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Abstract: Beltrami equations L;(g) = u( -, t) Li(g) on S® (where L;, |t| < 1, are the Rossi operators
i.e., L; spans the globally nonembeddable CR structure H(t) on S* discovered by H. Rossi) are derived
such that to describe quasiconformal mappings f : S*> — N C C? from the Rossi sphere (S%, #(t)).
Using the Greiner-Kohn-Stein solution to the Lewy equation and the Bargmann representations
of the Heisenberg group, we solve the Beltrami equations for Sobolev-type solutions g; such that
gt —v € Wr(S%, 0) withv € CR® (8%, H(0)).

Keywords: CR manifold; Tanaka—Webster connection; Fefferman metric; Lewy operator; Heisenberg
group; quasiconformal map; Beltrami equation; Rossi sphere; Bargmann representation; Fourier transform

1. Introduction and Statement of Main Result

Let M be a 3-dimensional nondegenerate CR manifold, equipped with the CR structure
‘H. The global CR embedding problem for M is to find a nondegenerate real hypersurface
N C C? and a CR isomorphism of (M, H) onto (N, T; o(N)), where

Tio(N) = [T(N) © C] nTY(C?)

is the CR structure on N induced by the complex structure on C2. H. Rossi has produced
(cf. [1]) a 1-parameter family {H(t)}l <1 of strictly pseudoconvex CR structures on the

sphere S® such that none of the CR manifolds (S3, 7 (t)), t # 0 (the Rossi spheres) is globally
embeddable (cf. also D.M. Burns [2]). One of the purposes of the present paper is to start
studying a natural weakening of the global CR embedding problem, seeking for an at least
K-quasiconformal mapping from M onto N. The problem is specialized to

(M, H) € {(S®, H(t)) : |t| <1}.

A quasiconformal mapping f = ( f 1 f2) 183 5 N (in the sense of A. Koranyi and
H.M. Reimann [3]) is in particular a contact transformation of positive dilation A(f) > 0,
and then a vector bundle morphism p¢(t) = pu(f, H(t)) : H(t) — H(t) (the complex dilation
of f) may be built such that quasiconformality is characterized by the Beltrami equations

Li(fly=p(-, HL(F), je{L2}, t<1, (1)

where the functions y( -, t) : $> — C are determined by

pr(t)Le = p(-, t) Ly,

= d d
Li=Z7 Z, L=wW——Z—.
f iz, Y3z T ow
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Building on an idea by C-Y. Hsiao and P-L. Yung (cf. [4]) we use the canonical CR
isomorphism (induced by the Cayley map) H : U = $3\ {(0, —1)} ~ Hj to transform the
Beltrami Equation (1) into

V() = f i V), @

. 2
1([gP—it+1)
t)=-—5—"— H
u(gf ) 2 |€|2+ZT+1 4 (é/T)E 1/
AMx, ) =pu(H (x),t), xeHy, [t <1,
] =~ d —
where V = — +i( =— (so that V is the unsolvable Lewy operator). Our main result is as

aC oT

follows.

Theorem 1. Let {y(-, t) }| 1|1 be a smooth 1-parameter family of measurable functions u(-,t):
S3 — C of compact support

Supp[u(-, t)] € S\{(0, -1)}, |t| <1,
such that Y
1 |t[v2
(- Ol = esssuppesa|u(p, £)] < N

Let v € CR®(S%) be a CR function [i.e., Z(v) = 0. Let us set

M, t)—t [ u(x) 2
lx(x't)_l—t)x(x,t) {|u(x)|] , xeHy, [|H<1

If one of the following conditions holds,
() a(-,t) €L (Hy,0) a(-,t)V(ooH ) € L2 (Hy, 6),
(i) a(-,t)€D_p,a(-,t)V(voH 1) €Dy,
(i) a(-,t) € Do N LE(Hy, b)), (-, t)V(voH ) € D_y N L% (Hy, 6),
then the Beltrami Equation (2) has a unique solution f; such that fy —vo H™! € W;JZ (Hz , 6o).
Consequently gt = f o H is a solution to

Li(g) = p(-, ) Li(g) 3)
such that gt — v € W;’Z(U, 0).
Here the spaces L2 (Hy , 6p) C L*(Hy, 6p) are
L2 (Hy, 6) = {f € L*(Hy, 6) : f(A) =0 ae. A >0},

L2 (Hy, 6p) = L*(Hy, 69) © L* (Hy, ),

and f(A) is the Fourier transform of f at A € R\ {0}. The meaning of the sets {Dj}jez will
be explained in Section 3.

The paper is organized as follows.

Section 2.1 is devoted to pseudohermitian geometry on a Rossi sphere (S, H(t)). We
show that Rossi’s CR structures {H(t) : [t| < 1} have the same Levi distribution (i.e., the
maximally complex distribution associated to the standard CR structure H(0) = Ty o(S%))
and, therefore, the same contact forms. We compute the pseudohermitian geometric objects
of interest (the Tanaka—Webster connection, Fefferman’s metric, etc.) of a Rossi sphere
endowed with the canonical contact form 6 = é (zdz +wdw —zdz — Wdw).
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Section 2.2 discusses the Folland—-Stein spaces
12 12
Wi (M, 0), Wg=(U, i*6),

on a strictly pseudoconvex CR manifold (M, Tio(M)), equipped with the positively
oriented contact form 0, and E = {E, : 1 < a < 2n} is a Gg-orthonormal (local)
frame of the Levi distribution H(M) = Re{Tyo(M) & Tp1(M)}, defined on the open
set.: U C M. If U is also the domain of a local coordinate neighborhood x : U — R?"*1,
then X = {x.E, : 1 <a < 2n} is a Hérmander system of vector fields on Q) = x(U) (e.g.,
in the sense of [5]) and Wé’z(u, f) are essentially the Sobolev-type spaces W)l('2 (Q) (e.g.,
in [6,7]). Our Theorem 2 in this section accounts for the fact that solving (3) in W;’z (53 , 9)
is the same as solving (2) in W};'z (Hy, 6o).

Section 2.3 discusses the basic differential geometric facts on quasiconformal maps
of 3-dimensional nondegenerate CR manifolds and gives a proof of a characterization of
K-quasiconformality due to A. Koranyi and H.M. Reimann (cf. [3]) yet proved by them
only for the Heisenberg group.

In Section 2.4, we derive the Beltrami equations, describing quasiconformal maps of
the Rossi sphere (5%, H(t)) into a real hypersurface N C C2.

Section 3 collects the needed tools of harmonic analysis (e.g., the Bargmann represen-
tations of the Heisenberg group Hj, the corresponding Fourier transform of f € S(Hj),
and the orthogonal decomposition L?(Hj , 6y) = @ycz UF) and complex analysis (e.g., the
solution to the inhomogeneous tangential Cauchy—Riemann equations V(f) = ¢ on Hj)
and provides the proof to Theorem 1.

2. Rossi’s Spheres
2.1. CR Structures, Levi Form, Tanaka—Webster Connection

We review a few notations, conventions and basic results in Cauchy—Riemann and
pseudohermitian geometry, by mainly following the monograph [8].

2.1.1. CR Manifolds, Pseudohermitian Structures

Let M be a 3-dimensional, orientable, C** manifold. A CR structure on M is a complex
line subbundle % C T(M) ® C such that

HxNHy=(0), x€ M.
The tangential Cauchy—-Riemann operator is the first order differential operator
9y :CH(M, C) = C(H),
(o)W =W(v), veC' (M, C), WeH.

A CR function on M is a C! solution v to the tangential CR equations 05v = 0. Let
CRF(M, ) be the space of all CR functions of class Ck k> 1.
Let H(M) = Re{H & H } be the Levi distribution. It carries the complex structure

J:HM) —=HM), J[(Z+Z)=i(Z-Z), ZeH,
(with i = v/=1). The conormal bundle is the real line subbundle H(M)+ C T*(M) given by
H(M)y = {w € T{(M) : Ker(w) D Hy}, x€ M.

The conormal bundle is trivial (i.e., H(M) L ~ M x R, a vector bundle isomorphism),
and hence it admits globally defined nowhere zero C* sections 6, each of which is referred
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to as a pseudohermitian structure on M. Let P = P(M, H) be the set of all pseudohermitian
structures on M. For every 6 € P, the Levi form Gy is

Go(X, Y) = (d0)(X, JY), X,Y € H(M).

The CR structure H is nondegenerate if the Levi form Gy is nondegenerate (i.e.,
Gp(X,Y) =0 for every Y € H(M) yields X = 0) for some 0 € P. If H is nondegener-
ate, then every 6 € P is a contact form, i.e.,, ¥ = 6 A df is a volume form on M, and P
splits into two orientation classes P+ = P+ (M, H). A contact form 6 € P is positively
oriented (the Levi form Gy is positive definite). For every 8 € P, the Webster metric is the
Riemannian metric determined by

gg(X,Y) = GQ(X, Y), gg(X, T) =0, gg(T, T) =1,
forany X,Y € H(M).

2.1.2. Tanaka-Webster Connection, Canonical Circle Bundle, Fefferman’s Metric

The Tanaka—Webster connection of (M, 6) is the linear connection V on M uniquely
determined by the following axioms: (i) H(M) is parallel with respect to V i.e., VyX €
H(M) for any X € H(M) and any Y € X(M), (ii) the complex structure | along H(M)
and the Webster metric gy are parallel with respect to V i.e.,, V] = 0 and Vgg = 0, (iii) the
torsion Ty is pure, i.e,,

Ty(Z, W) =0, Ty(Z, W) =2iGy(Z, W)T,
ToJ+Jotr=0, 7(Y)=Tv(T Y),

Z, WeH, Yex(M).

T is the pseudohermitian torsion of the Tanaka—Webster connection V. By a result of S.M.
Webster (cf., for example, [8]), T is self-adjoint (i.e., go(T X, Y) = gp(X, TY)) and T(H) C
H (in particular, T is traceless, i.e., trace(t) = 0).

For every C! vector field X on M, the divergence of X is determined by Lx¥ =
div(X) ¥ where Lx denotes the Lie derivative at X. The divergence of a vector field is most
easily calculated as the trace of the covariant derivative, with respect to the Tanaka-Webster
connection V. Indeed (by axiom (ii) above), V¥ = 0, and hence,

div(X) = trace{Y — VyX}.

