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Abstract: The approach for the detection of vehicle trajectory abnormalities on CCTV video from
road intersections was proposed and evaluated. We mainly focused on the trajectory analysis method
rather than objects detection and tracking. Two basic challenges have been overcome in the suggested
approach—spatial perspective on the image and performance. We used trajectory approximation by
polynomials as well as the Ramer-Douglas-Peucker N thinning technique to increase the performance
of the trajectory comparison method. Special modification of trajectory similarity metric LCSS was
suggested to consider the spatial perspective. We used clustering to discover two types of classes—
with normal and abnormal trajectories. The framework, which implements the suggested approach,
was developed. A series of experiments were carried out for testing the approach and defining
recommendations for using different techniques in the scope of it.

Keywords: intelligent transport systems; video processing; trajectories; clustering; anomaly detection

1. Introduction

A growing number of roads and highways are equipped with closed-circuit television
(CCTV) cameras, which has become an essential element of modern smart cities [1]. Such
cameras provide vital information about the current traffic situation on the streets. They
are the main source of information for many services of intelligent transport systems
(ITS), including the automatic detection of traffic jams and car incidents, vehicle counting,
weather condition detection, monitoring of road conditions, etc. A growing number of
ITS services working with CCTV cameras raise the problem of automatic analysis of video
stream data [2,3].

One of the important ITS services for modern cities is automatic detection of vehicle
trajectory anomalies [4–6]. Such anomalies can be caused by different reasons—car acci-
dents, reckless drivers, road obstacles, bad road conditions, etc. The information about
detected anomalies in vehicle’s behavior must be considered for decision making and
effective traffic management at the top level of ITS.

Effective detection of vehicle trajectory anomalies on video streams from CCTV cam-
eras is a complex task, which involves effective object (vehicles) detection, tracking, tra-
jectory construction, and finally separation of trajectories into reference and anomaly
classes. The main challenges here are limited computational power resources and the
spatial perspective of the video [5].

In the paper, we suggested and evaluated the approach for the identification of vehicle
trajectory anomalies on streaming video, which works well in the case of the mentioned
challenges. We focused on determining spatial trajectory anomalies and considered them
as templates, of which spatial coordinates seriously differ from other trajectory templates
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according to the selected distance. We focused on the detection of spatial trajectory anoma-
lies, caused by traffic accidents, unexpected obstacles on the road, inadequate driving of
the vehicle, and violation of traffic rules related to changing the vehicle’s trajectory (U-turn
through a double solid line, for example).

We used computer vision methods and artificial neural networks for objects detection
and tracking. Then, we used machine learning methods for trajectories construction and
their classification. In the paper, we paid more attention to the study of machine learning
methods that work with trajectories.

To meet the considered challenges, we investigated the efficiency of different trajec-
tory approximation methods and introduced the new trajectory comparison metric. We
compared trajectory approximation by 3-, 4-, 5-degree polynomials and the Ramer-Douglas-
Peucker (RDP) N thinning technique to increase the performance of the trajectory compari-
son method. Special modification of trajectory similarity metric LCSS was suggested to
consider the spatial perspective. Hierarchical clustering technique was used to separate ve-
hicle trajectories into reference and anomaly classes. We carried out a series of experiments
to evaluate the suggested approach, selecting the best trajectory thinning/comparison
methods using the developed framework.

The structure of the paper is organized as follows. In Section 2, we consider basic
knowledge related to the topic of the paper. In Section 3, we consider state-of-the-art
techniques related to the identification of trajectory anomalies. In Section 4, we suggest
the basic concept and algorithms for the trajectory classification approach. In Section 5, we
present the results of the experiments. In Section 6, we present the discussion based on
experiments to select the rational way of using the approach. In Section 7, we present the
conclusion and possible further directions of work to improve the results.

2. Basic Knowledge

This section is intended to give background information and introduce useful defini-
tions and basic concepts of approaches used in the following sections. Source data and
basic challenges will be discussed.

2.1. Source Data and Trajectory Definition

The main research question we considered in this paper concerns approaches and
algorithms for processing trajectory data. Video data from 165 enforcement cameras, which
are installed at road intersections in Kazan city, were considered as raw data (Figure 1).
Video resolution is 1280 × 720, while a frame rate of 10 frames per second is used. We
covered all CCTV cameras installed at road intersections in Kazan. The dataset involved
24-h recording from each camera done in one day. Following road intersection types have
been included (Figure 1):

• Four-way intersections (Figure 1a);
• T-intersections (Figure 1b);
• Y-intersections (Figure 1c).
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Figure 1. Road intersection types. Four-way intersections (a). T-intersections (b). Y-intersections (c).

