Multi-Objective Optimal Design of a Hydrogen Supply Chain Powered with Agro-Industrial Wastes from the Sugarcane Industry: A Mexican Case Study
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Methodological Framework
3.2. Modelling Assumptions
- The operating time of the system is divided into harvest and non-harvest periods, in which the behavior during the generation of electrical energy differs from one another.
- It is assumed that investments in land and construction have already been paid off. Therefore, these aspects are not considered in the required capital investment.
- Given amounts of available electric energy and storage capacities are considered as model constraints.
3.3. Optimization Model Structure
3.3.1. Hydrogen Production Module
3.3.2. Hydrogen Transportation Module
3.3.3. Hydrogen Storage Module
3.4. Optimization Model Formulation
3.4.1. Model Notation and Decision Variables
3.4.2. Production Constraints
3.4.3. Transportation Constraints
3.4.4. Storage Constraints
3.4.5. Non-Negativity Constraints
3.5. Profit Maximization Objective Function
3.5.1. Production Costs
3.5.2. Transportation Costs
3.5.3. Storage Costs
3.6. GWP Objective Function
3.6.1. Production GWP
3.6.2. Transportation GWP
3.6.3. Storage GWP
3.7. Solution Methods
3.8. Mathematical Model Optimization Framework
3.8.1. Mono-Objective Optimization
3.8.2. Multi-Objective Optimization
4. Case Study
4.1. Mexican Sugarcane Industry
Sugarcane Bagasse Generation and Characteristics
4.2. Hydrogen in Mexico
4.2.1. Hydrogen Demand
4.2.2. Hydrogen Production
4.2.3. Hydrogen Storage
4.2.4. Hydrogen Transportation
4.2.5. Hydrogen Selling Price
5. Results and Discussion
5.1. Mono-Objective Optimization Results
5.2. Multi-Objective Optimization Results
5.3. Optimal Hydrogen Supply Chain Configuration
Investment Assessment and Uncertainty Analysis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Calculations for Estimating Model Inputs
Variable | Description |
---|---|
%Downtime | Fraction of inactivity time (%) |
%SteamSelfCons | Percentage of steam consumption (%) |
AvBagi | Available bagasse at each sugar mill i (tons) |
BagBrniz | Bagasse burning flow at mill i during period z (tons/hour) |
BagEConti | Bagasse energy content at mill i (kcal/ton) |
BagEFlowiz | Bagasse energy content flow at mill i (kcal/hour) |
BagHumi | Mass fraction of humidity content at mill i (%) |
BagInCanei | Mass fraction of bagasse in sugar cane at each sugar mill i (bagasse tons/sugarcane tons) |
BoilerEf | Boiler efficiency (%) |
DEnthalpy | Steam delta enthalpy (kcal/cm2) |
ElecPwriz | Electric power generation at mill i during period z (MWh) |
GenPerf | Electric generator turbine performance (steam tons/MWh) |
DOpz | Operation days during period z (days) |
OpHrsz | Operation hours during period z (hours) |
Steamiz | Steam production at mill i during period z (tons/hour) |
tCanei | Sugar cane available at each sugar mill i (tons) |
Appendix B
Sugar Mill | tCane (Tons) | BagInCane | BagHum (%) |
---|---|---|---|
Aaron Sáenz | RiskLaplace (1,062,951, 162,684.8) | RiskExtvalueMin (0.28208, 0.0052635) | RiskPareto (45.277, 50.01) |
Alianza popular | RiskPareto (15.534, 1,091,755) | RiskPareto (17.647, 0.24674) | RiskUniform (42.853, 54.287) |
Ameca | RiskUniform (1,032,772, 1,314,071) | RiskExtvalueMin (0.24318, 0.007397) | RiskPareto (47.183, 49.841) |
Atencingo | RiskUniform (1,539,709, 1,931,089) | RiskExtvalueMin (0.28181, 0.0017849) | RiskPareto (227.42, 50.64) |
Azsuremex | RiskUniform (111,320, 236,294) | RiskExtvalueMin (0.35416, 0.024192) | RiskExtvalueMin (51.1982, 0.88002) |
