. mathematics

Article

Convergence Investigation of XFEM Enrichment Schemes for
Modeling Cohesive Cracks

Guangzhong Liu 1'*, Jiamin Guo ! and Yan Bao ?

check for
updates

Citation: Liu, G.; Guo, J.; Bao, Y.
Convergence Investigation of XFEM
Enrichment Schemes for Modeling
Cohesive Cracks. Mathematics 2022,
10, 383. https://doi.org/10.3390/
math10030383

Academic Editor: Marcin Kaminski

Received: 15 December 2021
Accepted: 18 January 2022
Published: 26 January 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

School of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 200120, China;
jmguo@shmtu.edu.cn

Department of Civil Engineering, School of Naval Architecture, Ocean and Civil Engineering,
Shanghai Jiao Tong University, Shanghai 200240, China; ybao@sjtu.edu.cn

Correspondence: to gzliu@shmtu.edu.cn

Abstract: When simulating cohesive cracks in the XFEM framework, specific enrichment schemes are
designed for the non-singular near-tip field and an iteration procedure is used to solve the nonlinearity
problem. This paper focuses on convergence and accuracy analysis of XFEM enrichment schemes
for cohesive cracks. Four different kinds of enrichment schemes were manufactured based on the
development of XFEM. A double-cantilever beam specimen under an opening load was simulated by
Matlab programming, assuming both linear and exponential constitutive models. The displacement
and load factors were solved simultaneously by the Newton—-Raphson iterative procedure. Finally,
based on a linear or an exponential constitutive law, the influences of variations in these enrichment
schemes, including (i) specialized tip branch functions and (ii) corrected approximations for blending

elements, were determined and some conclusions were drawn.

Keywords: cohesive cracks; convergence rate; enrichment schemes; XFEM

1. Introduction

In quasi-brittle materials, such as geomaterials and concrete, the fracture behavior is
quite different from that of brittle materials. A fracture process zone (FPZ) of negligible size
develops at the crack front due to plasticity or micro-cracking [1]. The assumption of linear
elastic fracture mechanics (LEFM) is quite restrictive for certain types of failure, where
the nonlinear zone ahead of the crack tip is negligible in comparison with the dimension
of the crack. Employing LEFM may produce dangerous results for fracture propagation
in quasi-brittle materials [2]. Therefore, cohesive crack models have been developed to
analyze metal materials. Hillerborg et al. [3] introduced fracture energy into the cohesive
crack model and proposed various traction-separation relations for concrete. The cohesive
crack models have been extensively used in studies on the FPZ and nonlinear failure in
engineering structures.

Within the FPZ ahead of the crack tip, although damage develops to a certain degree,
cohesive stress can still be transferred. In the cohesive model, the nonlinear FPZ, where
degradation or damage mechanisms occur as a result of micro-cracking or micro-voids,
ahead of the crack tip is lumped into a discrete line [4,5]. This stress-softening type of
behavior in the FPZ is represented by a cohesive constitutive relation [6]. The FPZ is
characterized by two crack tips: a mathematical (or fictitious) crack tip and a physical
one. As shown in Figure 1, at the mathematical tip, the crack opening is zero and the
cohesive traction equals the tensile strength of the material, while, at the real crack tip, the
crack opening equals the critical crack opening and the cohesive traction is zero. The crack
smoothly closes from the physical tip to the fictitious tip, and the drawback of infinite stress
due to the LEFM theory is avoided [7].

Mathematics 2022, 10, 383. https:/ /doi.org/10.3390/math10030383

https://www.mdpi.com/journal /mathematics


https://doi.org/10.3390/math10030383
https://doi.org/10.3390/math10030383
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math10030383
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10030383?type=check_update&version=2

Mathematics 2022, 10, 383

20f17

physical
tip

fictitious tip
|_ FPZ

Figure 1. The stress profiles around the fracture process zone.