A stand-alone tracking system takes the raw video from video surveillance cameras
and handles it to perform the object detection and convert the trajectory into several
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tracking points on images (Figure 2). The basic concept of this process is described more
deeply in Section 4. The outcome of the tracking system is tracking points (TPs), containing
information such as vehicle ID, timestamp, and possible spatial coordinates. These TPs are
considered an input for processing in the context of the current work.
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Generally, the trajectory is data which contain only minimum information, such as
position and time, as well as the identifier of the tracking object. This information can
be easily augmented by detailed information, such as speed, acceleration, and moving
direction, since they can be extracted from the initial trajectory data [7].

We define the trajectory τ or T for the vehicle as the sequence of three-dimensional
points, where the first two coordinates represent the position of the vehicle in 2D space and
the third coordinate represents the time [6,8] (Formula (1)):

τ = (x1, y1, t1), (x2, y2, t2), . . . (xn, yn, tn), (1)

2.2. Trajectory Anomalies

Twenty-four-hour recording video surveillance cameras produce massive amounts of
data about moving objects. This fact increases the possibility that along with the normally
behaving objects, some of the moving objects will demonstrate abnormal behavior. Such
exceptional behaviors can also be named as outliers, anomalies, abnormalities, exceptions,
novelties, or deviants [9,10].

Trajectory anomalies (outliers) could be considered as a template that seriously differs
from the remaining traffic behavioral templates according to a certain metric of similar-
ity [10]. Generally, the anomalous to normal activity patterns ratio should be relatively small
to be able to distinguish abnormalities from the dominating normal patterns. According to
the literature, we can divide anomalies into the following general categories [10–12]:

• The spatial trajectory anomaly (U-turn of a car for example);
• The temporal trajectory anomaly, detected by analyzing only temporal characteristics

of trajectories, such as duration and time of moving. For example, a trajectory with a
significantly long duration or a trajectory appearing at an anomalous time;

• The spatiotemporal (ST) trajectory anomaly, which can be detected by analyzing spatial
and temporal information in aggregate. This type corresponds to situations where the
spatial information can be considered as normal, but adding temporal information
converts the trajectory into an abnormal one. Examples of ST anomalies can be
vehicles moving with a considerably high or low speed compared with the majority
of trajectories, and vehicles making unexpected, emergency stops. In addition, such
anomalies can be detected in the case of contra-flow traffic systems with reversing
traffic light anomalous trajectories: since for such line allowed direction changes
according to some known or learned schedule, the classifier can analyze the trajectory
direction together with temporal information.
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The current work is focused on determining trajectory anomalies of the first type
(spatial trajectory anomalies). In this case, we considered trajectory anomaly as a template
in which spatial coordinates (xi,yi) seriously differ from other trajectory templates according
to selected distance. In the current work, we focused on detecting the following types of
spatial trajectory anomalies:

• Caused by traffic accidents, and resulting to change the vehicle’s trajectory or even in
moving of vehicle into the opposite direction (Figure 3a);

• Caused by unexpected obstacles on the road (vehicle breakdown, cargo falling from
the track) (Figure 3b);

• Caused by inadequate driving of the vehicle (constant lane changes, for example)
(Figure 3c);

• Violation of traffic rules related to changing the vehicle’s trajectory (U-turn through a
double solid line or right turn from the left line, for example) (Figure 3d).
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2.3. Basic Challenges

It should be noted that the chosen type of input source leads to some challenges in
their processing.

One of the basic challenges of source data is spatial perspective [12]. Video surveillance
cameras are placed into the fixed locations of street intersections (Figure 2). It leads to the
comparative size of detected trajectories. Trajectory points with farther dislocation from
video enforcement cameras are closer concentrated than points, of which dislocation is
closer. It should be considered in the definition of trajectory similarity metric.

Another important challenge for processing raw trajectories data (1) is the computing
performance of algorithms. The sequence (1) often includes too many points to process.
Not all of them are important for trajectory classification, but reduce the performance of
the algorithms. This fact leads to the necessity of approximation or thinning of initial
trajectories to leave only an important (key) point for further classification.

3. State of the Art
3.1. Trajectory Classification

There are different trajectory anomaly detection techniques described in the litera-
ture [13].
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The main concept of classification-based techniques lies in using a classifier that
first learns to distinguish normal and abnormal trajectories and then classifies each input
instance [14]. Such techniques consist of training and testing phases. The training phase
supposes learning a classifier model from a training dataset, containing labeled data
instances. The learned classifier is then used to classify an input trajectory as normal or
anomalous by assigning a class label in a testing phase. Some classifiers assumed that model
is learned using training data containing labels for normal and anomalous classes [12].
Other classifiers assumed that training data contains only normal data instances with
corresponding normal class labels [10]. A trajectory which is aligned with none of the
learned normal class descriptions is considered anomalous.

Some classifiers suppose learning multiple classes during the training step and then
using a classifier to review the input trajectory for compliance with each learned class.