Bellavista | RiskUniform (544,556, 767,230) | RiskLaplace (0.26549, 0.0042446) | RiskExtvalueMin (51.7613, 0.39862) |
Benito Juárez | RiskUniform (915,567, 1,669,420) | RiskExtvalueMin (0.29877, 0.0024705) | RiskExtvalueMin (51.2247, 0.46764) |
Calipam | RiskLaplace (185,777.6667, 24,246.0872) | RiskPareto (17.107, 0.31175) | RiskExtvalueMin (50.8465, 0.70592) |
Casasano La abeja | RiskPareto (17.203, 581,923) | RiskPareto (34.074, 0.25738) | RiskKumaraswamy (0.075606,0.18032, 46.1,51.18) |
Constancia | RiskPareto (10.619, 751,826) | RiskLaplace (0.27543, 0.010389) | RiskPareto (98.361, 49.106) |
Cuatolapam | RiskPareto (8.3168, 669,112) | RiskExtvalue (0.283955, 0.016257) | RiskUniform (49.9225, 51.9875) |
El Carmen | RiskExtvalueMin (565,173.2923, 110,856.4894) | RiskExtvalueMin (0.323, 0.010938) | RiskKumaraswamy (0.078411, 0.19166, 50.629, 53.053) |
El Higo | RiskNormal (1,758,914, 89,388) | RiskNormal (0.3233037, 0.0076643) | RiskUniform (51.7425, 56.0475) |
El Mante | RiskUniform (606,942, 1,101,350) | RiskKumaraswamy (0.076156, 0.18217, 0.296446, 0.314114) | RiskLaplace (51.1, 0.44173) |
El Modelo | RiskExtvalueMin (1,059,250.2819, 96,686.0013) | RiskPareto (25.15, 0.26806) | RiskTriang (48.7756, 50.41, 50.41) |
El Molino | RiskPareto (5.0488, 681,227) | RiskPareto (77.099, 0.27102) | RiskPareto (135.6, 50.25) |
El Potrero | RiskNormal (1,629,870, 78,703) | RiskPareto (66.285, 0.2666) | RiskTriang (47.8444, 50.61, 50.61) |
El Refugio | RiskExtvalueMin (460,201.2784, 48,913.5247) | RiskPareto (145.56, 0.28926) | RiskPareto (63.715, 49.85) |
El Dorado | RiskNormal (451,622, 124,580) | RiskPareto (20.357, 0.26842) | RiskTriang (48.5712, 51.865, 51.865) |
Emiliano Zapata | RiskUniform (1,001,194, 1,241,654) | RiskPareto (12.091, 0.26608) | RiskKumaraswamy (0.079838, 0.18665, 48.426, 54.43) |
Huixtla | RiskUniform (865,578, 1,386,963) | RiskLaplace (0.27892, 0.016637) | RiskLaplace (50.12, 0.52322) |
José Ma Morelos | RiskLaplace (573,662, 97,203.5759) | RiskLaplace (0.30045, 0.0091253) | RiskTriang (48.274, 52.01, 52.01) |
La Gloria | RiskExtvalue (1,387,788, 128,254) | RiskLaplace (0.27426, 0.0057259) | RiskKumaraswamy (0.073444, 0.19034, 47.59, 50.08) |
La Joya | RiskPareto (6.2914, 662,566) | RiskUniform (0.260448, 0.28558) | RiskPareto (25.533, 48.01) |
La Margarita | RiskExtvalueMin (1,114,659.5247, 65,442.6361) | RiskPareto (69.982, 0.29615) | RiskKumaraswamy (0.081137, 0.18753, 48.63, 51.85) |
La providencia | RiskUniform (622,858, 921,585) | RiskPareto (20.115, 0.25945) | RiskKumaraswamy (0.074596, 0.18167, 47.5, 51.71) |
Lázaro Cárdenas | RiskUniform (220,651, 420,987) | RiskPareto (25.779, 0.21863) | RiskKumaraswamy (0.074316, 0.18577, 49.732, 51.932) |
López Mateos | RiskLaplace (1,552,596, 164,296.2606) | RiskExtvalue (0.2769587, 0.004824) | RiskPareto (51.682, 50.35) |
Mahuixtlan | RiskUniform (345,480, 488,480) | RiskExtvalueMin (0.27271, 0.0014487) | RiskLaplace (49.9522, 0.10657) |
Melchor Ocampo | RiskLaplace (1,110,585, 54,862.1928) | RiskLaplace (0.28742, 0.0042788) | RiskKumaraswamy (0.075628, 0.18143, 50.36, 53.11) |
Motzorongo | RiskLaplace (1,301,433, 203,462.3613) | RiskPareto (24.532, 0.25684) | RiskLaplace (49.89, 0.33796) |
Panuco | RiskUniform (1,299,749, 1,906,185) | RiskPareto (48.802, 0.31117) | RiskExtvalue (50.1014, 1.0208) |
Variable | Probability Distribution | Unit |
---|---|---|
OpDays during harvesting period (z = 1) | Pert (155,160,179) | Days |
OpDays during non-harvesting season (z = 2) | Pert (30,32.82,35.65) | Days |