Over the last two decades, the methodological development of the extended finite
element method (XFEM) has led to a phenomenal increase in applications. In the XFEM
framework, localized phenomena are modeled by incorporating a priori knowledge about
the solution into the FEM approximation using a partition of the unity property. The
fracture propagation can be handled even on a structured mesh by dynamically adjusting
the pre-selected local approximation spaces in the problem domain. To incorporate a
local approximation space, specialized enrichment functions and corresponding degrees
of freedom are added onto local existing FE nodes. In contrast to FEM, it relaxes mesh
constraints such as mesh conformance to physical discontinuities, mesh refinement around
the crack tip, and burdensome adaptive remeshing whenever the crack grows. Various
enrichment schemes have been specialized to apply the XFEM in modeling discontinuity
problems, such as bi-material [8,9], three-dimensional crack [10,11], inclusion and void [12],
microcrack [13,14], two-phase flow [15,16], and frictional contact [17,18] problems. These
applications have reached a high degree of robustness and are now being incorporated into
general software such as LS-DYNA and ABAQUS.

For linear elastic fracture simulation, two types of enrichment functions are required [19,20]:
(i) heaviside functions, which model the jump in the displacement field across the crack
surface; and (ii) tip branch functions, which are derived from the theoretical solution of
the displacement field in the neighborhood of the crack tip, to capture the singularity.
The XFEM provides higher numerical accuracy than FEM without any significant mesh
refinement. However, the convergence rate with respect to the mesh parameter h is not
improved, because the enriched zone becomes smaller as the mesh is refined [21]. On the
other hand, researchers [22] have found that the parasitic terms presented in the blending
elements may drastically reduce the convergence rate of XFEM approximations. However,
the influence of the parasitic terms cannot easily be predicted [23]; for some enrichments
or problems, such as bi-material structures, they may reduce the convergence rate, while
for others, such as strong discontinuities, they may only increase the absolute error while
keeping the convergence rate unchanged. In order to reach the optimal convergence rate,
special treatments to blending elements have been proposed, such as coupling enriched and
standard regions [24], hierarchical shape functions [25], the enhanced strain technique [26],
and the corrected XFEM [23]. Among these techniques, the corrected XFEM may be the
easiest to implement while producing the optimal result.

For cohesive crack simulation, enrichment schemes used for traction-free cracks are
no longer suitable. This is because, in the cohesive crack model, the singularity of the crack
tip field vanishes. The XFEM enriches the standard local FE approximations with prior
known information about the problem. The cohesive crack model abandons the singularity
of the crack tip stress field, which is an unrealistic assumption of LEFM. Therefore, new
enrichment functions have to be designed in the XFEM framework to simulate the true
asymptotic field for the cohesive crack model [2]. To date, various enrichment schemes
have been developed for modeling cohesive cracks. Originally, only a heaviside function
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was employed. Because the singularity vanishes in the near-tip field, the heaviside function
can be suitable for the entire crack, including the crack tip. This approach is used by Wells
and Sluys [27]. However, if only the heaviside function is applied to all nodes, the crack
is restricted to ending at the element edges to ensure that the jump in the displacement
field at the mathematical crack tip equals zero. The approaches given in Duarte et al. [28]
and Zi and Belytschko [29] overcome this deficiency by modification of the shape functions
within the tip element, so that the crack tip can lie within the element. Mariani and
Perego [30] proposed enrichment functions as a product of the heaviside function and ramp
functions. Some references provide special tip branch functions for cohesive cracks. Moés
and Belytschko [31] suggest the following tip branch function: ¢(r,8) = r*sin %, with k
being either 1, 1.5, or 2. Other enrichment functions based on analytical considerations
are given by Cox [32]. Meschke and Dumstorff [33] use four tip branch functions similar

to those for traction-free cracks, only replacing /r with 7, e.g., ¢o(r,0) = {rsin %, 7 cos g,

rsin g sin 0, r cos % sin 0}. With the employment of tip branch functions, the crack can end
arbitrarily within the element. However, a loss of the partition of unity in the blending
elements may lead to a reduction in accuracy. Convergence and accuracy studies of these
enrichment schemes are needed for a suitable choice.

