. Performance evaluation with Henson et al.’s (2002) dataset. (A) Analysis results when
image-based meta-analysis was used for prior determination. (B) Analysis results when coordinate-
based meta-analysis with BrainMap and Ginger ALE was used for prior determination. (C) Analysis
results when coordinate-based meta-analysis with NeuroQuery was used for prior determination.
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Figure 4. Performance evaluation with Pinho et al.’s (2020) working memory dataset. (A) Analysis
results when image-based meta-analysis was used for prior determination. (B) Analysis results
when coordinate-based meta-analysis with BrainMap and Ginger ALE was used for prior determi-
nation. (C) Analysis results when coordinate-based meta-analysis with NeuroQuery was used for
prior determination.
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Figure 5. Performance evaluation with Pinho et al.’s (2020) speech dataset. (A) Analysis results
when coordinate-based meta-analysis with BrainMap and Ginger ALE was used for prior determi-
nation. (B) Analysis results when coordinate-based meta-analysis with NeuroQuery was used for
prior determination.

3.2. Statistical Analyses of Performance Outcomes

First, whether meta-analysis informed Bayesian analysis outperformed Bayesian anal-
ysis with an adjusted default Cauchy prior distribution and frequentist analysis was
examined in the present study. When these three analysis types were compared, Bayesian
mixed-effects analysis indicated that the regression model including the analysis type as
a predictor was the best model, BF = 2.68 × 1084. In addition, the inclusion of the anal-
ysis type was significantly substantiated by evidence, BF = 5.44 × 1064. The result from
frequentist mixed-effects analysis reported that meta-analysis informed Bayesian analysis
outperformed both Bayesian analysis with a default prior distribution, t (259.97) = −14.43,
B =−0.07, se = 0.00, p < 0.001, Cohen’s d =−1.79, and frequentist analysis, t (260.32) =−27.35,
B = −0.14, se = 0.01, p < 0.001, Cohen’s d = −3.39.

Furthermore, when the different P values used for prior determination were included
in the analysis type predictor in the regression model, similar to the previous case, the model
including the analysis type was indicated as the best model, BF = 8.38 × 1081. Inclusion of
the analysis type was also supported by evidence, BF = 1.69 × 1062. When meta-analysis
informed Bayesian analysis with P = 80% was set as the reference group, frequentist mixed-
effects analysis indicated that it outperformed meta-analysis informed Bayesian analysis
with P = 95%, t (257.00) = −2.45, B = −0.01, se = 0.00, p = 0.01, Cohen’s d = −0.31, Bayesian
analysis with a default prior distribution, t (257.00) = −12.30, B = −0.07, se = 0.00, p < 0.001,
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Cohen’s d =−1.53, and frequentist analysis, (257.20) =−23.27, B =−0.15, se = 0.00, p < 0.001,
Cohen’s d = −2.90. However, such differences were not found when it was compared with
meta-analysis informed Bayesian analysis with different P values, 85%, t (257.00) = −0.16,
B = −0.00, se = 0.00, p = 0.87, Cohen’s d = −0.02, and 90%, t (257.00) = −0.64, B = −0.00,
se = 0.00, p = 0.52, Cohen’s d = −0.08.
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Figure 6. Performance evaluation with Gordon et al.’s (2017) dataset. (A) Analysis results when
coordinate-based meta-analysis with BrainMap and Ginger ALE was used for prior determina-
tion. (B) Analysis results when coordinate-based meta-analysis with NeuroQuery was used for
prior determination.

Second, the performance of Bayesian analysis with a prior distribution determined
by coordinate-based meta-analysis was also examined. In this process, only the working
memory datasets were analyzed due to the availability of public statistical images for
image-based meta-analysis. When the two candidate predictors, the analysis type (meta-
analysis-informed Bayesian vs. Bayesian with a default prior distribution vs. frequentist)
and the type of meta-analysis used for prior determination (image-based meta-analysis
vs. coordinate-based meta-analysis with BrainMap and Ginger ALE vs. coordinate-based
meta-analysis with NeuroQuery) were tested, the Bayesian mixed-effects model analy-
sis indicated that the model with the fixed effect of the analysis type but without the
fixed effect of the type of meta-analysis used for prior determination was the best model,
BF = 2.40 × 1067. Similarly, the inclusion of the analysis type was substantiated by evi-
dence, BF = 7.34 × 1058, while that of the meta-analysis type was not, BF = 0.06. When
the best model without the type of meta-analysis used for prior determination was exam-
ined, compared with Bayesian analysis with meta-analysis-informed prior determination,
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both Bayesian analysis with a default prior distribution, t (202.00) = −13.67, B = −0.08,
se = 0.01, p < 0.001, Cohen’s d =−1.92, and frequentist analysis reported worse performance,
t (202.00) = −27.36, B = −0.16, se = 0.01, p < 0.001, Cohen’s d = −3.85.