A complex valued p-form 7 € OOF (M) = C®(APT*(M) ® C) isa (p,0)-form if H | 7 =
0. Let AP?(M) — M be the relevant vector bundle (so that QP0(M) = C*(APP(M)) is the
space of all (p,0)-forms on M). Then K(M, H) = A"*19(M) is a complex line bundle (the
canonical bundle over M). R = GL™ (1, R) (the multiplicative positive reals) acts freely
on Ko(M, H) = K(M, H) \ {zero section}, thus organizing the quotient space C(M, H) =
Ko(M, H)/R as the total space of a principal circle bundle S! — C(M, H) 5 M. If
w € K(M, H)y with w # 0 then [w] € C(M, H) denotes the class of w mod R.. Let us
assume that (M, H) is strictly pseudoconvex and let 6 € P, (M, H). Let {T, : 1 <a <
n} C C®(U, H) be a local frame of H, defined on the open subset U C M. Let T € X(M)
be the Reeb vector field of (M, 0). Let {6* : 1 < a < n} be the complex 1-forms on U
determined by

0%(Tp) = o5, 9"‘(TB) =0, 6%(T)=0.

{6* : 1 < a < n}isan admissible coframe. Then

w=AOAO A A0
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for some A € C\ {0}. A local trivialization chart of C(M, H) is

_ A
O (U) 5> Ux S, o(w]) = (x, W)'

The Fefferman metric is the Lorentzian metric Fy € Lor[C(M, H)] given by (cf. [8]
pp. 128-129)
Fp=n"Gy+2("0) ®0, 4)

where . ) R
- i — L oBge %
o n+2{ds+7r (zwa 58 8, Hnt1) 9)} ®)

a connection 1-form on the principal bundle S! — C(M, H) — M (the Graham con-
nection, cf. [9]). As to the notation in (4) and (5), the (degenerate) (0, 2)-tensor field Go
extends the Levi form Gy to the whole of T(M) by requesting that Go(T, W) = 0 for any
W € X(M) (and Gy = Gg on H(M) ® H(M)). Additionally, s is a local fiber coordinate on
C(M, H) [a detailed description of s for (M, H) = (S®, H(t)) (a Rossi sphere) is given in
Section 2.1.5]. Moreover,

ngB = GQ (TIX/ TE)/ I:glxﬁ:l = [g,xg];

VT, = wf Ty, R=g"¥Rg,

and R oB is the pseudohermitian Ricci tensor (cf. [8], p. 50).

2.1.3. Heisenberg Group, Rossi Spheres
Let H; = C x R be the Heisenberg group, with the group law

(z,t)- (0, 1) = (z+, t+1+2Im(2()),

forany z, { € Cand t, T € R. The complex vector field V = 9/9{ + i{d/dt spans the
left invariant CR structure H, = CV,, with x € Hj. Here, V is the Lewy operator and the
tangential CR equations on H;j are V(F) = 0. For instance, if F({, 7) = [{ |2 —1i7, then
F e CR®(Hy, H).

Let S = {(z,w) € C? : zz+ ww = 1} be the standard sphere. The CR structure

Tio(S°) = [T(S*) ® C] N TO(C?)

(the canonical CR structure on S°) is the span of T} = Wd/dz —zd/dw. Let H(S?) be the
Levi distribution of the CR manifold (S3, T; o(S?)). Let us set

Li=T1+tTs, |t|<1, (6)

H(t)x={ALyx : A€C}, x€S°.

Here, T; = T;. Then, we have the following:

(i) H(t)is anondegenerate CR structure on S° [such that H(0) = T (S°)].
(i) The Levi distributions of (S*, H(t)) and (S%, T;(S®)) coincide, i.e.,

Re{?—l(t) @W} — H(S®), |t| <1.

(iii) The CR manifolds (53 , H(t)) have the same positively oriented contact forms, i.e.,

Py (S3, H(t)) =Py (S, Tio(S?)).
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To prove (i)—(iii), we need some preparation. Let us consider the (real valued) differen-
tial 1-form 8 € Q!(S3) given by

Q:j*[%(zdi—i—wdw—fdz—wdw)} (7)

(with j : S C C?). Then, we have the following:

Step 1. 6 € P4 [S®, T10(S%)], i.e., 0 is a positively oriented contact form on S® with respect
to the ordinary CR structure Ty o(S°).

Proof. For simplicity, we drop j. Then
do = i(dz A dz + dw N dw)
and the Levi form Gy is

Gg(Tl ’ TT) = —i (d())(Tl ’ TT) = (dZ A dZ) (T] ’ TT) + (dw A\ dw) (Tl ’ TT) =

1 2 2 1 1
= >{ldz (1) [ + [dw (1) [} = S{IzP + P} = 5 > 0.
O

0 is referred to as the canonical contact form on S®. The Reeb vector field of (S, 0) is
the nowhere zero globally defined vector field T € X(S3) determined by 6(T) = 1 and
T |do=0.

Step 2. The Reeb vector field T of (S°, 0) is given by

T*izi+ i—zi—*i
Nz " Yow oz Yow)

An adapted coframe is a frame {6'} in T} o(S®)* such that
0'(Ty) =1, 6'(Ty) =0, 6'(T) =0.

Step 3. 0! = wdz — zdw is an adapted coframe on (S*, 6).

We may now complete the proof of (i)—(iii). The complex distribution H () ® H(t)
is the span of {L;, L;} and then [by (6)] the span of {T;, T;}. Hence, the CR manifolds

{(s?, H(t))}\f\d have the same Levi distribution (i.e., H(S®) = Re{H(t) ® H(t)}) and
therefore, the same pseudohermitian structures (i.e., P(S®, T1o(S%)) = P(S3, H(1))).

Step 4. The Levi form of (S®, H(t))
Go(X,Y) = (d6)(X, J'Y), X,Y € H(S),

J' H(S?) = H(S), J'(Z+Z)=i(Z-2Z), ZeH),
is given by
1+
2

Gy(Le, Lt) = > 0. (8)

Proof. Indeed, _
Go(Le, Le) =

[as ]tLt = lLt and ]tft = —ift]

= —i(d0)(Li, L) =
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= {1z (L)~ a2 (L) + o (L)~ |a (L) [*} =

1—¢2 1—¢#2
=5 (P + o) = =5~ >0

proving that 6 € P (S®, H(t)) and then

Py (S3, H(t)) =Py (S®, H(0)).
O

2.1.4. Tanaka—Webster Connection of a Rossi Sphere
We shall need the following commutation table

[T, Ty] = —2iTy, [T, Ty =2iT;, [Ty, Ty =—iT, )
2i(1+ %) 4it _ , )
[T,Lt]:— -7 Lt+1_t2Lt, [Lt,Lt]:—l(l—t)T. (10)

Let V! be the Tanaka-Webster connection of (S, #(t), 6), where 6 is given by (7),
and let w; be the connection 1-form associated to the frame {L;} C C®(H(t)), i.e.,

VL =w;®L, w=Tl(t)6} +TL (t)6] + T8 (1)6.

Here, we have set

1 — — J—

1_ 1 1 T_ gl

ol = 1_t2(9 19 ) ol = ol

so that {6} } is an adapted coframe relative to the CR structure H(t), i.e.,
0f (L) =1, 6}(L) =0, 6/(T)=0.

By a result in [8] (p. 33),

rh() = g7 () {Le(gr(®) — gh(Le, [Le, L)) |, an

L (5 = g™ (1) gh([Lr, L], L), (12)

Iy (t) = g (4) gb ([T, L], Le), (13)
where ) . . ,
g , g() = Go(Ly, T) = =1

gir(t) 2 7
and g, is the Webster metric of (S®, #(t), 0), i.e., gH(X,Y) = G5(X,Y), g4(X,T) = 0and
¢h(T,T) = 1forany X,Y € H(S?). Substitution from (9) and (10) into (11)-(13) gives

2i(1+#2
I(t) =T} () =0, Tg(t) = —%, (14)
2i(1+ %)
. —
The pseudohermitian torsion 7 of V! is given by
4it

7(Li) = AJ(t) Ly, Af(t) = T
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Let Rt = RV be the curvature tensor field of V. With the convention in [8], p- 50,
the only nonzero component of R, with respect to the frame {L;}, is

RY(Le, L)L = Ri'y5(1), Ri'yq(t) = 2(1+£). (16)
In particular, the pseudohermitian scalar curvature of V' is

4(1+ %)

R(t) = g'! Ri'y5(t) = -7

To prove (16), one starts from (cf. [8], p. 51)
RY (X, Y)L; = 2 (dw;)(X,Y) Ly .
In addition (by taking the exterior differential of (15))

2i(1+#)

dwt: 171’2

de

and hence (as G, = —id6 on H(t) @ H(t))

4(1+#2)

T Go(Le, L) Le = 2(1 4 ) L.

R'(Ly, L)Ly =

2.1.5. Fefferman’s Metric of Rossi’s Sphere
Let C(S®, T10(S%)) be the canonical circle bundle over (S3, Ty o(S%)). Then

C(s%, Tio(s%), = {[A (910"),] : AeC\{0}}, xes.

Letn € O?(S%) = C®(A%T*(S®) @ C) be a type (2,0)-form relative to the CR structure

H(t)ie, H(t) |7 =0. Then

h

— 1 _

oA (61 —t6')
for some h € C* (S, C). Hence, the canonical circle bundle over (S%, H(t)) is
C(s%, H(1)), = {[A(e/\el - tQAGT)x} LA e (C\{O}}, xess.
Let 7' : C(S®, H(t)) — S° be the canonical projection. Fefferman’s metric
Fj = F(H(t), 0) € Lor[C(S®, H(t))]
is —
Fy= (") G, +2((n")*0) © o,
_ 1 Ey* | _i 11 _ _1
o = S{dst + () [zwt 58 (1) dgyr(t) — £ R() 9} }
GL(X,Y) = GH(X,Y), GL(T,W) =0, X,Y € H(S?), W € X(5%).