As far as convergence rates are concerned, when numerically simulating traction-free
crack by the XFEM, the factors that influence the convergence rate include the enrichment
zone size [21], the shape function polynomial order [24], the special treatment of the
blending elements, and the choice of enrichment functions. V. Gupta et al. [34] studied
the influence of enrichment zone size on convergence rate and found that, for traction-free
crack simulation, the convergence rate is controlled by the stress gradient outside the
enrichment zone and the error is caused by the blending element. When it comes to the
cohesive crack problem, the smoother stress gradient and the nonlinearity of the governing
equation make the accuracy and convergence properties new problems that require study.

In this paper, we focus on investigating the accuracy and convergence properties of
different enrichment schemes for cohesive crack simulation. A numerical simulation was
conducted on a double-cantilever beam specimen, assuming a linear or an exponential
constitutive law, in order to provide useful information for the choice of enrichment scheme
for cohesive crack simulation. The enrichment schemes we considered can briefly be stated
as follows.

(i) XFEM-h. Only the heaviside function is used, with a small modification of the shape
functions in the tip element.

(i) XFEM-s. Both the heaviside function and the tip branch function ¢(r,0) = rsin g
are used.

(ili) XFEM-cl. Only ¢(r,0) = rsin % is used as the tip branch function, and a corrected
approximation for ¢(r,8) = rsin § is used in the blending elements.

(iv) XFEM-c2. Both ¢(r,0) = rsin§ and ¢(r,8) = rcos§ are used as tip branch func-
tions in addition to a corrected approximation for these two tip branch functions in
blending elements.

The remainder of this paper is organized as follows. A description of the cohesive
crack problem domain and the XFEM formulation for the cohesive crack problem are
provided in Section 2. Information on these four enrichment schemes is provided in
Section 3. Section 4 presents the Newton iterative algorithm for solving the nonlinear
problem. In Section 5, numerical results of convergence and accuracy studies on these
enrichment schemes for different cohesive constitutive models are presented. The effect of
variations in these enrichment schemes is investigated. Finally, our main conclusions are
summarized as Section 5.
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2. XFEM Formulation for Cohesive Crack Problems
2.1. Model Problem Definition

Consider a two-dimensional domain () crossed by a cohesive discontinuity, as shown
in Figure 2. The strong form of the equilibrium equation of this body can be expressed as

V.o+b=0inQ )

where V is the gradient operator, o is the Cauchy stress, and b is the body force. The
behavior of the bulk material is assumed to be linearly elastic, and the constitutive relation is
defined as o = D-¢. The essential and natural boundary conditions are presented as follows

c-nr=t on I} )

where nr is the outward unit normal vector to the external boundary T, f is the prescribed
load vector on the boundary I't, i is the the prescribed displacement on the boundary I';,
and f° is the cohesive traction transferred across the I'c, which is related to the displacement
gap w across the discontinuity according to the stress softening model.

I

.

Figure 2. A two-dimensional domain containing a cohesive discontinuity I'c.

2.2. Discretization of Governing Equations

In the XFEM, the displacement discontinuity can be directly embedded by introducing
additional degrees of freedom onto existing nodes whose supports are intersected by
discontinuities. Comprehensive overviews of the XFEM have been given by numerous
studies [35-37].

The generalized form of the XFEM approximation of the displacement field can be
written as

u'(x) = ;Nxx)-ui + ;Nj(xw(x) -4 3)

In the above function, the standard FE approximation }_ N;(x)-u; represents the con-
A

tinuous part of the displacement field, while the second term represents the discontinuous
part, where u; and a; are standard and enriched DOFs, respectively, ¢;(x) are the enrich-
ment functions, which take different forms for specific kinds of discontinuity problems, A
denotes the set of all nodes, and | denotes the pre-selected set of local nodes associated
with discontinuities.