Single-class Support Vector Machines (SVMs) is a well-known approach, which applies
to the task of anomalous trajectory detection [15,16]. However, this approach requires
trajectory vectors to be the same length. Since raw trajectory data usually contain different
amounts of trajectory points, it is necessary to preprocess raw trajectories to normalize their
length [15]. Moreover, SVMs become highly time- and memory-consuming while working
with huge amounts of multi-dimensional data. The approach proposed in [15] is based on
using SVM for trajectory clustering. First, all trajectories of different lengths are represented
in constant-dimension space feature vectors. Then, the authors used smoothing to remove
the noise, and finally, they did trajectory clustering and anomaly detection. This approach
showed a 3.70% error on the synthetic dataset. In the paper [16], the authors used a mixture
of Gaussian distributions model for object detection. Then, the authors used the contour
tracing technique for object filtering and trajectory tracking. Next, trajectories lengths are
normalized and the SVM machine learning algorithm with radial basis function kernel is
used for trajectory classification. This approach demonstrated an accuracy of about 94%.

Proximity-based approaches [10,12,14] decide whether a data instance is normal or
anomalous based on how close or far it is located concerning neighbors [12]. Nearest-
neighbor and density-based approaches are based on the assumption that normal trajectory
instances have a dense neighborhood, while anomalous instances are far from them [12].
To be able to compare the surrounding density for an instance under consideration with
the density around its local neighbors, a distance (dissimilarity) or a similarity measure
between two data instances needs to be specified [14]. In the case of multidimensional
trajectory data, the task of distance computation becomes very expensive due to the high
amount of data needed to be processed. In the paper [14], the authors suggested the
approach for trajectory anomaly detection based on accumulated relative density (RLD).
To reduce the trajectory feature vector size, principal component analysis was used. Then,
the RLD metric based on points distribution in circles is calculated. If the point has RLD
which deviates far from the mean, then it is labeled as an outlier, otherwise as normal. This
approach showed a 95% detection success rate.

Clustering-based techniques aimed to group trajectories into different classes (normal
and abnormal in the general case), called clusters, based on their similarity in such a way
that objects in one cluster are similar to each other and dissimilar to objects in other clus-
ters [8,17]. There are several types of clustering-based anomaly detection techniques with
the following assumptions: (1) normal data instances are associated with a cluster, while
anomalous data instances are not associated with any cluster, (2) normal data instances are
close to the cluster center, while abnormal instances lie far away from the closest cluster
center, and (3) normal data instances lie in large and dense clusters, while anomalies are
associated with sparse clusters or clusters with a small cardinality [10,12]. One of the main
advantages of clustering-based techniques is the ability of the majority of them to run in
an unsupervised manner. In our case, the unsupervised learning methods are the most
appropriate, because labeling hours of video data is a highly time-consuming task. In addi-
tion, manual labeling of input data can lead to errors due to human operator intervention.
However, at the same time, these algorithms are computationally expensive.
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The main concept of model-based algorithms is that they represent the data as a set
of parameters to create the model of normal behavior. As an advantage, model-based
approaches do not ask the user to provide any input parameters, because all the parameter
values can be derived from the data. The main drawback of model-based approaches is that
the data that comes from a particular distribution cannot always be satisfied, specifically in
the case of multi-dimensional data [10].

In this paper, we decided to focus on clustering-based anomaly detection approaches
due to the following reasons:

• They can work in an unsupervised mode without human intervention and do not
require the input data to contain labels;

• Input data are allowed to contain anomalous trajectories;
• They can be easily applied to multi-dimensional data.

However, using clustering algorithms implies using similarity metrics to compare
the trajectories. Thus, we have to solve the main challenges, mentioned above, with
the following:

• Include a spatial perspective in the similarity metric;
• Approximation or thinning of initial trajectories to reduce the performance complexity.

3.2. Distance and Similarity Measures

Clustering-based approaches require a similarity measure to be defined between
two trajectories. Distance and similarity functions can be classified as (1) working with
raw representations of trajectories without any preprocessing steps and (2) working with
preprocessed trajectories representations. Preprocessing can include unifying the length
of trajectories or reducing the dimensionality of trajectory vectors [18]. Some of the most
known and widely used traditional similarity measures are the following: Euclidean
Distance, Fréchet Distance, DTW, and LCSS.

Euclidean distance between two trajectory vectors is calculated as a sum of squared
differences of corresponding spatial coordinates [19]:

dij = ‖Ti − Tj‖E =

√
m

∑
k=1

((
tk
iy − tk

jy

)2
+
(

tk
iy − tk

jy

)2
)

,

where both trajectories consist of m tracking points and are represented by two-dimensional
vectors Ti =

{
t1
i , t2

i , . . . , tm
i
}

and Tj =
{

t1
j , t2

j , . . . , tm
j

}
. Tuples

(
tk
ix

, tk
iy

)
represent spatial

coordinates for a k-th tracking point of i-th trajectory from a dataset. However, Euclidean
distance works only with trajectories with an equal number of tracking points. Since usually
vehicles move with different speeds and behavior, trajectory length is always different and
that means that raw trajectories need to be preprocessed and reduced to the same size [18].
In addition, traditional Euclidean distance requires two-dimensional data, meaning that it
is not able to process temporal information and is dependent on the trajectory direction:
the reversed direction can cause incorrect distance measurement, which in turn leads to
errors in clustering. Additionally, it fails while working with trajectories moving similarly
but with different speeds and the case of different sampling rates [20].