Additionally, s; is a local fiber coordinate on C (53 , H(t)) that we now describe in
some detail. Let us consider the C* diffeomorphism

®: C(S7, H(t) =+ 7 xS, @i(w]) = (x, o),
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w=a@A0' 1070 , xS, AeC\ {0}

Note that @; ([w]) is invariant under a transformation ' = ba with b € R, hence ®;

is a well defined C* diffeomorphism. For every ¢y € R, we set
U(po) = {e'? : |¢ — @o| < 7} C S,
¢ (90— 7, go+7) = Ulgo), () =e,

arg : U(go) — (o — 7, o + 1), arg = l/’_l ,
U(po) = D, [S? x U(go)] € C(S®, H(H)),

st = St,9, 1 U(@0) = (o — 7, po+ 1), si([w]) = Ej‘rg(lgl>'

Lemma 1. Fefferman’s metric F} of Rossi’s sphere (S®, H(t), 0) is given by

t F\* ~F 2 £ * 1+t2 £ *
Fp= (') G+ 3[(n) 0] ©dsi + 1—5 (1) (0 ©9),
~ 1+ 0 t 2 1\ 2
Gy= 1t @6 — = {(6")7+ (") }.
Proof. By (15) and (16)
1 1+
Ut—gd5t+mﬂ9

(17)

[the Graham connection 1-form of (53 , H(t), 6)] yielding (17). The second statement in

Lemma 1 follows from . B
Gh=287(t)6; © ;.

O

2.1.6. Siegel Domain, Cayley Map

Let
Q={(t1, %) €C* : Im((p) > |41)*}

be the Siegel domain. We shall need the CR isomorphisms

z .1—w)

C: 83\ {(0, —1)} — 2Q, C(z,w):(m,zm

Y:H =00, (g )= (g T+ilc?),
(z,w)eSS, w#-1, (e€C, TeR,
H:Uu=8\{0,-1)} =H,, H=yp 1ocC.
Then (i) for every (z,w) € S3\ {(0, —1)}

z ZIm(w))

H 7 =\ 7 — 71
(z,w) (1+w 11+ w|?

(ii) for every |t| < 1 L
H.L=u V" 4 tyHVH,

(18)

(19)

(20)

(21)



Mathematics 2022, 10, 371

10 of 40

where u € C*(Hj, C) is given by

24 1)
u(g, ©) = ;m (¢, 1) € Hy. (22)

Here, u! = 1o H and VH = V o H. Formula (20) follows from (18) (the restriction of
the Cayley map C : C2\ {w +1 =0} — C2to S3\ {(0, —1)}) and (19) (the canonical CR
isomorphism of the Heisenberg group Hj onto the boundary of the Siegel domain Q C C?).
Formula (21) follows from

1+w 1+w
(d (20 H)L, (z0) = 4wy HEw) +t (A+w) Hew)
. . . 14+w
together with the observation that (22) yields u(H(z,w)) = (ED
Recall the CR function F({, T) = |{|?> —iT. If Z = Ty, then
14T g
R >
so that .
_.~-w 3
f(z, w) = T (z,w)eU C S,

is a CR function, i.e., f € CR®(U, #(0)). Indeed, f = F o H and then (by (23)) Z(f) = 0.
As to the proof of (23), it follows from

1+@+p gy izp (a)H
HzZ=-——"FfyH_____2F (2 24
Q+wp ~  (A+wR+w) \or @9

where p(z, w) = 2z + ww — 1.

2.2. Folland—Stein Spaces

Let (M, 'H) be a strictly pseudoconvex CR manifold, of CR dimension 7, and let
0 € P, be a positively oriented contact form on M. Let ¥ = 0 A (d6)" and let L?(M, )
consist of all measurable functions u# : M — R such that

1/2
Il = Iz = ( [, P ¥) <o

One tacitly identifies functions coinciding almost everywhere. Let L? (H(M), 6) con-
sist of all sections X : M — H(M) such that Go(X, X)/? € L>(M, 0), i.e,,

1/2
112 = Xl = ( [, Gox, X)¥) <o

A functionu € L%(M, 6) is weakly differentiable along H (M) if thereis X,, € L2(H(M), 6)
such that

_/MGQ(Xu, Y)¥ = —/Mudiv(Y)‘-I’

for any Y € C3°(H(M)). Such X, is uniquely determined, up to a set of measure zero.
Let D(V! ) consist of all weakly differentiable u € L%(M, 6) and let us consider the
linear operator

v D(VH) c L1?(M, 0) — L*(H(M), 6)
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given by VI = X,. Note that C¥(M) C D(VH) so that V¥ is densely defined.
The Sobolev-type space WIlJ’Z(M, 0) is D(VH) equipped with the norm
/2
gtz = [hgizan o) = (18020 IV 8z, 0)
Let E ={E, : 1 <a <2n} C C*°(U, H(M)) be a local Gg-orthonormal frame (i.e.,
Go(Es, Ep) = 6,p) defined on the openset U C M. Leti : U — M be the inclusion. A

function u € L%(U, i*0) is weakly E-differentiable if for every a € {1, ---, 2n}, there is
v, € L2(U, i*6) such that

/uvuq)‘I’:—/UM{E,Z(q))—i-(pdiV(Eu)}‘P (25)

for any ¢ € C§°(U). Such v, is uniquely determined, up to a set of measure zero, and de-

noted by E,(u) := v,. The Folland-Stein space Wé’z(ll, i*0) consists of all weakly E-
differentiable functions u € L?(U, i*#) and is equipped with the norm

1/2
lilhype = Ntz ey = (1020 00) + z 1Ea(0) gy o))

Then, we have the following:
(i) The restriction map ry; : W}Lf(M, 0) — W}LjZ(U, i*0) is a bounded linear operator,
(ii) W}_I’2(U, i*0) ~ Wé’z(u, i*#) (an isomorphism of Banach spaces).

The proof of (i) is straightforward. To prove (ii), note first that

Wi (U, i*8) = W2 (U, i*6)

as vector spaces. Indeed if u € W}iz(ll, i*0) then VHu € L?(H(U), i*0) is well defined
and one may consider the functions

Vg = GQ(VHM, E,), 1<a<2n.

Then (by the Cauchy-Schwartz inequality)
[ oa ¥ < [ Go(V ™, V) Go(Ea, Ea) ¥ = [|V™u]% < oo

so that v, € L?(U, i*6). On the other hand (as u is weakly differentiable along H(U)) for
every ¢ € C°(U

/uvago‘I’:/UGg(VHu,goEa)‘P:—/uudiv(q)Ea)‘I’

so that u € Wé’z(ll, i*0). The opposite inclusion Wllf(ll, i*0) D Wé’z(ll, i*#) may be
proved in the same manner. Next, let us observe that

2n
VHu =Y Ei(u)E, (26)
a=1

for every u € Wx2(U, 6). Indeed, for every X € C*(H(U))

], G u—ZEa W) Ee, X)¥ = [ udiv(X)¥ /Ea ) g ¥ =
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(where we have set ¢, := Gy (E,, X) € C°(U))

:—/udlv Z%Ea) =0

sothat VH —Y2", E,(u) E, is orthogonal to C° (H(U)) [a dense subspace of L? (H(U), i*6)].
The identity (26) is proved. Finally, one may check that the identity I of W;JZ(U, i*6) pre-
serves the norms. Indeed (by (26)),

2n 2n
2
19902, = [ Go(VPu, Vi) ¥ = 3 [ [EaC)[* ¥ = L [ Ealu)
u a=1 u a=1
It is customary to endow (Hj , V) with the canonical contact form

60 = dv +i(JdZ — T dg).

Then Gy, (V, V) = 1. Additionally,

H*6y=A(H;6,60) 0, A(H;0,60)(z,w)= %
|1+ w|
Let us set as customary { = ¢ +i# and
0 d ad
X = aT:+2 57 Y = ——26
sothat V= 1(X —iY). Then
EE{E1,E2}, Elzix, EzZLY,
V2 V2

is a (globally defined) Gg,-orthonormal frame on Hj. The CR isomorphism H : U ~ Hj
induces L?(H , 6p) ~ L?>(U, 8) (a vector space isomorphism). Indeed, if f € L?(Hj, 6p)
and u = f o H then [by H*¥o = A2 ¥ with A = A(H; 6, 6p) and ¥ = 6y A dp, ¥ = 0 A\ d6]

Jor = [ (5 o= [, () o

2
4[£(Z, 7)] 2
= Yo(, 7) <4||f|:2 < oo,
H, [(1+|€|2)2+1—2]2 L2(Hy , 6o)

As H is a CR isomorphism U ~ Hl;, Cauchy-Riemann analysis is the same on U and
H;. However, H does not preserve the contact forms 6 and 6 so that (U, 0) and (Hj, 6p)
have rather different pseudohermitian geometries. On the same line of thought, we prove
the following.

Theorem 2. The map f — f o H is an isomorphism
WA (Hy, 6p) = WH (U, 6).

Here, U = S3\ {(0, —1)} while E = {E;, E,} C C®(H(H,;)), respectively F =
{F1, B2} C C*®(H(U)), are the canonical Gy -orthonormal, respectively Gy-orthonormal, frames

_(v_7),

Ei=—(V+7), EZ:%

&\H
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Fl = Z+z/ FZ = I(Z—Z)
Lemma 2. div(F,) = 0.

Proof. It follows from the fact that the only nonvanishing Christoffel symbol of the Tanaka—
Webster connection V of (53 ,0)is I%l = —2i (itself a consequence of (14) with t = 0). O

Proof of Theorem 2. Given f € Wé’z (H1 , 90), we need to show that for every a € {1, 2},
there is v, € L?(U, 0) such that (by (25) and Lemma 2)

Joeot=—[ (For)Filo) ¥ (27)

for any ¢ € C5°(U). The candidate for v, is, of course, obtained by computing F;(f o H)
when f is smooth.

Lemma 3. Let f € C!(H;) and u = f o H. Then

H .
B =ip-9) (5) + 50+ B+ =-D B, e

V2

H .
B(u) =p(g+2) (3{) - \%(h —h) E(f)" + \}2(’1 ) BT, (29

where
g h:C*\{w+1=0} —C?,

_ 1+w+p(z,w)
(1+w)°

g(z,w) = z h(z,w)

, ) 30
(1+@)(1+w)? G0

and p(z,w) = |z|*> + |w|? — 1.