The weak form of the governing partial differential equation can be derived from the
principle of virtual work and the Galerkin procedure. When the cohesive crack model is
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assumed, the cohesive traction fc that transferred is a function of the crack opening w. The
weak form of the equilibrium equation can be expressed as:

Wint _ Wext + Wcoh (4)

. _ +
/a-(sedoz/b.éud0+/t.audr+/fc.(5u —5um)dr 5)
Ja Ja Jr, Jr,
Discretization of Equation (5) in the XFEM framework results in:
Kq — Afext +fcoh (6)

where g is the generalized nodal displacement vector, g¢° = [ u§ af ] for each element, and
A is the load factor.
The stiffness matrix K is composed of

KMM Kuﬂ
K= [ Kua  gaa ] @)
With
K" = [, (B*)" DB*dQ)
KU = [ (B")'DB"dQ 8)
K* = [, (B)'DB'dQ+ [ NTTNdr
where T, is the tangential modulus matrix of the cohesive crack determined by the cohesive

crack behavior and is obtained from the relation T¢ =
and the cohesive nodal force f .., can be obtained as

coh
afaiw(“’). The external nodal force fext

fet = Afp, NTET + [ NTbdO o)
felt = — [ oy(w)(NT — NT) dr

where the crack opening displacement w can be given by

w:ﬁ~(u+—u_):ﬁ'22NIai (10)
i

It can be observed from the Equations (8) and (9) that the cohesive behavior has a
direct effect on both the stiffness matrix K and the nodal force vector f.q,. The relation
between the cohesive force and the crack opening makes the problem nonlinear.

The four enrichment schemes we examined are designed to consider the effect of their
variations, including the employment of tip branch functions and a corrected approximation
in blending elements. These four schemes are denoted XFEM-h, XFEM-s, XFEM-c1, and
XFEM-c2, and detailed as follows.

2.3. XFEM-h

Because the singularity of the displacement field around the crack tip vanishes, a
heaviside function is suitable for the entire crack, including the crack tip. In this scheme,
the approximation of the displacement field can be written as

W (x) = ZA Ni(x)-1; + ;Nj(x)‘ [H(x) — H(x))] - a; (11)
ie IS

where H(x) is the heaviside function, which takes +1 on one side of the crack and —1 on
the other side, and | is the set of nodes whose supports are fully cut by the crack, which is
depicted in Figure 3a.
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Figure 3. Node subsets and element types in different enrichment schemes. (a) XFEM-h; (b) XFEM-s;
(c) XFEM-c1; and XFEM-c2.

In order to make the displacement gap vanish to zero at the crack tip within the tip
element, we extended the method proposed by Zi and Belytschko [29] to quadrilateral
elements. Specifically, for the tip element, the modified shape function N;(x) was used
instead of the standard shape function N;(x). As shown in Figure 4, if the crack intersects
with boundary 14 within the tip element, we make a straight line through the crack tip point
and intersect the element boundary at points 5 and 6. Then, the shape function N;(x) used
for the tip element is actually the standard shape function of virtual element 1564. Since
nodes 1 and 4 are enriched, the discontinuous part of the displacement can be written as

ugise = N1 (x*)[H(x") — H(x1)] + 4Ny (x") [H(x") — H(x4)] (12)

where x* are the coordinates of virtual element 1564.
n

4 6 3
&p1)
S
"“7 Epy)
(Ep-1)
: 2
! 5
(b)

Figure 4. Approximation of the displacement field in the tip element. (a) The crack intersecting with
boundary 14; (b) the corresponding parent element.

Since this scheme treats the entire domain with the heaviside function only, the
blending with the unenriched subdomain does not occur, which implies that the PU holds
in the entire domain.

2.4. XFEM-s

Another way to allow the crack tip to be located arbitrarily is to employ branch
functions. For traction-free cracks, the branch functions are chosen based on the analytical
solution of the displacement field in the vicinity of the crack tip, that is ¢ (7, 0) = {{/7 sin %,



Mathematics 2022, 10, 383

7 of 17

/1 cos g, V/7sin % sin @, \/7 cos g sin 68}. However, the combination of these functions does
not produce the non-singular stress field at the tip of the cohesive crack. On the basis of
the analytical solution of the cohesive crack problem, some researchers proposed that only
one non-singular enrichment function be used for the two-dimensional cohesive crack tip,
which takes the following form.