Fréchet Distance [19] is based on Euclidean distance. It considers the positional and
sequential relationship of trajectory points while calculating the similarity. The main idea of
this approach is computing Euclidean distance for each pair of points from two trajectories
and then designating the maximum Euclidean distance as a Fréchet Distance between them.
However, since only the maximum among distance is considered, the approach is sensitive
to the presence of outliers.

Dynamic Time Warping (DTW) [21,22] is one of the algorithms for measuring the
similarity between two temporal time series sequences, which may vary in speed. DTW
method aims to find an alignment between time-dependent sequences, such as trajectories,
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and can process trajectories of different lengths. According to [21], DTW distance is
calculated as follows (Formula (2)):

DD
(
Ti, Tj

)
=



0, m = n = 0

∞, m = 0 or n = 0

dist
(

ak
i , bk

i

)
+ min


DD
(

Rest(Ti), Rest
(
Tj
))

DD
(

Rest(Ti), Tj
)

DD
(
Ti, Rest

(
Tj
)) , others

, (2)

where DD
(
Ti, Tj

)
refers to DTW distance between two trajectory segments with lengths m

and n and dist(ai, bi) means the Euclidean Distance between two trajectory points. Function
Rest(Ti) takes the remaining part of a trajectory after excluding the point ai. For two non-
empty trajectories, the minimum distance between them is calculated recursively. Though
the important advantage of the DTW method is its ability to process trajectory vectors
of distinct lengths, DTW distance is not robust to noise and requires trajectory points to
be continuous. Additionally, DTW distance computation is highly time-consuming and
complex due to the necessity to compare distances between each pair of trajectories [23].

Longest Common SubSequence (LCSS) distance matches two trajectories based on the
longest common sub-sequence between them. This metric makes some elements remain
unmatched [24] and more stable to outliers in comparison with DTW [22,24]. The LCSS
distance is calculated according to Formula (3) [24]:

DLCSS(T1, T2) = 1− LCSSδ,ε(T1, T2)

min(m, n)
, (3)

where m and n are lengths of trajectories T1 and T2, respectively.
LCSSδ,ε(T1, T2), the longest common sub-sequence between trajectories, represents

the number of matched trajectory points between trajectories T1 and T2 and is defined by
Formula (4):

LCSSδ,ε(T1, T2) =



0, i f m = 0 or n = 0

1 + LCSSδ,ε(Head(T1, T2)),

 i f
∣∣t1x,m − t2x,n

∣∣ < ε

and
∣∣∣t1y,m − t2y,n

∣∣∣ < ε

and |m− n| ≤ δ


max

{
LCSSδ,ε(Head(T1), T2)
LCSSδ,ε(T1, Head(T2))

, otherwise

, (4)

LCSS calculation depends on two constant parameters [18,20,24]: δ (point spacing)
and ε (point distance or matching threshold):

• Parameter δ defines the maximum remoteness in terms of time (or TP indexes) between
two trajectory points [24];

• Constant ε defines the size of proximity to looking for matches in terms of spatial
information (X- and Y-coordinates) [24].

The Head (T) function is defined to return the first M − 1 points from the trajectory
T, representing the trajectory with the last trajectory point removed. According to the
implementation given in [24], the LCSS computation has a complexity of O ((m + k) δ).
However, the algorithm requires a predefined constant δ and ε parameter values as an
input to a method. In addition, due to the recursive way of computations, LCSS has a high
computational cost [25].

The LCSS distance is the most appropriate for trajectories comparison during cluster-
ing, since it allows the trajectories to contain noise, have different lengths, object speeds and
sampling rates (local time shifts in trajectories) [18]. However, this metric has to be adopted
to use in trajectories clustering, to overcome the two main challenges mentioned above.



Mathematics 2022, 10, 388 8 of 20

4. The Concept of Approach

The proposed approach can be described as a two-phase approach with offline cluster-
ing to extract frequent trajectories and an online classification of an input trajectory to label
it as normal or anomalous.

The main workflow of the suggested approach is presented in Figure 4.
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4.1. Vehicle Detection and Tracking

Our object detection and tracking algorithm follows the tracking-by-detection
paradigm [26]. It implies dividing the tracking process into two stages: the detection of
all objects in the frame by the detector and the linking of the corresponding detections
by trackers in time to form trajectories. We used YOLOv4-tiny as an object detector. It
ensures acceptable performance and a good FPS/accuracy ratio. Our tracker is based on
the pyramidal implementation of the rarefied optical flow KLT. It provides reliable tracking
of objects at intervals of up to five frames.