Proof. It follows from (24), and its complex conjugate. [

Let v, be the (restrictions to U of the) right-hand sides of (28) and (29), respectively. By
a change of the variable under the integral sign,

/uvu Y = H, (U;LQ(P)H_l Yo

for every ¢ € C3°(U). Throughout, v/ "' =voH1,and the inverse of H : U — Hj is

B B 2i¢ _ T+ l(§|2 - 1)
" @’T)_<T+i(|€|2+1)' T+i(lg2+1) ) o

Next (by the very definition of v1),

T:
/uUl(P

{0 B +i(-T)" Ba()} ¥ =

1 e \H!
=72 Js, (32
(as f is E-differentiable)



Mathematics 2022, 10, 371 14 of 40

where G4 = P (h+Th). Next E1(GH™") +iE,(GH™") may be computed from
A2 + y p

2¢h 2¢h
A R i
so that
/Uf(P‘P: (32)

ol () ]

Note that (by (30) and (31))

()" ]}

=2
104+ F)?
1_ -
hoH™ =2 1+F (33)
On the other hand (by (23)),
1 _\H!
-1 _ -
(H),V = (E z) . (34)

As Fisa CR function, i.e., V(F) = 0and V(F) = 2 (by (33) and (34) and their complex
conjugates)

() v e
(GO

and substitution into (32) followed by a change of variable under the integral sign gives

/llvl(P‘F:—/lluFl(w)‘i’+ (35)

,/Llugo{Azpl(A2)+2(i7§g+%g) }‘I’

Finally, by the identities

2 z
1+F)=_——, "= ,
(+ ) 1+w ¢ 1+w
—1
ZA 1\ 4
Z(A) = , = = 36
(A) 1+w (A2> |1+ F|* (36)

the last integral in (35) vanishes (yielding (27) witha =1). O

The proof of the second relation in (27) is similar. Moreover, v, € LZ(U, 6) because
hE.(f)H € L2(U, ) (37)

and L%(U, ) is a vector space. As to the proof of (37) (by a change of variable)

[ nean e = [ (”;')H ()P ¥ =
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(by (33) and the second identity in (36))

- Ea(H)

2
‘I’</ E ¥, < 0.
H, |1+ F|? 0= Hl‘ (N ¥o

2.3. Quasiconformal Maps

Let N be a (for now, abstract) strictly pseudoconvex 3-dimensional CR manifold.
However, in the applications to come, N will be a strictly pseudoconvex real hypersurface
N C C? endowed with the induced CR structure

Tio(N) = [T(N) ® C] n T*?(C?).
Definition 1. A C* diffeomorphism f : S3 — N is a contact transformation if
(de)H(S3)x = H(N)f(x) , xeS3.

Note that the notion of a contact transformation does not depend upon the particular
CR structures one may set on S® and N, but only on their Levi distributions.

Lemma 4. Let ® € P4 (N) be a positively oriented contact form on N and let f : S — N bea
C® diffeomorphism. The following statements are equivalent:

(i)  f is a contact transformation of (S*, H(S®)) into (N, H(N)).
(ii) Thereisa C* function

A= A(F) = A(F: 6,0) : 8 5 R\ {0)
such that f*© = A 6.
Proof. (i) = (ii). There exist functions A, A; € C*(S%, C) such that
FfO=2160+106"+ 270
where A7 = Ay. Then for any x € S°
M) = ((F78) ), = O [(dxf) To,x] =0
because of
(dxf) Ti,x € (def)H(S?)x @ C € H(N) () ®r C = Ker(®) ;,, @ C.

Then f*©® = A6, and A is real valued. To show that A is nowhere vanishing, we argue
by contradiction. Let us assume that A(xq) = 0 for some xq € S>. Then

0= A(x0) 0y = (f*©), = Ofy) © (o)
and hence for every v € Ty, (S%)
(dxof)v € Ker(®)f(xo) - H(N)f(xg) = (dxof) Txo(SS) C H(N)f(xo) ’
a contradiction, because

dimp Ty (S%) =3, dimg H(N)f(y,) =2,

xo)

and dy, f is a R-linear isomorphism.
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(ii) = (i) Let v € H(S%), = Ker(f),. Then

0=A(x):(0) = (f7®) (0) = Of(y[(dxf)v] =
— (dxf)v S Ker(@)f(x) = H(N)f(x)

and hence,
(dxf)H(S*)x C H(N) ¢y

forany x € S3. O

It should be observed that in the proof of Lemma 4, use was made of the frames {T; } C
C®(T10(S?)) and {6, 6, 0} C C®(T*(S?) ® C) and, therefore, of the canonical CR
structure Ty (S®) of the sphere. Any other CR structure H with the same Levi distribution
H(S?) = Re{H @ H} would have worked equally well.

Definition 2. The function A = A(f; 6, ©) is called the dilation of f with respect to the contact
forms @ € P (S3) and ® € P, (N).

It obeys the following transformation law, with respect to a transformation of the
given (positively oriented) pseudohermitian structures.

Lemma 5. Let f : S — N be a contact transformation of (S*, H(S®)) into (N, H(N)). Let
0=e"0and ® = e @withu € C°(S%, R) and v € C*(N, R). Then

A(f; 0,0) =exp (vo f—u)A(f; 0, ©). (38)
In particular, sign[A(f; 6, ©)] € {£1} is a CR invariant.

Proof. Letusset A = A(f; 6, ®) and A = A(f; §, ©) for the sake of simplicity. Then

(f'0), = Oy © (dxf) = VD @y 0 (dsf) =

— (f(®) (f*@) — (f(x) (A0)x
that is
5O =e"f 0.
On the other hand

A

ffO=A0=A2c"0
yielding A = e?°/~* A, O

To fix ideas, from now on, we shall work with contact transformations f : S$3 — N of
positive dilation, i.e.,
)\( 10, @) >0

with respect to some fixed contact form ® € P, (N). According to Lemma 5, this is a
CR-invariant assumption.

Let H be an arbitrary CR structure on S3 whose Levi distribution is H (53), and let
K > 1 be a constant.

Definition 3. A contact transformation f : S> — N is called a K-quasiconformal mapping of the
pseudohermitian manifold (S®, H, 0) into (N, T1o(N), @) if

GL(f:X, £.Y)

) < KGg(X, X) (39)

1
EGQ’H(X, X) <
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forany X, Y € H(S).

Here, Gy, is the Levi form of (S, ) and Gé = Gg o f. Additionally, f, X denotes
the C* section in the pullback bundle f1T(N) — S3 given by

(feX)(x) = (df) Xz € Ty(N) = (f'TN) , x€ 5.

The same symbol f, will denote the vector bundle morphism f, : T(S?) — f~!T(N)
(descending to a vector bundle morphism f. : H(S®) — f~'H(N), because f is a contact
map) determined by the differential df. Let

JN:H(N) = H(N), ]Nn(W+W)=i(W-W), WeTy(N),
be the complex structure along the Levi distribution H(N). Let us set
Jr:H(S?) — H(S%),

]f,x = (dxf)_1 o]N,f(x) o (dxf), X € 53.

Then ( ] f)Z = —I, and hence J; determines the CR structure
My = Bigen(J7; +i) C H(S®) @ C
whose Levi distribution is once again H(S?). Let G £ be the Levi form of (3, H ) e,

Gy (X,Y) = (d0)(X, J;Y), X, Y€ H(S).
One has
GH(feX, £uY), = Go, sx) (duf) X, (duf)Ye) =
= (d0) () ((dxf) X, I, ) (def)Ye) = (dO) () (i f) X, (daf) Jf,x Vo) =
— (£ dO) (X, J;Y)x = (df* ©)(X, JyY)x = (d (18)) (X, J;¥)x =
= (A AO+AdO)(X, JrY), = Ax) (dO)(X, J;Y)s
that is,
GL(F.X, fY) = AG4(X,Y) (40)

for any X,Y € H(S®). Consequently the K-quasiconformal requirement (39) may be
rephrased as

%GM(X,X) < Gf(X, X) <KGgu(X, X). (41)

Lemma 6. Let f : S> — N be a contact transformation of (S*, H(S®)) into (N, H(N)). Let H
be a CR structure on S® such that H(S®) = Re{H ® H} and 6 € P (S*, H). Ifx € S® and
w € Hy withw # 0 then

(def)w & Tr2)(N) ()
that is o
T1,0(N) f(x) N (dxf)Hx = (0). (42)

Proof. We argue by contradiction, i.e., we assume that

(def)w € Tro(N)f(x)
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for some w € Hy C H(S%)y ®g C with w # 0. Then (as T; o(N) is nondegenerate and © is
positively oriented)

0 < Go, f(x) ((dxf)w, (dxf)w) =

= (@) 4 ([dxf)w, I, f(x) [dxflw) =
[as (dxf)w € To1(N)f(x) and d, f is real]

= =i (d0) ;) ([dxf)w, (d:f)@) = —i (d f*O) (w, @) =
=—i(d(A0)) (w, @) =i(dAANO+Ad6) (T, w) =
= iA(x) (d0)x (@, w) = —A(x) (d0)x (@, [ w) =
= —A(x) Go #, (@, w) <0,

a contradiction. [J

Here, we assumed that the canonical contact form (7) is positively oriented relative to
(S%, H). Otherwise, one merely replaces 6 by —0 to start with.

The contents of (42) are that, solely as a consequence of f : S> — N being a contact
transformation of positive dilation A(f) > 0,

(feH) Nf 1 Te(N) = (0)

for every CR structure H on S®> whose Levi distribution is H(S%).
Let f : S — N and H be as in Lemma 6. Next, let

{L}y cc®(U, H), {TN} c C®(V, Tin(N)),

be local frames in H and Tj o(N) respectively, defined on the open subsets U C S3 and
V C N such that U = f~1(V). For every x € U

(def)Le = f(x; H) T{Yf(x) +fi(x; H) T%\ff(x)
for some functions B
A H), F( ) ec(u,C).

The adopted notation emphasizes the dependence of the coefficients le and fTT on
the CR structure H. Occasionally, if there is no danger of confusion, we drop H and
write merely

A=), A=f(H).

Lemma 7. One has B
f(x; H) £0 (43)
forany x € U.

Proof. We argue by contradiction, i.e., we assume that fTT (x9) = 0 for some xg € U. Then

(dxof)fxo = le (x()) 1, f(xo) € TlO(N)f(xU)

and fxo # 0, in contradiction with Lemma 6. [

We adopt the temporary notation

={ZecH(S®)®C : fiZe fTio(N)}. (44)
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Then o
ﬁf NH= (0)

for any CR structure H on S° as in Lemma 6.