3/2

0 6,0
qb(r,())—rsmi, orr*/“sin 7, or r”sin 5 (13)

Others proposed that four branch functions be used to enrich the tip element, which is

{pa(r,0)} ={ rsind rcos§ rsin§sin® rcosfsind } (14)

In this enrichment scheme, 7 sin g is used as a branch function, which is presented in
Figure 5a. It is obvious that this branch function is suitable for capturing the displacement

gap at the crack tip.

\\\\}\\\\}\\\}‘kkk\\\l\\\

il

rcos& rsing 22 rcosg

Figure 5. Tip branch functions for cohesive cracks. (a) ¢(,0) = rsin % and (b) ¢(r,0) = rcos %.

In this scheme, the XFEM approximation of the displacement field can be expressed as

ul(x) = Y Ni(x)-u; + ¥ Nj(x)- [H(x) — H(xj)] - aj
iel j€] (15)
+ X Ni(x)-[9(x) = ¢ ()] - bx
keM
As marked in Figure 3b, ] is the set of nodes whose supports are intersected with
the crack, and M is the set of nodes whose supports contain the crack tip. If a node
simultaneously belongs to | and M, then it belongs to M.

2.5. XFEM-c1 and XFEM-c2

When branch functions are used in conjunction with a heaviside function, the partition
of the unity property does not hold in the blending elements. As shown in Figure 3, in
blending elements only some of the nodes are enriched, which means that }_ Ni(x) # 1.

k

In addition, the branch function is not a piecewise constant function like the heaviside
function, so the parasitic terms resulting from ) Ni(x)¢(x) do not vanish at the edges of
k

the tip element. The presentation of parasitic terms in blending elements can reduce the
convergence rate and accuracy [38]. Fries T.P. [23] proposed a corrected approximation
in which all nodes in blending elements are enriched and the enrichment functions are
modified, solving the problem most efficiently. The approximation of the displacement
field of the corrected XFEM can be written as:

ul(x) = Y Ni(x)-u; + ¥ Nj(x)- [H(x) — H(xj)] - a
icl j€j (16)
+ ¥ Ne(x) -R(x)-% [pa () — P (k)] - by

ke MUL
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where L is the set of second-layer nodes around the tip element, as marked with triangles
in Figure 3c. In this scheme, the set of nodes L is also enriched with branch functions and
additional DOFs by. R(x) is a ramp function, which is defined as follows and depicted
in Figure 6.

(17)

Figure 6. The value of R(x) on a discretized mesh.

It can be seen in Figure 6, within the tip element, that we have R(x) = 1, while within
the blending element, the ramp function varies continuously and deceases to zero at the
element edges. After this modification, the PU holds everywhere in the domain. Improved
convergence rates were verified in applications to bi-material problems, while in other
applications only the error level was reduced.

In order to investigate the effect of an additional singular branch function in Equation (14),

only 7sin g was employed in XFEM-c1, while both  sin % and 7 cos % were employed in

XFEM-c2. It can be seen from their plots in Figure 5 that the branch function rcos%
can help to capture the stress gradient at the rear of the crack tip. In both schemes, a
corrected approximation in blending elements is used to eliminate the negative influence

of parasitic terms.

3. Nonlinear Algorithm

In order to guarantee the smooth closing of the crack as required by the definition of
the cohesive crack model, one more condition is required. This condition is usually referred
to as the zero stress intensity factor condition. It is assumed that the crack propagates under
the mode I loading condition, so only the mode I stress intensity factor (SIF) is taken into
account, i.e.,

Kpip =0 (18)

where Kitip is the mode I SIF calculated at the crack tip. In FEM-based methods, the SIF can
be obtained by means of the domain integration method.