A similar result was reported when the analysis type variable was modified to take
into account four different P values within the meta-analysis-informed Bayesian anal-
ysis. Bayesian mixed-effects analysis reported that the best model (BF = 2.18 × 1064)
included the type of analysis but not the type of meta-analysis used for prior determi-
nation. Although the inclusion of the analysis type in the best model was substantiated
by evidence, BF = 6.7 × 1055, that of the type of meta-analysis employed for prior de-
termination was not, BF = 0.05. When the best model was examined, Bayesian analysis
with P = 80% outperformed Bayesian analysis with P = 95%, t (257.00) = −2.45, B = −0.01,
se = 0.01, p = 0.02, Cohen’s d = −0.23, Bayesian analysis with a default prior distribution,
t (257.00) = −12.30, B = −0.07, se = 0.01, p < 0.001, Cohen’s d = −1.60, and frequentist
analysis, t (257.20) = −23.27, B = −0.15, se = 0.01, p < 0.001, Cohen’s d = −3.14. However,
it did not show better performance compared with when P = 85%, t (257.00) = −0.16,
B = −0.00, se = 0.01, p = 0.87, Cohen’s d = −0.01, or P = 90% was employed in Bayesian
analysis, t (257.00) = −0.64, B = −0.00, se = 0.01, p = 0.52, Cohen’s d = −0.04.

4. Discussion

In the present study, how to utilize results from the coordinate-based meta-analyses of
relevant previous fMRI studies for prior distribution determination in voxelwise Bayesian
second-level fMRI analysis was examined. As Han (2021a) only tested prior determination
based on image-based meta-analysis in a previous study, in the present study, how the
employment of coordinate-based meta-analysis, which has been widely used in the field,
influenced the performance of Bayesian fMRI analysis was investigated. In general, when
the performance was compared with the performance of Bayesian analysis with a default
prior distribution and that of frequentist analysis, the use of the newly invented prior
determination method resulted in a significantly better performance in terms of overlaps
with large-scale meta-analysis results, as reported in the previous study [20]. In the exam-
ination of the working memory datasets, the results showed that the Bayesian analysis
based on coordinate-based meta-analysis did not result in a worse performance compared
with that based on image-based meta-analysis. Finally, in the auxiliary analysis of the
effects of different P values, Bayesian analysis with P = 80% showed a better performance
than the Bayesian analysis with P = 95% and a default prior distribution, and frequentist
analysis; however, Bayesian analysis with p = 85% or 90% did not show a significantly
different performance.

The most noteworthy finding from the present study was that information from the
coordinate-based meta-analysis of relevant previous fMRI studies can be used to determine
a prior distribution in voxelwise Bayesian second-level fMRI analysis. The present study,
which developed and tested the aforementioned novel method for prior determination,
was motivated by a practical limitation in the previous study which employed image-based
meta-analysis. Although image-based meta-analysis has been reported to produce less
biased meta-analysis outcomes compared with coordinate-based meta-analysis [25,26], it
requires researchers to collect statistical images reporting results from previous studies to be
meta-analyzed. Of course, some statistical images are shared via online repositories, such
as NeuroVault [52], as mentioned in the previous and present studies [20,25]. However,
the number of available images did not appear to be sufficient to conduct a meta-analysis
across diverse task conditions. Unlike image-based meta-analysis, coordinate-based meta-
analysis to acquire information required for prior determination can be feasibly done even
in a large scale through BrainMap and Ginger ALE [28,36,53] as well as a web-based tool,
NeuroQuery [30]. Hence, demonstrating that Bayesian fMRI analysis based on coordinate-
based meta-analyses is capable of producing reliable and valid analysis results would be
a possible way to convince more fMRI researchers to use Bayesian fMRI analysis with a
meta-analysis informed prior distribution in their studies.
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Although coordinate-based meta-analysis has been reported to demonstrate a worse
performance compared with image-based meta-analysis [25,26], there might be a reason
why the use of coordinate-based meta-analysis in prior determination did not result in a
worse analysis performance in the present study. One major limitation of coordinate-based
meta-analysis would be that it utilizes coordinate information reported in published articles
instead of real statistical images that contain significantly more information regarding
actual experimental outcomes [25]. However, the methods for coordinate-based meta-
analysis employed in the present study, BrainMap-Ginger ALE and NeuroQuery, were
conducted with a large-scale coordinate information database [30,36,53,54]. Thus, the scale
of the meta-analyzed datasets might be a possible factor that mitigates the aforementioned
methodological limitation of coordinate-based meta-analysis. For instance, in the case
of the working memory task condition, only six statistical images from previous studies
were meta-analyzed with image-based meta-analysis [20]; however, Ginger ALE was
performed with the coordinate information of 301 experiments extracted from BrainMap,
and NeuroQuery result was based on information from 74 previous publications. Given
both Ginger ALE and NeuroQuery were able to estimate activation patterns based on large-
scale data, results from the coordinate-based meta-analyses might successfully approximate
the common activation patterns that could be discovered via image-based meta-analysis.
Hence, the use of coordinate-based meta-analysis for prior distribution determination
might not significantly worsen the performance of voxelwise Bayesian second-level fMRI
analysis in the present study.