Lemma 8. Let f : S> — N be a contact transformation of positive dilation A(f) > 0. For every
CR structure H on S3 such that

H(S) =Re{H®H}, 0€P+(S, H), (45)

there is a field
p=pu(f, H):H—H

of C-anti-linear maps such that
He={Z-pZ: ZecH}. (46)
Proof. Let us start with W € 1 £ represented as
W=A"L+B'L
with respect to the local frame {L, L} of H(S) ® C. Then
FITo(N) 3 foW = (AU L+ B ) TN 4 (A 1 + B ) T

yielding

B! = —%Al.
A

W= Al L—fif ,
fi

i.e., Hy is (locally, on U) the span of {L — (flT/fTT) L}. O

Therefore

Let x € S® be an arbitrary point and let us choose local frames {L} and {T}} of the
CR structures H and T o(N), defined on open neighborhoods of the points x and f(x)

xelucS®, f(x)yeVcN, U=/fYv).

Our rather pedantic approach to the construction of y, (see below) is devised to
emphasize that the resulting y is globally defined. Indeed we set by definition

fi(x; H)
fi(xi H)
followed by the C-anti-linear extension to the whole of H. The definition of y, does not

depend upon the choice of local frames about x and f(x). Indeed, let us consider local
frames

Hx : He — Hy, px Ly = Ly, (47)

{(L'ycce, H), {T{NYycCc®(V, Tio(N)),
xeld cS®, fx)eV' cN, U =fYV).

Then
'=ullL onun’, TN =0lTN on VNV,
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for some C* functions uj : UNU' — Cand v} : VNV’ — C. A comparison of
the representations

fL=ATN+AT, fU=AT"+AT
yields
11 1.1 T 1T_ 1,
hoi=wfi, flor=uifi, (48)
where v% = a Let H 4 denote the portion of H over the open set A C S°. If
ﬂ:Hu%Hu, ]/I/ZHu/—>Hu/,

/1
ﬂL 1 L, 1 L/ f ,
fi M

what one needs to check is that p|;~;r = #'| ;- This is but a standard calculation relying
on (48).
Summing up, we built a family of vector bundle morphisms

u(f, H):H—H (49)

associated to the contact transformation f : S> — N with A(f) > 0, such that # 1 is
represented by (46). Let CR[H (S%)] be the set of all CR structures H on S° obeying to (45).
The family of morphisms (49) is then parametrized by € CR[H(S%)].

Definition 4. Each u(f, 1) is referred to as the complex dilation of f with respect to the CR
structure H.

We previously mentioned that 7 £ is but a temporary name for the bundle on the
right-hand side of (44). Indeed, one has

Lemma 9. 7:[f =Hy.
Proof. If ]IJ:, = |y o f, then
H; = Bigen[(J;)"; +i] = {Z € H(S}) ®C : [;Z=iZ} =

—{ZeH(S®oC : J[(f2)=if.Z} =
={Z € H(S*)®C : f.Z € f'Eigen[(JN)®; +i]} =
={ZecH(S)®C : fiZec fTp(N)} =Ti.
O
By a result of H. Rossi (cf. [1]), the CR manifold (S, #(t)) is not globally embeddable
in C2, for any 0 < |t| < 1. Hence, for every nondegenerate CR hypersurface N C C?, there
is no CR isomorphism f : (S*, #(t)) — N, except of course for t = 0 (when one may

consider N = S% and f = 143). We propose the following weaker version of the global CR
embedding problem.

Problem 1. Given a strictly pseudoconvex CR manifold M of CR dimension n, find (i) a real
hypersurface N C C"*! whose induced CR structure Ty o(N) is strictly pseudoconvex, (i) a
constant K > 1, and iii) a K-quasiconformal map f : M — N.
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Our treatment of the question in Problem 1 is confined to H. Rossi’s nonembeddable
examples (S3, 7(t)). Precisely, we shall discuss the following.

Problem 2. Find (i) a function K : (=1,1) — (1, +c0), (ii) a family {N;}o<|p<1 of nonde-
generate real hypersurfaces Ny C C?, and (iii) a family { fi }o< 1|1 of K(t)-quasiconformal maps
ft : (53, H(t)) — N

2.4. Beltrami’s Equation

Let N C C? be a nondegenerate real hypersurface, and let f = (f!, f?) : S — N bea
contact transformation of (%, H(S%)) into (N, H(N)) with A(f) > 0. By Lemmas 8 and 9

L; —yf(t) Ly € Hf, ‘t‘ <1,

where we have set
pp(t) = ulf, HO] = H(E) = H ().
Hence (by the very definition of 7 7)

fMT10(N) 3 | L= g Li| = £ Lo = i (0 L] (50)

where the functions pl(t) : $* — C are given by

pp(t) Le = ui(t) Ly, pa(t) =

) = fA] - HB)], ABe {1, T}

Lemma 10. Let f = (f', f2) : S> — N be a contact transformation of (S>, H(S%)) into
(N, H(N)) with A(f) > 0. The components f : S> — C satisfy Beltrami’s equations

Li(f) = m(O Le(F), je{12}, |t <1 (51)
Proof. One has (by (50))

FATY(C?) o 1T 0(N) 3 Le(f) aagf + Le(f) z)agf+

so that

or (by taking complex conjugates)
Le(f1) = (D) L (f)
which is (51). O

Lemma1l. Let y = pu[f, T1(S%)] : T1,0(S%) — Ty,0(S®) be the complex dilation of f : > — N
relative to the canonical CR structure H(0) = Ty o(S%). If u Ty = y% Ty then
gt

14 ty%

(52)
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for every |t| < 1. In particular, the coefficients of the complex dilation ¢ (t) depend smoothly on
the parameter t.

Proof. As Ly = Tz

(def) Ty o = F1 (%, 0) Ty + f (%, 0) T 1,f(x)

hence
(dxf)Ltx = (duf) Trx + £ (dof) Ty =
—fl(x 0) +f1(x 0) 1f(x)
+t[f1 (x,0) Tff(x) FAREOT ] =
= [F(0,0) + £ £ 0)] T+ [ (x,0) + £ A (x,0)] TV,
yielding B B B
At = fl(x,0) +tf(x,0), f(xt)=fi(x0)+tf(x,0). (53)
Let us set

fi(x) = f(x,0), ABe{11}.

According to the definition (47), the coefficients of the complex dilation = i¢(0) are
given by

1
Ty =w(-,0) T, pg(-,0) =711-
1

Next, let us set t = 0 into (51) to obtain

T (f1) = pi(-, 0) Ta(f7)-

(54)
Let us set
ph(x) = p4(x,0), ABe{1,1}.

Then 1( |
f=(x,t

1 1 o

il =y =

[by (53) and (54)]

le(x,O) +tf1(x,0) B y%(x) +t
A0 +f(x,0)  1T+tpu(x)’

O

Corollary 1. The components fi of a contact transformation f : S> — N C C? under the
assumptions of Lemma 10 satisfy the Beltrami equation

1

_ . 4t )
Lf) = bl

forany j € {1, 2}.

Let (N, T10(N)) be a nondegenerate 3-dimensional CR manifold and let © € P (N)
be a positively oriented contact form. Let f S% — N be a contact transformation with

A(f) = A(f;6,0) > 0. Let H € CR[H(S%)] and let jy = pu(f, H) : H — H be the
complex dilation of f.
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Definition 5. The pointwise norm of jis is the function ||| : S* — [0, +00) defined by

——\11/2
G Z, Z
gl = | sup SaleZ LN

o2zen,  Gox(Z, Z)

We shall need the following

Theorem 3. Let H € CR[H(S®)] and let f : S*> — N be a contact transformation with A(f) > 0.
The following statements are equivalent:

(i) Thereis K > 1 such that f is K-quasiconformal.
(ii) Thereis K > 1 such that
K-1
< —.
sl < K 55)

Theorem 3 is stated in [3], p. 61, with (S®, ) replaced by an arbitrary strictly
pseudoconvex manifold M, yet the proof is confined to the case where M = N = H,
(the Heisenberg group). We give (by following the ideas in [3], pp. 63-65) a proof of the
statement as it applies to Rossi’s spheres, and refer to Theorem 3 as the Koranyi—Reimann
characterization theorem.

Proof of Theorem 3. Let xy € S3 and let us choose an open neighborhood V C N of f(x)
and local orthonormal frames

{Z1} cCc®(U, H), {TV} CC®(V, Tip(N)), U=f"'(V),

Go(Z1,Zy) =1, Go(T{, TN) =1

Next, let us set
Ei=Z1+7Z;, E2=]E1=i(Z1—27Z7),

EY =T+ TN, EY =JNEY =i(T{' - TV),

sothat {E, : a € {1,2}} and {EY : a € {1,2}} are respectively local frames of H(S%)
and H(N). Then

f+Ey=F (Efz\’)f

for some C* functions F{ : U — R such that det [F{(x)] # 0 forany x € U. Let us consider

1 F! F!
:U — GL(2,R), = [ 1 2 }

We shall need the symplectic group
T 0 1
Sp(2,R) = {a € GL(2,R) : a"Joa =Jo}, Jo= 1 0|

Lemma 12. gis Sp(z, R)-valued.
Proof. One has

and similarly
(1) (EY, EY) = 2.
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Then [by f*® = A(f) 8 and Ker(8) = H(S?)]

(d®)! (f.E1, fuE2) = (A% ©) (E1, Ea) = A(f) (d6)(E1, Ez) = 2A(f).
On the other hand
(d©) (fEx, fuba) = (FL F3 — F2F}) (d@) (EN, EN) o f =

—2(F} B} — F2E}) = 2A(f) det(g).
It follows that det(g¢) = 1. O

Let us set

K = Sp(2, ) NO(2), A+:{<EOS 0 ):szo},

e—S
j:GL(1,C) = C\ {0} = GL(2,R), j(x+iy)= ( vy > .
Lemma 13. K = 0O(2) Nj[U(1)].
The proof is straightforward and therefore omitted. Here U(n) = {a € GL(n,C) :

a%a =1I,} sothat U(1) = {a € C : |a| = 1}. We shall need the Cartan decomposition of
Sp(2, R)

Sp(2,R) = KATK.