A SIF at the crack tip equal to zero implies that the stress component normal to the
crack tip is finite [39]. Alternatively, smooth closure can also be guaranteed by a stress
condition, where the stress projection in the normal direction nr of the crack is equal to the
tensile strength of the material, i.e.,

nrl - oy - nr = fi (19)

where 0y, is the stress at the crack tip and f; is the tensile strength of the material. The zero
SIF condition and the stress condition can be used interchangeably, but the stress condition
is simpler to implement; therefore, it was adopted in this paper.

The discretized form of the stress condition can be written as

MT.C-Bg=S-g=Ff (20)
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where S = M! - D - B is the operator by which the stress at the crack tip is calculated, and
M = nr ® nr is the Voigt notation.

It is obvious that in the equilibrium condition (Equation (6)), as the cohesive force
depends on the crack opening w, the problem is nonlinear. The scheme recommended
in [29] was employed, we combined Equation (6) and Equation (20), and q and A were
solved simultaneously by the Newton-Raphson iterative procedure. The residual vector of
the governing equation is given by

o { K-q—)}{ms; £ () } o

where the independent unknowns are g and A. The Jacobian matrix is

9 coh
A= K — faq(q) _'gext ]

s (22)

where C;h(q) is the additional stiffness term effective on the crack surface in the FPZ, which
can be obtained by
oM g) [ )

T. . T.
5 e b NT .n-nT . NdT (23)

At the ith iteration, the increments in independent variables obtained from Equations (21)
and (22) are ‘
Ag ' _ i1\t i1
{M} =~ (A7) e (24)

4. Numerical Study

In this study, a double-cantilever-beam (DCB) specimen containing a level cohesive
crack was numerically simulated by the above four different enrichment schemes in order
to examine their accuracy and convergence performance. This configuration was taken
from the literature [29]. The boundary conditions and dimensions of this case study are
provided as a sketch in Figure 7. Uniformly distributed forces were applied on the left side
of the beam, and the plane stress condition was assumed to hold. The Young’s modulus
was 36.5 GPa and the Poisson’s ratio was 0.18, which are the material properties of common
concrete.

0.3L

0.5L

| ot — eal—

L=04m

Figure 7. A sketch of the dimensions and boundary conditions of the double-cantilever beam.

Six finite element meshes were used in the convergence studies (17 x 9, 31 x 15,
61 x 31,121 x 61,301 x 151, and 601 x 301 grids of quadrilateral elements). The meshes
were created by making the element length in the x and y directions approximately equal,
with the number of elements being odd, such that the crack tip lies within an element. The
mesh size h was represented by the square root of the area of an element.
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4.1. Linear Softening Model

For the cases with a linear softening model, the cohesive force can be expressed as
¢ = —w <w<
f ft(l wc) 0<w<w 25)
ff=0 w > we

In this paper, the material properties of common concrete were used, where the tensile
strength f; = 3.18 MPa and the critical crack opening w, = 0.0314 mm. The fracture energy
was E = 0.5ftw: = 50 N/m. The plot of this softening model is provided in Figure 8.

4 -

3
§ , _Linear
S
w1 .

_-Exponential
O L
0 0.01 0.02 0.03

@ (mm)
Figure 8. Linear and exponential softening models in terms of the traction-separation relation.

Due to the nonlinearity of the problem, an explicit analytical solution for the displace-
ment field around the crack tip is not available. In order to evaluate the relative error level
for different mesh densities, we took the results obtained by the finest meshes with each
enrichment scheme as reference exact solutions. The h-version convergence rate of the
finite element method was quantified by means of the relative error in the L2-norm, which
was calculated by the following equations.

e —wr],
P 20

ull, = \//Q\FC (ul)z + (uz)zdﬂ (27)

where the superscript ref denotes a reference solution.