The following steps are used: detection of objects on the frame, initialization or
reinitialization (updating the coordinates of an object, if it was already tracked earlier)
of trackers for each found object, tracking objects on the next n frames independently.
We remove objects or decide to stop tracking when objects are out of frame or disappear
because of occlusion. Due to the cooperation of detector and tracker, the trajectories are
collected in one piece, which gives a complete picture of the movement [27].

4.2. Trajectory Filtering

Source trajectory data in our case contain objects of different lengths and covered
distances. However, due to object detection accuracy and tracker errors, some trajectories
may be very small and may not look well. In contrast with the case of lost location, where
the missed location can be found using approximation and regression models, the lost
tracking object cannot be fixed afterward. For that reason, to improve the quality of results,
it was decided to filter the input trajectories and ignore short trajectories with small covered
distances. The covered distance is calculated as a Euclidean distance between the first
and last TPs. We used minLength = 10 (TPs), minTotalDist = 80 (pixels) parameter values
trajectories filtering. The results depicting the removed (red) and kept (black) trajectories
are shown in Figure 5.
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4.3. Trajectory Thinning/Approximation

As was mentioned before, notwithstanding that the LCSS similarity distance works
with trajectories of arbitrary lengths and does not natively require the preprocessing of
trajectories, the calculation of LCSS measure becomes extremely computationally expensive
with the growth of the trajectory length because of the recursion. Moreover, most of the
input trajectories contain far more TPs than needed for further analysis; this redundant
information reduces the processing speed. That is why trajectory thinning/approximation
is very important for further steps. It can significantly reduce the number of points in
the trajectory; thus, it can significantly increase the performance of the trajectory compari-
son/clustering algorithms and the performance of the whole system. The main goal of this
step is to leave only key points from the sequence (1), which are significant for trajectory
classification.

We need to convert a given trajectory, represented by a set of TPs T = (x1,y1), (x2,y2),
. . . , (xn,yn), into a subset of points T′ = (xi1,yi1), (xi2,yi2),..., (xim,yim), where 1 = i1 < . . . < im
= n.

We compared two methods to solve this task: (1) polynomial approximation of the
sequence (1), then finding key point for approximation polynomials; (2) using Ramer-
Douglas-Peucker N algorithm for thinning of the sequence (1).

4.3.1. Trajectory Approximation

We considered an approximation of points in the sequence (1) by polynomials f of
some degree and find the key points where f ′(τ) = 0 or f ”(τ) = 0. To perform a polynomial
regression the implementation provided by R. Sedgewick and K. Wayne for Java language
was taken as a basis [27]. The PolynomialRegression class from Apache Commons Math
3.4.1 library takes as an input the desired degree of a polynomial (d) and two datasets of N
data points consisting of real numbers: array of temporal data and an array of spatial x- or
y-coordinates. Then, it performs a polynomial regression on an input set of N data points
(ti,xi) or (ti,yi) and tries to fit a polynomial x = β0 + β1t + β2t2 + . . . βdtd, where βi are the
regression coefficients, to minimize the sum of squared residuals of the multiple regression
model. Finding the best solution for polynomial parameters is based on a Least Squares
method [28].

Key points of a polynomial f (t) refer to points where the polynomial function is not
differentiable or where f ′(τ) = 0 or f ”(τ) = 0. Such key points can denote the main turns
or changes in the trajectory. The equation solvers were run on Apache Commons Math
library. The derivative polynomial functions are taken from polynomials for X- and Y-
coordinates. Solutions found by two solvers are merged. It was also decided to add key
points calculated as border points for a trajectory by taking separately minimum and
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maximum X- and Y-coordinates and computing the corresponding trajectory points using
a respective regression model.

4.3.2. Ramer-Douglas-Peucker N Thinning

Another approach for solving the trajectory thinning task by reducing the number
of points in a trajectory curve is Ramer-Douglas-Peucker (RDP) method. The basic idea
of RDP is taking the initial trajectory and seeking another curve with a fewer number
of TPs [29]. Figure 6 depicts the process of curve thinning using the RDP algorithm [30].
The method requires an initial trajectory curve consisting of an ordered set of TPs and
predefined point-to-edge distance tolerance ε > 0, controlling the remoteness. The input
trajectory curve is being recursively divided into segments, while the first line segment
(edge) is defined by the first and last points as ends. Then, the algorithm determines the
farthest point for the current line segment (line) and decides whether we need to remove or
keep the point based on ε. The recursive process continues until all points from the initial
curve satisfy the point-to-edge tolerance. The simplified trajectory curve can be obtained by
choosing only points marked as kept. In the paper, the RDP N trajectory thinning algorithm
was used to ensure the required number N of approximation points.
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4.4. Trajectories Comparison and Clustering
4.4.1. Modified LCSS

We modify the classical LCSS distance to consider spatial perspective by choosing
adaptive δ and ε parameter values to work with data coming from different positions
towards the CCTV camera. Value ε is the threshold controlling spatial remoteness of
trajectory points while computing similarity. Consequently, it must be adapted to the
remoteness and decrease as TP moves far away. We can say the same for the δ value.