By Lemma 12, there exist functions k, k¥’ : U — Kand a : U — AT such that
g=kak
onlU, ie., thereexistx, y, u, v: U — Rands: U — [0, +00) such that

x2+y2:1, uz—l—vz:l,
B X oy e 0 u v\
= (5 000 S8 1)- 0

xue® —yve™®  xve® + yue’
—yue® —xve™® —yve® 4 xue™*

on U. Next , .
/71 = E(El —iEz), Z7 = E(El +iE2),
TN = (BN —iEY), TN = (N +iEY),
fozi= (TN + AN, fozg= @Y + £ (TN,
yield
1 .
fiz1 =5 [H+B+i(R-H)](m)+

1 .
5 [F =B —i(R+B)] (1Y)
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1,1
andifg=( &1 &3 > then
§ ( & &
1 )
f}:E[Fll—i—Fzerz(Flz—le)] = (57)
1 i
= S VA (81+83) + 5 /A (8 — 82),
_ 1 )
fi=5H-B-i(f+E)]= (58)
1 i
= S VA (81— 83) = 5 AL (8T +82)-
Let us substitute from (56) into (57) and (58) to obtain
. ' ‘ S 1 p—S
fi = JA(f) (xu —yo — iyu — ixv) = (59)
= \/A(f) (x —iy) (u — iv) coshs,
L= /A (xu+yv+iyu—ixv)e _2 - (60)

= m (x +1iy) (u — iv) sinhs.
Lemma 14. ||y¢|| = tanhs.
Proof. We start from y} f| = f1. Then (by (59) and (60) and their complex conjugates),
p1 (x —iy) (u —iv) coshs = (x —iy) (u +iv) sinhs

or
y% = (u+ iv)2 tanhs. (61)
Next, for every x € U and every W € H, \ {Ox} one has W = hZ; , for some
h € C\ {0} and then
Gox (1s, W, psxW)
GQ,X(W, W)

u —iv)2(u + iv)?2(tanh s)2h.
_ (et o anh T _

and hence,

1sl|(x) = tanhs(x). O

At this point, we may attack the final part of the proof of Theorem 3. We start from
[#¢]| = tanhs (cf. Lemma 14) so that

T+ [[ugll  1+tanhs

eS
— - - 25'
L—|lufll  1—tanhs e~*

=e

Recall that both k and k” are O(2)-valued. Then for any x € U and any x € R?

sup |g(x) x| = sup |k(x)a(x) K (x)x| =
[x|=1 [x|=1
xI=1 lyl=1
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where y = k' (x)x. Similarly
inf [g(x)x| =e7°.
[x|=1
It follows that
1+ x sup), | X)X
Iifl1(6) _ supgs 810 o)

T—lpgll(x) — infpy_q [g(x)x|

Proof of (i) = (ii). If f is K-quasiconformal for some K > 1, then for every x € S3 and
every X € H(S%),

A
(IJ;)" G, x(X, X) < Go, px) ((dxf) X, (duf)X) < A(f)x K Go (X, X)
or .
2 2 2
LIk < lgtoxl? < Kix
where
x=(x' x?) eR?*, X=ux'E,+x*E € H(S3)X.
Consequently,
1
— < inf |g(x)x|, sup |g(x)x| < VK,
N |g IX\:% |g |
so that [by (62)]
1
el _
1= [l
or K1
<——.
sl < =
O

Proof of (ii)) = (i). If there is K > 1 such that (55) holds, then

e5(%) _ SUP|x|=1 |g(x)x| _ 1+ ||Vf||(x) <K
e—s(x) inf‘x|:1 |g<x)x| 1- ||Vf||(x) -

so that ) < Ke™5W). Let x' Ey , + % E, , € H(S%), be a unit vector and let us set
x = (x!, x2). Then
e < ]g(x)x]2 < < KW < k.

Similarly

O
O

2.5. Quasiconformality to the Standard Sphere

An interesting particular case of the CR embedding problem was considered by E.
Barletta and S. Dragomir (cf. [10]) who asked which strictly pseudoconvex CR manifolds
M, of CR dimension 7, can be globally embedded as the standard sphere $2**! c C"+!
with the ordinary CR structure Ty (S?*™!) induced by the complex structure of C"*1.
Their findings are that the Pontrjagin forms of the Fefferman metric Fy € Lor[C(M)] are
CR invariants of M (and when a certain Pontrjagin form P vanishes (i.e.,, P = 0), the
corresponding transgression class [T(P)] is a CR invariant, as well) and among those CR
invariants, one pinpoints obstructions to the posed question (i.e., whether M and S*'*! are
CR equivalent).
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A weaker version of E. Barletta and S. Dragomir’s problem (cf. op. cit.) consistent with
the formulation of our Problem 1, is to ask which strictly pseudoconvex CR manifolds M, of
CR dimension 7, are K-quasiconformally equivalent to the standard sphere S?"*1. As with
Problem 1, the question can be asked—and it is especially meaningful to ask—when M
fails to be globally embeddable. In the spirit of the present paper, we confine the question
to the case of 3-dimensional (i.e., # = 1) CR manifolds and then to the particular case of
Rossi’s spheres

(M, #) € { (5%, () « |t <1},

Problem 3. Finda function K : (=1, 1) — (1, +oo) and a family { ft} ;<1 of K(t)-quasiconformal
maps f; : S* — S3 of the Rossi sphere (S®, H(t)) onto the standard sphere (S%, T o(S?)).

Of course fy = 1gs : > — S isa CRequivalence of (S*, 7(0)) and itself (S*, Ty o(S?)).
Yet given a constant K > 1 and a value of the parameter 0 < |t| < 1, the identity mapping
13 is not K-quasiconformal in general, and the pair (K, t) is subject to constraints.

Theorem 4. Let K > 1and 0 < [t| < 1 such that f = 1g is a K-quasiconformal map of
(S3, H(t)) onto (S®, T1(S®)). Then

—_

+ |¢]

K> :
— It

(63)

—_

Proof. Note that f = 143 is a contact transformation f : $* — S3 with A(f) = A(f; 6, 0) = 1.
Let us consider the (globally defined) frames of H(S%)

Eit=T1+1T;, E,= Z(Tl - TT)’

El=L+L=(1+tE, Ey=i(li—L;) = (1-t)E.

The complex structures ] : H(S%) — H(S%) and ] = J° : H(S3) — H(S?) (determined
by the CR structures H(t) and T; o(S%)) are related by
1 1—t¢ 1—t¢

Ef Er, = ——]E
2= 1 B2 JE1

t t
E -
J'Er = J'E 1+t

1+t 1+t

and similarly,
J'Er= 1t Es.
Recall that
(d0)(E1, E2) =2Go(Th, Tg) = 1.
Then, for any X = X'E; + X?E; € H(S?)

Gh(X, X) = (d0)(X, I'X) = 1 (X)) + 1 (%)’

so that the Levi forms of the pseudohermitian manifolds (S3, #(t), 8) and (S, Ty 0(S%), 6)
are related by

1 t
Gh(X, X) = = Go(X, X) + m[(t—z)(xl)Z +(t+2)(x)°] =
—mGQ(X,X) 1—t2(X) mGe(X X) — 1_tz(X) :
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To establish the lower bound (63) on K, we distinguish two cases, as (I) t > 0 or

(IT) t < 0. In the first case the K-quasiconformality of f = 143

1

X Go(X, X) < GH(X,X) < KGp(X, X)
for X = E; yields
hence,

In the second case, let us set X = Ej in (64) so that

1—t¢

KGg(E1, E1) > Gy(Ey, Ey) = 15 ColEs Er)
hence 1
K>—.
14t
O]

(64)

The bound (63) is consistent with A. Koranyi and H. Reimann’s theorem. Indeed,
if pp(t) : H(t) — H(t) is the complex dilation of f = 1g, then |[u(|| = [t[ and (63) is a

corollary of (55) in Theorem 3.

2.6. Fefferman’s Metrics

Let (N, T19(N)) be a nondegenerate 3-dimensional CR manifold, and let ® € P (N).
Let {T]} be a local frame of T (N), defined on the open set V. C N. Let TN € X(N)
be the Reeb vector field of (N, ®). Let {®'} be the corresponding adapted coframe,
ie, ®! (TlN) =1,0! (TTN) = 0and ©! (TN) = 0. Let f : S> — N be a contact transforma-
tion with A(f) = A(f; 6, ®) > 0. Here, 6 is the canonical pseudohermitian structure on S*
(given by (7)). Let f* : QP (N) — QP (S3) be the pullback by f of differential p-forms on N,

p € {1,2,3}. Then,
frO=A(f)o, O =fo+flel+flo.

Next, we consider the canonical circle bundles

St— C(S%, H(t)) S'—= C(S°,Hf) S'— C(N, Tip(N))

Lt g
$3 s3
(so that 1% = 77 (cf. our Section 2.1.5)) and the Fefferman metrics
Fj = F(HM(t), 0) € Lor[C(S?, H(t))],

Fr =F(Hy,0) € Lor[C(S, Hy)],
Fo € Lor[C(N, Ty o(M))],
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(so that FJ = Fy). We also write briefly C(N) = C(N, T;o(M)). The principal bundle
St — C(S%, H(t)) — S is described in Section 2. In addition, every ¢ € C(N), with
p € V may be represented as

c=[a(@nr0"),], AcC\{o}

To describe S! — C(S3, ’Hf) — §3, we recall that, given a frame {Z;} C C®(U, H),
the CR structure H is the span of

=D,

szzl—y%ZTE Coo(er), }l% = F,
1

fi=f8(-, M), HeCR[H(S)], ABe{l1}
Let {6} and {9}} be the adapted coframes determined by

0'(z,) =1, 0'(z;) =0, 6(T) =0,

0r(Ls) =1, 03(Ls) =0, 64(T)=0.

1 —
ol=—— (o' + ‘14161
f 2 1

1 |V%| ( )

and every c € C(S°, H f)x may be (locally) represented as

Then

c=[a(0n0}),] =[x (60" +plo"),], «cC\{o}.

Every (2,0)-form on N is locally represented as ) = A 6 A ©! for some A € C*(V, C).
Then [by le = ‘u% 1
FO= [N M) 80}

where Af = Aof.