In Figure 9, the deformed geometry of the cohesive crack problem is compared with
that of the traction-free crack problem when the same load factor is applied. When a
cohesive force exists between crack faces, the crack closes smoothly from the physical tip to
the fictitious tip. The Contour plots of oy, for the cohesive crack problem and the traction-
free crack problem are provided in Figure 10. It can be seen that, in the cohesive crack
model, a stress concentration appears ahead of the crack tip, which is the fracture process
zone (FPZ), rather than at the back of the crack tip, which is the case for the traction-free
crack problem. The stress gradient at the crack tip is much smaller compared with the
case with the traction-free crack. The stress at the crack tip in Figure 10b is finite, and
equal to material tensile strength. This means that the cohesive crack model abandons the
unrealistic assumption in the LEFM that the stress at the crack tip is infinite, which can be
seen in Figure 10a.

E, =
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(a)

®) \‘

Figure 9. Deformed geometries of the beam with (a) a traction-free crack and (b) a cohesive crack.

®) |

3 4 5 6 7 -1 -05 0 05 1 15 2 25

Figure 10. Contour plot of oy for (a) the traction-free crack problem and (b) the cohesive crack
problem (unit: Mpa).

The stress 0, along the axis of symmetry is plotted in Figure 11. The stress profiles
obtained by different enrichment schemes are difficult to distinguish from one another.
They also show an obvious FPZ ahead of the crack tip, and the stress 0y, is equal to the
tensile strength at the crack tip. In contrast, a stress singularity appears around the crack
tip in the traction-free crack problem.

—— XFEM-h .
180****‘***‘***‘***‘***7XFEM-S B
el L | ‘XPFEM<l |

S A O S R B G = VS

© R s YA N Traction free

o 2 i i i i . |

= 0 &j(,L,,,L,,,L,,_L,,,

=2 | | | B R R |

- e e e e el el e i

e o e o B
6F-———-"F-—-F -k -k -k - — k- — -k - - —
1) S S S
_10 | | | | | |

0 50 100 150 200 250 300 350 400
X (mm)

Figure 11. Stress profiles of oy, obtained by different enrichment schemes for the linear soften-

ing model.

Figure 12 shows the relative error in the L2-norm plotted against the inverse of the
element size h, which is taken as the square root of the area of the element. The rates of
convergence were obtained by means of polynomial curve fitting of those data points. It is
interesting that, as the linear softening model is considered, with the employment of the
branch function r sin g, XFEM-s, XFEM-c1, and XFEM-c2 achieve a better convergence rate
of more than 1, compared with the 0.7 obtained by XFEM-h. The employment of the addi-

tional branch function r cos § results in a similar convergence rate but a higher accuracy.
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10 O XFEM-h, m=0.71

O O XFEM-s, m=1.14
{ XFEM-cl, m=1.06
X

XFEM-c2, m=1.07

'
NS}
T

Relative Error
=

10_ . . P \-1 . . . . M * \0

10 10
1/h

Figure 12. Convergence rate plot for the cohesive crack problem with the linear softening model (m

is the convergence rate).

As far as accuracy is concerned, the XFEM-s scheme provides less accuracy for cohesive
crack problems, especially when coarse meshes are used. It can be seen from the above
stress contour plot in Figure 10 that the singularity vanishes at the crack tip, and only a
finite stress gradient exists. If the parasitic terms resulting from the branch function are
not corrected, it can reduce the accuracy severely for the case of cohesive cracks. With the
corrected approximation for blending elements as in XFEM-c1 and XFEM-c2, the error level
is improved by around 2 times, while the convergence rate remains almost the same, which
is similar to the case of strong discontinuities.

4.2. Exponential Softening Model

Because of its simplicity, the linear softening model is frequently used; however, for
certain brittle materials, a nonlinear softening model may be more accurate. When the
cohesive traction—displacement relation changes, the stress gradient around the crack tip
differs, and that may affect the convergence rates of enrichment schemes. The same DCB
specimen was used for the numerical study of convergence rates. The cohesive force and
displacement gap relation can be expressed as

fo=1 'eXP(—ff ‘W) (28)

The tensile strength was the same as f; = 3.18 MPa, and the fracture energy was made
to be smaller than E; = 12.5 N/m to increase the gradient of the cohesive force. The linear
and exponential softening models used in this study are depicted in Figure 8. It can be seen
from the profile that they will result in a similar FPZ length, but different stress gradients.