In modified LCSS metric, we calculate δ and ε values in each iteration based on
following formulas:

δ = cδ ×minimum(τ1·len, τ2·len) (5)

εx = cε ×
(maxX−minX)

distToCCTV
(6)

εy = cε ×
(maxY−minY)

distToCCTV
(7)

where distToCCTV is the distance to CCTV camera from the observed point.

4.4.2. Clustering

Clustering is done in an unsupervised manner using a hierarchical clustering algorithm
operating on a distance matrix between trajectories. To perform clustering, the modified
LCSS distance is used as a similarity measure. The general scheme of normal and abnormal
cluster construction is represented in Figure 7.
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A normal cluster contains a relatively big number of trajectories. We use the concept of
quantiles to distinguish clusters. In the current work, it was decided to use the 0.25-quantile
(lower, first quartile) as the threshold value.

To perform a further classification of an input trajectory, we introduced a cluster model
(CM)—compact definition of a cluster. We consider the cluster model as a single trajectory
that is less distant from others (Figure 8).
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4.5. Trajectory Classification

The last step of the suggested approach is the input trajectories classification and, con-
sequently, anomaly detection. Since the cluster models are used, classification is simplified
by selecting the cluster with minimum distance to its CM. If the distance is more than some
threshold, the trajectory is considered as abnormal.

5. Results
5.1. Developed Framework

To carry out the experiments with real data and evaluate suggested methods, a frame-
work was developed. Java was used as the main programming language of the imple-
mented framework. Commons Math library was chosen for the implementation of the
approximation step. Java AWT and Swing provide a GUI to the Java application.

5.2. Evaluation of Trajectory Approximation Technique

In this section, we carried out several experiments related to trajectory approximation
on the video by third, fourth, and fifth degree polynomials. Min/average R2 score value
was used to assess the approximation quality.
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Evaluation results for the one intersection (Case 1) are presented in Table 1a (before
filtering and after filtering). Approximately 4.9% of the trajectories were discarded in the
filtering process.

Table 1. (a) Evaluation of trajectory approximation polynomials. (b) Evaluation of trajectory approxi-
mation polynomials (Cases 2–4).

Degrees of Polynomials

R2 Score

X Y

Min Avg Min Avg

a

Case 1 (before filtering)

{3} 0.66 0.994 0.466 0.989

{3, 4} 0.897 0.998 0.823 0.994

{3, 4, 5} 0.949 0.998 0.864 0.995

Case 1 (after filtering)

{3} 0.689 0.997 0.777 0.995

{3, 4} 0.942 0.999 0.872 0.997

{3, 4, 5} 0.98 0.999 0.88 0.997

b

Case 2 (after filtering)

{3, 4} 0.992 0.9997 0.832 0.996

Case 3 (after filtering)

{3, 4} 0.815 0.995 0.867 0.996

Case 4 (after filtering)

{3, 4} 0.879 0.995 0.722 0.993

We can see that filtering out trajectories improves the results. Approximation results
using third-degree polynomials are insufficient in the general case. On the other hand,
approximation using third- and fourth-degree polynomials in conjunction improved both
minimum and average values of R2. For that reason, approximation, using several degrees,
was performed with the following approach:

1. Perform approximation using the lowest degree of a polynomial as a starting point;
2. Compare the obtained R2 with a predefined threshold; if the obtained value is less

than the threshold value, increase the degree and remake the polynomial regression;
3. Continue until the acceptable R2 is obtained or until the limit is reached for a polyno-

mial degree to check (5 in our case).

Evaluation results for three other intersections (Cases 2–4) were obtained according to
this approach and are presented in Table 1b.

In Figure 9, we can see different trajectory approximation results with detected key
points.

5.3. Evaluation of the Trajectory Thinning Technique

A comparison of the total length of approximated trajectories and the positional errors
for the RDP N algorithm is represented in Table 2. The minimum length is equal to 2,
meaning that TPs are located on a straight line, and the trajectory coincides with the initial
simplifying line, consisting of the first and last trajectory points. However, this occurs
only for a small number of input trajectories. Notwithstanding that, the average length is
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almost equal to the desired N value. Simplified trajectories obtained by applying the RDP
N (N = 9) are presented in Figure 10.
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Length (TPs) Positional Error (pixels)

Min Avg Max (N) Min Avg Max

2 6.86 7 0 12.2 432

2 7.82 8 0 9.26 388

2 8.76 9 0 7.38 340
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5.4. Evaluation of Trajectory Clustering Technique

We used Dunn’s Validity Index (DI) [31] to evaluate the clustering quality. In Figure 11,
we can see different clustering cases using modified LCSS distance. We can see the case of
using different clusters and different approximation methods.
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Figure 11. Clustering results (a) Polynomial regression, 11 clusters, DI = 0.94; (b) RDP N regression,
N = 8, 11 clusters, DI = 0.95; (c) RDP N regression, N = 8, 9 clusters, DI = 0.93.