Proposition 1. Let f : S> — N be a contact transformation with A(f) > 0 and let H €
CR[H(S%)] bea CR structure on S® whose Levi distribution is H(S%). The pullback f* : Q?>(N) —
0?(S3) induces a C* diffeomorphism
C(f) : C(N) = C(S°, Hy),

CNC) = [A@ A (O +ptondT),], (65)

for every C € C(N) ¢y locally represented as
c=[a@nr0"),| Acc xeu

Proof. Let y € N and let V C N be an open neighborhood of y, the domain of a (local)

frame {T]N} € C®(V, T1,0(N)). Let C € C(N), and letussetx = f~1(y) € U = f~1(V).
Then C = [A (© A®'),] for some A € C\ {0} and we set

C(N(C) = [n{f(©@reh)}]

thus yielding (65). The definition of C(f)(C) does not depend upon the choice of local
frame {T]'} abouty = f(x). O
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The investigation of the metric properties of C(f) [in particular, the calculation of
C(f)* Ff — Fyfor H € {#(t) : |t| < 1}]is an open problem.

3. Sobolev Solutions to Beltrami’s Equation
The purpose of this section is to address the problem of solving the Beltrami equations

Li(g) =p(-, t) Le(g), It <1, (66)

under appropriate assumptions on a given family of functions (-, t) : S = C, |t| < 1.
To solve (66), we follow the approach by A. Koranyi and H. Reimann (cf. [3], pp. 69-74).
There, one looks for weak solutions, in a Folland-Stein space, to the Beltrami equation

= 0 .- 0

V() =nV(f), V= iﬂ 37
on the Heisenberg group H; = C x R, for a given function y : Hj — C such that |||/ < 1.
Our problem (66) is formulated on the sphere S3, rather than the Heisenberg group Hj.
Of course the sphere minus a point and the Heisenberg group may be identified by the
Cayley transform, and we profit from certain ideas by C-Y. Hsiao and P-L. Yung (cf. [4]) to
transpose (66) on Hj. Equation (66) may also be written as

_ p(-, t)—t

Z(g):mz(g) (67)

where Z = T; = Wd/0z —zd/dw. By a change of dependent variable f = go H™! or
g = f o H, Equation (67) goes over to

uv(f) = m uV(f), (68)

Alx, t) =pu(H Y (x),t), xeHy, [t <1

Here, H =19 "10C: 5%\ {(0, —1)} — Hj is the C* diffeomorphism in Section 2.1.6.
Equation (68) is central to the present section, and it is our purpose to solve it by an iterative
argument relying on Banach’s fixed-point theorem.

Let S(H;) be the Schwartz class, consisting of all functions ¢ € C*®(R3) such that
Pa,p(9) < oo forany a, p € Z3. Here {p,p : &, p € Z3} is the separating family of
semi-norms on C*(IR3) given by

Pa,p() = sup |x* DPp(x)].

x€R3

If ¢ € S(H; ), then a necessary condition for solving

V(f)=g (69)

(the inhomogeneous tangential Cauchy-Riemann equation on Hj) is that ¢ * S = 0 (i.e.,
g must be orthogonal to the kernel of V) where
1

S(g,1)=————,
T

(3+5)(x) = [ 5(y~'x)g(w)dy.

Hy
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The canonical solution to (69) (i.e., the solution orthogonal to the kernel of V) is
f = g xk, where

k,T:i 4 .
&0 = 2 D =i

Cf. P.C. Greiner, J.J. Kohn and E.M. Stein [7]. Let us set

-2

b(E ) = (VK@ T) = (r+i|§\2)€(r—i|6]2)

so that B
f=8xk=V(f)=gxV(k)=g*b=V(f)*D.

The kernel b(g, ) is homogeneous [with respect to the parabolic dilations &;(¢, T) =
(sC, s?T) on the Heisenberg group Hj (with s > 0)] of degree —4 and

/Zzb(g, T) do = 0.
Here X2 = ¥?(1), and
Y2r)={xecH : |x|=r},

x| = (|z]*+ )%, x=(¢ 1) eHy,

is the Heisenberg sphere of radius r > 0. Therefore (by a result of A. Kordnyi and S.
Vagi [11]) for every 1 < p < oo the convolution operator B(g) = g * b extends from S (H; )
to a bounded operator on L? (Hj , 6)). Additionally, k(, T) is homogeneous of degree —3
so that the convolution operator K(g) = g * k extends from S (Hj ) to a bounded operator

K:LP(Hy, 00) > L1(ELy, ), ~ =2 —

, 1<p<g<oo.

Q|
NI

Cf. G.B. Folland and E.M. Stein [12]. Let Wé’z H;, 00) be the Folland-Stein space of all L?
functions on H; admitting weak E-derivatives. Let 1 € C®(H) such that V(h) = 0. Let
us look for a solution f € L? (]H[1 , 90) to the Beltrami Equation (68) such that f —h €
Wé’z (Hy, 6p). To this end, we set

—

g=V(f—h)
Note that if f were C!, then we would have V(f) = ¢ and
V(f)=V(f=h)+V(h) =B(g)+V(h)

At this point, we substitute V(f) and V(f) into Equation (68), respectively, by ¢ and
B(g) + V() so as to obtain

ug:ffﬁ?j;ﬂMQ+V@H (70)

Solving for g in (70) is equivalent to seeking a fixed point of

Al t) — u )2
Ris) = 1o (o) + v ()

[u]
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Let us set
Ax, t) —t 2
a(x, t) = (x 1) [u(x)] , xeHy, |t <1,
1T—tA(x, t) [|u(x)]
and consider the recurrent sequence
80=0, g1 =F(g) v>0.
Then
14
k
Sui1 =y [a(-, t)B] (a(-,t) V(h)), v=>0.
k=0
Then a formal solution to (70) is
g=3 [a(-, ) B]"(a(-, ) V(h)). (71)

v=0
The series (71) converges in L? (Hj , 6p) provided that
F: L2(Hy, 60) — L2(Hy, 6p), |t <1,

are contractions. From now on, we assume that {y( -, t) } It]<1 is a smooth 1-parameter

family of measurable functions yi( -, t) : S> — C of compact support

Supp(u(-, t)] € S°\{(0, -1)}, [t <1,

such that

1|t
Hﬂ( ty t) Hoo = eSSSUppesslﬂ(P, t)| < 14+ |i’| :
The choice of the upper bound on the essential supremum of |y (-, )| will be ex-
plained in a moment. As a consequence of our choice, the function A( -, t) has compact
support Supp[A( -, t)] C Hy and

1t

Then a( -, t) has compact support Suppa( -, t) C Hj and

a(-, t)]|, =inf{C>0: |a(x,t)| <C ae x€H} =

. Alx, t) —t
=infcC>0: |——————| <C ae xeH
1—tA(x, t)
and hence (72) yields
Lemma 15.
e )l <1 (73)

for every |t| < 1.
Proof. To prove (73), we ought to choose 0 < Cy < 1 such that

Alx, t) —t

2T <y ae x e Hy.
T—tA(x, t)| = " ae X €l
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Yet
Alx, t) —t

[ A £) [+t
1—tA(x, t) =

Een]

so it suffices to choose 0 < Cy < 1 such that

PO+ e cem,
1— [t [A(x, t)]

or c "
|)\(x, t)‘ < 1_2“'(:0 ae x € Hj.

Therefore, one ought to choose 0 < Cy < 1 such that

Co It A )l +1e
Al-, ¢t < — Cy >
which is possible only provided that
IAC Al
1= AC Bl
or equivalently
1|t

whichis (72). O

Asa(-, t) € L*(Hy, 69) and Supp[a( -, )] is compact, it must be that a( -, t) V(h) €
L?(Hy, 6p). Then F; is a map of L2(H; , 6)) into L2(H;, 6) and for any g, v € L2(H;, 6))

1Fe(g +0) = Fe (&) luqay) = llaC ) B oy < Ml D) Bl o]l oo,
so that F; is a contraction provided that
la(-, £)B]| < 1. (74)

If this is the case, the series (71) converges in 12 (Hl , 90). Moreover, if the sum g of
the series (71) satisfies the integrability condition

gxS=0 (75)
then solving for f in V(f — h) = g gives the solution f to the Beltrami Equation (68)
f=gxk+h, f—heWy(H,6).

The property f —h € Wé’z (Hy, 6p) of the solution describes its holomorphic behavior
at co. The operator norm in (75) is

la(-, ] :sup{||0¢(wf)B(g)||Lz(Hl,eo) g e L2(Hy, 6), }

HgHLZ(Hl,GO) . §#0

To compute the operator norm (and prove (75)), we need to represent B as a multiplier
on the Fourier transform. For every A € R\ {0} we consider the space

) = LZH((C, 'YA) = O(C) N LZ((C, ’)//\)
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of all holomorphic functions ¢ : C — C such that

1/2
loll,, = (& [lo@ P ane) <o,

m(2) =exp (—|A|[z]?),

where m is the Lebesgue measure on R2. Then £, is a Hilbert space with the scalar product

@ 9)5, = 2 [ 92 FE 1) dm(z),

7T

The Bargmann representation of the Heisenberg group Hj is the unitary representation
of Hj on $, given by
T/\ : Hl — Endc(fj/\),

exp<—/2\ (it+1¢%) —Agz) p(z+7) if A>0,
[TA(Z, T)¢](2) =

exp(—/z\ (iT—|§|2)+A§z> p(z+Q) if A<,

(¢, 1)ely, pen,, zeC.

Lemma16. T)(Z, 7) =T, (¢, —7).

Let b1 be the Lie algebra of Hl;. The same symbol T, will denote the induced represen-
tation of the Lie algebra h; on ),

Ty : b1 — Endc(9,), Ta(A) = (doTh)Ag, A€ by.

The Lewy operator V = 9/3 — i d/97 and the Reeb vector field d/91 are known to
be left invariant. Hence, h; ®g C is the span of {V, V, 9/97}.

Lemma 17.
(i) IfA > 0then

(i) IfA <O then

> 0 9 A
(V) = Az, Ti(V) = o, TA<>—_1_

(iii) Ty : b1 — Endc($,) is a unitary representation.
The Fourier transform at A of a function f € S(H;) is the operator

Tr(f) : 95 — Ha,

Tu(A))(2) = [, f& ) [Ta@ 09) (=) i d dr,

¢ €N, z e C.