The stress 0y, along the symmetric line produced by different enrichment schemes
is provided in Figure 13, as well as a comparison of the two cohesive constitutive models.
Likewise, the stress profiles produced by these enrichment schemes are hard to distinguish
from one another. It can be seen from Figure 13 b that, when the traction-separation relation
changes, although the cohesive force remains equal to the tensile strength at the crack tip,
the stress gradient differs in the FPZ, and does not make much difference at the back of the
crack tip.
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Figure 13. (a) Stress profiles of ¢y, obtained by different enrichment schemes for the exponential

softening model and (b) a comparison of different cohesive constitutive models.

Figure 14 shows the convergence rates of these enrichment schemes when the expo-
nential softening model is inserted. Likewise, the enrichment schemes with tip branch
functions exhibit a higher convergence rate. The employment of the tip branch function
7 cos g increases both the convergence rate and accuracy substantially. However, especially
when coarse meshes are used, these enrichment schemes achieve lower accuracy than
XFEM-h in terms of error level. In comparison with the cases of the linear constitutive
law, the difference between the convergence rates of these enrichment schemes is more
pronounced for the cases of the exponential constitutive law.

...
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Figure 14. Plot of the convergence rate for the cohesive crack problem with the exponential softening

law (m is the convergence rate).

4.3. Mixed-Mode Crack Problem

In this case, a plate with an inclined cohesive crack was analyzed using all four
enrichment schemes in order to investigate their convergence properites in depth. The
boundary conditions are shown in the sketch in Figure 15. The dimensions of the plate are
200 by 400 mm, with a thickness of 20 mm. The inclined crack is located at [0 150; 100 200].
A uniformly distributed tensile force f,;; = 1 Mpa was applied on the top edge with the
plane stress condition. All the material properties and softening laws were the same as in

previous cases.
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X A A

Figure 15. Boundary conditions of a plate containing an inclined crack.

The convergence rates of these enrichment schemes are provided in Figure 16. They
follow similar tendencies. The enrichment schemes with tip branch functions have similar
convergence properties, while the corrected approximation and additional tip branch
functions can increase the accuracy.
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Figure 16. Plots of the convergence rate for the mixed-mode crack problem with (a) the linear
softening law and (b) the exponential softening law (m is the convergence rate).
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5. Conclusions

The present work focuses on investigating the convergence properties and accuracy of
different enrichment schemes in the XFEM for modeling the cohesive crack problem. Four
kinds of enrichment schemes for cohesive cracks were manufactured to examine the influ-
ences of their variations on convergence performance and accuracy level. The convergence
study was conducted on a double-cantilever beam specimen with both the pure mode I
problem and the mixed-mode problem, and cases of linear and exponential constitutive
laws were considered. On the basis of the simulation results, our main conclusions are
as follows.

1. When both linear and exponential constitutive laws are assumed, the enrichment
schemes with tip branch functions achieve a higher convergence rate than XFEM-h;
however, they have lower accuracy in terms of the absolute error value.

2. Inthe case of the cohesive crack simulation, the corrected approximation for blending
elements did not change the convergence rate much, but the error level improved
substantially, which is similar to the case of traction-free cracks. The enrichment
schemes with tip branch functions have similar convergence properties, while the
corrected approximation and additional tip branch functions can increase the accuracy.

3. Asfar as accuracy is concerned, the enrichment schemes with tip branch functions
perform worse than XFEM-h when coarse meshes are used. If the parasitic terms
resulting from the branch function are not corrected, it can reduce the accuracy
severely for the simulation of cohesive cracks.

4. The traction—displacement relation can also affect the convergence properties of these
enrichment schemes. In the case of the exponential constitutive law, the difference
between the convergence rates of these enrichment schemes is more pronounced.
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Ef Fracture Energy

Kiip Mode I stress intensity factor
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R(x) Ramp function

¢(x) Enrichment function

we Critical crack opening
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