As was described previously, clusters with small cardinalities are considered clusters
of anomalous trajectories. Anomalous clusters consist of trajectories with unusual behavior.
In Figure 12, we can see examples of normal and anomalous clusters. Figure 11b represents
an example of anomalous clusters related to a traffic accident in source data.
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5.5. Trajectory Classification

In Figure 13, we can see the results of normal trajectory classification. Red trajectories
denote the closest cluster, the blue trajectory, depicted using bold TPs, emphasizes the
corresponding CM, while the input trajectory is plotted using cyan color.
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In Figure 14, we can see the result of anomaly trajectory classification (blue points).
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5.6. Evaluation of Performance

We carried out the experiments on a PC with Intel® Core ™ i5-3470 CPU@ 3.20 GHz
(4CPUs), 8192 RAM. A video stream with 438 preliminary filtered trajectories with an
average length of 29 TPs was considered.

Approximation using the Polynomial Regression method works fast and consumes
only 256 milliseconds for the whole set of input trajectories, with an average consumption
of≈0.6 milliseconds per trajectory. The process of finding a polynomial function itself takes
73 milliseconds. The average length of approximated trajectories equals to 7.4 TPs.

Approximation using an RDP algorithm takes 55 milliseconds. We have got the
results on trajectories with lengths within 7 and 12 TPs, with an average of 7.96 points.
Approximation using an RDP N algorithm for N = 8 takes 223 milliseconds, which is less
than a Polynomial Regression but longer than a traditional RDP algorithm. Approximated
trajectories lengths lie within 7 and 8 TPs with an average value of 7.98 TPs before and
within 5 and 8 with an average of 7.87 TPs after excluding the redundant points.

Table 3 presents the results of performance evaluation for LCSS Distances Calculation
and using different approximation methods. Table 4 presents the results of the performance
evaluation for agglomerative hierarchical trajectory clustering.

Table 3. LCSS distances calculation.

Approximation Method Time (ms), Total Avg Time (ms) Per Pair Comment

438 trajectories, 95,703 trajectory pairs

Polynomial Regression 1,162,153 ms (19.37 min) 12.4 ms Average trajectory length 7.43 TPs
Ramer-Douglas-Peucker N, N = 8 2,110,364 ms (35.2 min) 22.05 ms Average trajectory length 7.87 TPs

Table 4. Trajectory clustering.

Case Time (ms), Total Trajectory Pairs, Per ms Comment

Case 1 1310 73 438 input trajectories,
95,703 trajectory pairs

Case 2 323 66.6 208 input trajectories,
21,528 trajectory pairs

Case 3 267 69 193 input trajectories,
18,528 trajectory pairs

Case 4 240 66.4 179 input trajectories,
15,931 trajectory pairs
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5.7. Comparison with Other Methods

The suggested approach is based on unsupervised learning. Therefore, trajectories in
the training dataset do not have any labels. In this case, it is hard to compare the suggested
approach with supervised learning methods, presented in Section 3. However, we can
compare them conceptually and highlight the following advantages:

• Manual labeling of trajectories in source data is not needed;
• It is possible to detect some new types of spatial trajectory anomalies, which have not

been included in the training set.

We also carried out a series of experiments to compare the existing approach with the
following methods:

• Using the DBSCAN algorithm instead of hierarchical clustering;
• Using the original LCSS distance instead of its modification suggested in Section 4.4.1.

The efficiency of using DBSCAN according to the DI index for Case 1 is presented
in Table 5. We can say that the best DI value is 0.92, which is less than the value we have
got with using hierarchical clustering (0.95). Moreover, the DBSCAN algorithm has to be
modified to an adaptive ε value to take into account the spatial perspective.

Table 5. DI index for DBSCAN.

# ε Min Pts Number of Clusters, DI

1 300 20 6, DI = 0.88
2 270 20 7, DI = 0.87
3 270 15 6, DI = 0.86
4 270 10 5, DI = 0.92
5 300 10 5, DI = 0.91
6 250 10 5, DI = 0.92
7 250 5 5, DI = 0.91
8 200 10 11, DI = 0.79
9 200 5 9, DI = 0.53
10 200 2 11, DI = 0.47
11 150 10 6, DI = 0.73
12 150 5 11, DI = 0.8
13 150 2 24, DI = 0.48

The best DI value when using the original LCSS distance to compare the trajectories is
0.77, which is less than the value we have got with using modified LCSS (0.95).

Therefore, we can say that in both cases., the suggested method showed better efficiency.