Here { = { + i 7 are the real and imaginary parts of {. We recall that a bounded linear
operator A : $) — $, is an operator of trace class if

°° . N1/
Al =Te|A] == ) ((4"4)"?

n=1

(P?Z/ ¢1’Z>A < 0
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for some complete orthonormal system {¢,, : n > 1} C $, (and thus for all). If this is the

case, then the frace of A
[ee]

TrA:= Y (Apu, Pn),

v=1

is an absolutely convergent series, and its sum is independent of the choice of a complete
orthonormal system in §,.

Lemma 18. The Fourier transform T)(f) : $H) — $Ha of every f € S(Hy) is an operator of
trace class.

The norm of T (f) (the trace norm) is defined by
I =T {3 Ta ()}
where T (f) = TA(f)* (the adjoint of T)(f)).

Lemma19. Let f € S(H).
(i)  The inversion formula for the Fourier transform is

F8 ) = 5oz [ TATHE D TA(A)} M A 76)

(ii) The Plancherel formula for the Fourier transform is

1
112 = 1z [ ITa (O 121 aA 77)
where ||f|| is the L? norm of f.

Cf. J. Faraut [13]. On the basis of the formulas (76) and (77), the Fourier transform
T)(f) may be extended from functions of Schwartz class f € S(H;) to square integrable
functions f € L?(Hy, ).

Lemma 20. The Fourier transform of the convolution product

(Fe)) = [, f)36Ty) dx, fig € S(H),

is given by
TA(f * &) = Ta(f) Ta(g)-
Lemma 21. The system {¢,, : n > 1} C 9, given by
A"

(Pn(z>: 72”, ZEC, TIEN,

is a complete orthonormal system in §),.

Let
tﬁ,m(gr T) = <TA(€/ T)¢m ’ ¢n>)\

be the Fourier coefficients of the operator T)({, T) with respect to {¢, },>1. This is an
infinite matrix given by the following.
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Lemma 22.
(i) IfA>O0andm > n, then
tﬁ,m(ér T) =

= \/E(\FAC)m_n exp(—”?) exp(—/wzg|2

(i) IfA > O0andm < n, then

)L ).

tﬁ,m(gl T) = t%,n(_gl _T) =

= VD enp(< 5T ) exp (<25 i)

(iii) IfA <0, then

tﬁ,m((;/ T) = tlﬁn(él T)‘

Cf. A. Koranyi and H.M. Reimann [3], pp. 70-71. Here,

a>-1, x>0,

e (-DF T(i+adt1)
Ln(x>_kg’)k!(n—k)!F(k+tx+1)xk’

are the Laguerre polynomials. From now on, the Fourier transform of a function f € S (H)
will be represented as an infinite matrix

f(/\) = [fn);,n]m,neNf anm = <T/\(f)4’n/ ‘Pm>% ’
so that .
TA(f)‘Pm = ;ﬁ?m $n -

Lemma 23. The Fourier transform b(A) = [b}) ] of

-2

2i 4
2 (4P (T —ilg )

b(g, ) = VK(g, T) =

is given by
fm+1
_5m+2,n T lf A >0,
by = (78)
m—2 )
511172’” m l'f )\ < 0

Let us consider the subspaces L3 (Hj, 6y) C L?(Hj, 6) defined by
L2 (Hy, 6p) = {f € L2(Hy, 6p) : f(A) =0 ae. A>0},
L3 (Hy, 69) = L*(Hy, 6p) © L (Hjy, 6p).
Lemma 24. B L3 (Hy, 6y) C L3 (H;, 6p).

Next, for every k € Z let us set

Uk = {f € L*(Hy, 60) : f(C, 1) =9 f(Z, 1)}
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Lemma 25. L2(H;, 6)) = @pez U*.

Lemma 26.
(i) Iff € U then
m—n+#+k=f5, =0 forae. A >0,

m—n+#—k=f5, =0 forae. A<O0.

(i) BUr c uk+2,

Next let us consider the complete orthogonal sum

Dj =P, u*.

Lemma 27.

(i)  The complete orthogonal sums {D;} ez, satisfy the following multiplication law
feDjand a(-,t) € Dy NL®(Hy, ) =

(i) L% (Hy, 6p) are multiplication invariant, i.e.,
f € Li(Hl, 90) and D((', t) S Li(H1, 90) nLoo(le 90) -
:>f'lk(', t) S Li(le 90).

Theorem 5. Let h € CR™(H;) be a CR function [ie., V(h) = 0] and let us assume that
(-, t) € L®(Hy). Let us assume that one of the following conditions is satisfied
1
ﬁ-
@ a(-,t) €Dy a(-, H)V(h)eD_yand |a(-, t)|_ < iz
@) a(-,t) € D_,NL:(Hy, 6), (-, t) V(h) € D.yNL2 (Hy, 6p) and ||a(-, t)]|, < L.
Then the Beltrami equation

M) a(-,t), a(-, t) V(h) € L3 (Hy, 6p) and ||a(-, )| <

aV(f) = *‘) uV(f)

has a unique solution f; such that f; —h € W (Hy, ).

Proof. We ought to show that the series

converges in L2(Hj, 6p), and its sum g satisfies the integrability condition g*S = 0.
For every f € L?(Hy, 6)), its Fourier transform at A is

TA(f) Pn = ilfn);,n Pm



Mathematics 2022, 10, 371 38 of 40

and hence, its trace norm is

[eo)

ITA(A* = Te (T3 (f = LATHN Tl 9. 9n),,

n=1

:imm%W=imm?

n,m=1
Then .
(Bf)gbn—T/\(f*b)—T)\(f ; bmnfkm(Pk

m,k=1

ie.,
A
A FA
n me,n fk,m =
m

[by (78) in Lemma 23]

fm+1 . n—1 4 .
7(5m+2,n 7 if A>0 - mf]én72 if A>0

-2 n o . .
bngu| oy i A<O e fla i A<0
so that
_ 2 .
U 1 2| ifA>0 k;:—l‘fn);rk‘z if A>0
mepf-xd” T -nd
n,m k, _ R
HLH Fita<o " ff ail ifa<o
and hence [by (k—2)/(k—1) < land (k+1)/k < 2]
ITABA)|| < V2T (f)|
and then
IBfI < V2]|f]l, feL*(H, 60). (79)
Similarly, if f € L% (Hy, 6p) then
B = g [ ITa(BA) | 1A @A =
472 Jp 2
[as f(A) = 0 fora.e. A > 0]
10 =2, P
e
yielding
Bl < f e L% (Hy, 6p). (80)
Let us examine now the three assumptions in Theorem 5. By (79) and ||« (, t) ||, < \2,

it follows that the operator norm of

a( -, t)B:L3(Hy, 6) — L*(Hy,6))
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is [|«( -, t) B]| < 1, and hence
Y [a(-, t)B]" [a(-, t) Vh]
v=0
converges to some g¢ € L2(Hy, 6)).
(1) Asa(-,t)€L?(Hy,6) anda(-,t)Vhe L% (H, b)) and [by Lemma 24]
B[L% (Hy, 60)] C L2 (Hy, o)

it follows that g; € L3 (H;, ).
@) As

_ ¢ _ M ¢ _ M 042
Dy = €£9€§kll r Dita __6}9€§k+zll - €£9zgkll ’
B( Ué) c ut+? [by (ii) in Lemma 26]

one has
B(Dk) C Dk+2 . (81)

It should be observed that (81) is independent of any of the assumptions in Theorem 5.
Ifa(-, t) € Dy = @rc_,U’, then (by (81)

D((~,t)BDkCDC(~,t)~Dk+2C
(by (i) in Lemma 27 with j = k+ 2 and m = —2)
C Dy

so that Dy is invariant by «( -, t) B. Moreover «( -, t) Vh € D_4 yields g; € D_j.

(B) Ifa(-,t) € D,NL2(Hy, 6) then a(-, t) € D_, was already shown to imply
a( -, t) BDy C Dy (here useful for k = —1). On the other hand (by B L2 (Hy, 6y) C
L% (Hy, 60)),

a(-,t)B{D_1NL2(Hy, 8)} C D_1n{a(-,t)-L2(Hy, 8)} C

(bya(-,t) € L2(Hy, 6)))
C D_yNL%(Hy, 6p)
yielding ¢t € D_1 N L2 (Hy, 6y). Summing up, under the assumptions (1)-(3) in
Theorem 5, the function g; belongs to one of the spaces
L3 (Hy, 60), D_y, D_ynNL%(Hy, 6p).
The proof of Theorem 5 may be completed by applying the following lemma:

Lemma 28. Let S € {Li(Hy, 6p), D_y, D_yNL%(H;, 6y)}. For every g € S, one has

$(A) S(A) = 0. Equivalently, each g € S satisfies the integrability condition g * S = 0.
O

4. Conclusions and Open Problems
Sobolev-type solutions to the Beltrami equation

V(f)=nV(f) (82)

on the Heisenberg group H; were first produced by A. Koranyi and H.M. Reimann [3],
relying on work by P.C. Greiner, J.J. Kohn and E.M. Stein [7], on the solution to the Lewy
equation V(f) = g. We consider the Beltrami equations associated to the non-embeddable
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CR structures H(t), |t| < 1, on S3 as discovered by H. Rossi [1], and transplant said
equations on H by using the CR diffeomorphism H : U = 3\ {(0, —1)} ~ H; (associated
with the Cayley map). This gives a 1-parameter family of first order PDEs (with variable
coefficients) on Hj, similar to Kordnyi and Reimann’s Beltrami Equation (82), which may be
simultaneously treated by an outgrowth of Kordnyi and Reimann’s techniques (borrowed
from [7] for the part of complex analysis, and from J. Faraut [13] for the part of harmonic
analysis). It is an open problem whether the same CR diffeomorphism H may be used to
transplant Fourier calculus from Hj to the open set U C S® (and whether the resulting
tools are effective in a direct study of Equations (3)). We expect the resulting local harmonic
analysis on S to be similar to that proposed by R.S. Strichartz [14]. Cf. also [15].

The success in [10] to discover obstructions to CR equivalence of a strictly pseudocon-
vex real hypersurface M C C"*! to the sphere S?"*! (such as the first Pontrjagin form of
the Fefferman metric) prompts the question of whether (other) characteristic forms of F}
[the Fefferman metric of a Rossi sphere (S, #(t))] may be identified as obstructions to
the existence of a K-quasiconformal map f : (S3, H(t)) — (S3, H(0)). Our discussion of
Fefferman’s metric in Sections 2.1.5 and 2.6 is only tentative, and a deeper study is relegated
to further work.
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