Furthermore, in agreement with previous studies that compared Bayesian versus
frequentist approaches in voxelwise second-level fMRI analysis [12,15,20], in the present
study, Bayesian analysis outperformed frequentist analysis in general, regardless of which
method was used to determine prior distributions. The reported superiority of voxelwise
Bayesian analysis in the present study would support the point that Bayesian analysis can
contribute to improvement of fMRI analysis in general. In addition, by examining how
the use of coordinate-based meta-analysis for prior distribution impacted performance of
Bayesian analysis, it would be possible to suggest that Bayesian analysis can be feasibly
performed with information from coordinate-based meta-analysis, which is well accessible
to fMRI researchers.

The results of the auxiliary examination of how the use of different p values in prior
determination resulted in different performance outcomes in Bayesian fMRI analysis would
also provide fMRI researchers with additional information. In determining a prior dis-
tribution based on meta-analysis, parameters other than P required in the process, C,
N, and R, can be acquired from meta-analysis, so researchers do not need to determine
them. However, as shown in the previous study [20], P should be determined by the
researchers independent from the meta-analysis result. Although multiple P values, 80% to
95%, were tested in the previous study, performance outcomes were not compared across
different P-value conditions. Results from the present study demonstrated that the use of
P = 80% significantly outperformed that of 95%; however, use of P = 85% or 90% did not
significantly influence the performance outcome. Given the results, fMRI researchers may
consider employing P = 80% while determining a prior distribution if they do not have any
prior information about which P value would be most appropriate within the context of
their study.

However, there are several limitations that may warrant further investigations. First,
although the use of coordinate-based meta-analysis was tested and validated in the present
study, the method might not be applicable to diverse domains in fMRI research. The
task conditions examined in the present study, i.e., working memory, speech, and face
processing task conditions, are relatively well-defined compared with task conditions
addressing higher order psychological functions. We may consider a case of “moral”
psychology as an example. Moral functioning consists of multiple different psychological
processes, such as moral intuition, moral reasoning, etc. [55]. Let us assume that we
intend to analyze data collected from an experiment addressing a specific aspect of moral
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functioning. In this situation, the use of information from the meta-analysis of previous
fMRI studies addressing morality could be problematic because the meta-analyzed previous
studies might include experiments addressing diverse aspects of moral functioning, which
do not be necessarily directly relevant to the main focus of the current experiment. Thus, it
is more difficult to determine which keyword or topic should be used for the meta-analysis
of a more complicated psychological functioning, so use of coordinate-based meta-analysis
for prior determination could be challenging.

Second, although both image-based and coordinate-based meta-analyses were exam-
ined and compared in the present study, the comparison was completed only with the
working memory datasets. As not many open statistical images files, which were required
for image-based meta-analysis, were available for task conditions other than the working
memory task condition, the comparison could not be conducted for the speech and face
task conditions. This issue might limit the generalizability of the findings from the present
study, particularly those about the performance of coordinate-based meta-analysis for prior
determination, in other task conditions. Hence, further investigations should be conducted
once more shared statistical images become available on open image repositories, such as
NeuroVault [52].
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