6. Discussion
6.1. Discussion of Evaluation Results

According to the evaluation results, for the case of the polynomial regression, the
best accuracy of the approximation is achieved while using the third- and fourth-degree
polynomial functions jointly. In the case of using an RDP N algorithm, setting the desired
trajectory length to eight trajectory points led to the best relation between the complexity of
the inter-trajectory distance calculation and the necessity to keep the initial trajectory form.

Thereby, clustering was performed on a filtered set of approximated input trajectories
using key points for each of them. The accuracy of the performed clustering was evaluated
using a DI index and is equal to approximately 0.95, which can be considered as an
acceptable result and denotes a qualitative division into clear distinguishable clusters.

As a result of this work, the following conclusions and deductions can be drawn:

• Approximation of short trajectories with a non-constant speed requires higher-order
polynomial functions for approximation;
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• Notwithstanding that LCSS distance allows trajectories to be of different lengths, it
becomes extremely computationally expensive and complex for trajectories with more
than 11–12 trajectory points;

• Approximation using a polynomial regression works well with the trajectory data,
since it is known in advance that spatial coordinates of a trajectory are functionally
dependent on the time;

• Approximation using an RDP N algorithm works faster and more accurately in terms
of keeping the spatial information and representing main curves of the initial trajectory
according to calculated positional errors, but Polynomial Regression is preferable for
the cases when temporal information is needed to be preserved and analyzed;

• Using the adaptive parameter values significantly increases the accuracy of the results.

6.2. Discussion of Possible Real-World Applications

One of the major questions that has to be discussed is how ITS systems could utilize
the information about detected trajectory anomalies. We discuss below possible real-world
applications once trajectory anomalies are detected.

The first real-world application is the integration of the developed framework with
some emergency management information systems (EMIS). One of the potential EMIS
that could be used for that is GLONASS+112, which is used in Kazan city [32], as well as
the CCTV cameras we used in this paper. Let us consider some scenarios associated with
this integration:

1. Detection of trajectory anomalies caused by traffic accidents, and resulting, for exam-
ple, in the vehicle moving into the opposite direction. A clear example of such accident
is presented in Figure 12b. In this case, the ITS system can send an emergency message
to EMIS GLONASS+112 for immediate response and call the necessary emergency
services (ambulance, police, etc.). Such an automatic response can reduce the potential
damage from emergency events and even save human lives.

2. Detection of trajectory anomalies caused by unexpected obstacles on the road (vehicle
breakdown, cargo falling from the track). In this case, the ITS system can send a
warning message to EMIS GLONASS+112 to call the necessary road services, traffic
police, etc.

3. Detection of trajectory anomalies caused by inadequate driving of the vehicle (constant
lane changes, for example). In this case, the ITS system can also send the warning
message to EMIS GLONASS+112 to call the traffic police.

Another essential real-world application is the integration of the developed framework
with car navigators. For example, information about facts, described in scenarios 1–3 could
be used by car navigator applications to predict possible traffic jams and construct the best
routes that eliminate road congestion.

The third important real-world application is the integration of the developed frame-
work with variable-message signs (Figure 15). For example, information about facts,
described in scenarios 1–3, could be used to inform car drivers about possible difficulties of
driving in certain directions.

6.3. Some Limitations of the Approach

The suggested approach is focused on unsupervised learning (clustering). It has some
advantages, as described before. First, time-consuming manual data labeling is not needed
in this case. Second, it is possible to detect new types of trajectory anomalies that have not
been included in the training set.

However, the suggested approach has some limitations, which have to be mentioned:

• The efficiency of the suggested approach strongly depends on the dataset with training
data. This dataset should be representative, include different types of road intersec-
tions, functioning at different times of the day, with traffic jams and without them,
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with working traffic lights and without them. We can expect misdetections if some
correct trajectory types have not been included in the training set.

• The model has to be retrained if traffic regulations change or if any long-term obstacles
appear in the CCTV camera view (for example, road works are being carried out).

We considered these limitations during the model training (source data are described
in Section 2.1.).
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7. Conclusions

In this work, an approach for the identification of trajectory anomalies on video streams
from CCTV cameras, installed on the road intersections, was suggested. This approach can
be used at any intersection by the implementation of two main phases: training of the model
and trajectory classification/anomaly detection. The approach has been implemented in
the framework on Java language. The research was concentrated only on processing the
trajectories defined by a set of points. The processing of such trajectories is complicated by
two main challenges—spatial perspective and performance. Our approach can overcome
these challenges by trajectory approximation and thinning, as well as key point detection.
We adopted a well-known LCSS metric to work with the spatial perspective. We also
used a hierarchical clustering approach to identify trajectory anomalies. The implemented
algorithm is designed in an offline-learning manner, which means that models of normal
trajectories are learned offline beforehand and are not updated with new upcoming data
on an ongoing basis. Future research can include investigating the opportunity of updating
normal trajectories database to make the framework more adaptable to actual traffic data.
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