AvBag for energy production (z = 1) | Pert (52%,52.42%,52.848%) | % de Bagazo |
AvBag for energy production (z = 2) | Pert (7%,7.33%,7.68%) | % de Bagazo |
Appendix C
Region (r) | Electricity Price ($/MW) | Water Price ($/m3) |
---|---|---|
Northwest | Pert (26.23, 35.23, 44.19) | Pert (0.18, 0.40, 0.56) |
North | Pert (26.23, 35.23, 44.19) | Pert (0.18, 0.40, 0.56) |
Northeast | Pert (41.06, 64.33, 79.26) | Pert (0.07, 0.24, 0.73) |
West | Pert (37.21, 60.66, 76.98) | Pert (0.13, 0.23, 0.44) |
Center | Pert (42.99, 67.58, 86.21) | Pert (0.038, 0.11, 0.238) |
South | Pert (42.99, 67.58, 86.21) | Pert (0.025, 0.093, 0.159) |
Gulf | Pert (41.23, 64, 81.47) | Pert (0.105, 0.236, 0.236) |
Southeast | Pert (42.42, 66.28, 81) | Pert (0.0951, 0.190, 0.190) |
Appendix D
Region | State | ID (t) | Name | Design Capacity (Barrels) | Utilization Rate | Fuel Price (MX$) |
---|---|---|---|---|---|---|
Northwest | B.C. Norte | 1 | ROSARITO | 1,393,000 | 0.73 | RiskLogistic (19.20514, 0.18998) |
B.C. Norte | 2 | ENSENADA | 135,000 | 0.74 | RiskLogistic (19.39158, 0.18992) | |
B.C. Norte | 3 | MEXICALI | 155,000 | 0.76 | RiskLogistic (19.45041, 0.19028) | |
Sonora | 4 | NOGALES | 45,000 | 0.77 | RiskLaplace (19.6776, 0.30941) | |
Sonora | 5 | MAGDALENA | 40,000 | 0.67 | RiskLaplace (19.6675, 0.32126) | |
Sonora | 6 | HERMOSILLO | 125,000 | 0.69 | RiskLaplace (19.3266, 0.32346) | |
Sonora | 7 | GUAYMAS | 750,000 | 0.71 | RiskLaplace (19.1096, 0.32513) | |
Sonora | 8 | CIUDAD OBREGÓN | 170,000 | 0.66 | RiskLaplace (19.3257, 0.32251) | |
Sonora | 9 | NAVOJOA | 35,000 | 0.72 | RiskLoglogistic (15.3836, 4.3047, 24.893) | |
B.C. Sur | 10 | LA PAZ | 230,000 | 0.7 | RiskExtvalueMin (19.6679, 0.37766) | |
Sinaloa | 11 | TOPOLOBAMPO | 760,000 | 0.71 | RiskTriang (17.9917, 19.7924, 20.1903) | |
Sinaloa | 12 | GUAMÚCHIL | 105,000 | 0.71 | RiskTriang (18.7036, 20.2588, 20.8076) | |
Sinaloa | 13 | CULIACÁN | 115,000 | 0.74 | RiskTriang (18.8595, 20.0375, 20.6478) | |
Sinaloa | 14 | MAZATLÁN | 620,000 | 0.75 | RiskWeibull (5.175, 1.5556) | |
Nayarit | 15 | TEPIC | 95,000 | 0.7 | RiskLaplace (19.6781, 0.27458) | |
North | Chihuahua | 16 | CIUDAD JUÁREZ | 245,000 | 0.75 | RiskLaplace (18.6858, 0.32223) |
Chihuahua | 17 | CHIHUAHUA | 420,000 | 0.8 | RiskLaplace (19.1491, 0.30599) | |
Durango | 18 | DURANGO | 75,000 | 0.69 | RiskLaplace (19.6863, 0.27829) | |
Chihuahua | 19 | PARRAL | 55,000 | 0.73 | RiskLaplace (19.6639, 0.3026) | |
Durango | 20 | GÓMEZ PALACIO | 475,000 | 0.72 | RiskLaplace (19.5364, 0.30492) | |
Northeast | Coahuila | 21 | SABINAS | 100,000 | 0.73 | RiskLaplace (19.5153, 0.319) |
Coahuila | 22 | MONCLOVA | 235,000 | 0.77 | RiskLaplace (19.4711, 0.33153) | |
Tamaulipas | 23 | NUEVO LAREDO | 75,000 | 0.78 | RiskLaplace (19.34, 0.3101) | |
Tamaulipas | 24 | REYNOSA | 23,500 | 0.62 | RiskLaplace (19.3046, 0.33903) | |
Nuevo León | 25 | SANTA CATARINA | 850,000 | 0.69 | RiskLoglogistic (18.23, 1.0127, 6.1548) | |
Nuevo León | 26 | SALTILLO | 151,000 | 0.78 | RiskLaplace (19.4162, 0.33261) | |
Nuevo León | 27 | CADEREYTA | 100,000 | 0.75 | RiskLoglogistic (17.4049, 1.7244, 10.6) | |
SLP | 28 | MATEHUALA | 33,000 | 0.74 | RiskLoglogistic (18.1427, 1.272, 7.2404) | |
Tamaulipas | 29 | CIUDAD VICTORIA | 195,000 | 0.75 | RiskLoglogistic (17.8593, 1.2518, 7.2491) | |
Tamaulipas | 30 | CIUDAD MANTE | 21,000 | 0.71 | RiskLaplace (19.0238, 0.35456) | |
SLP | 31 | CIUDAD VALLES | 75,000 | 0.74 | RiskLoglogistic (17.792, 1.2502, 7.2677) | |
SLP | 32 | SAN LUIS POTOSÍ | 100,000 | 0.69 | RiskLaplace (19.1377, 0.34971) | |
West | Zacatecas | 33 | ZACATECAS | 85,000 | 0.68 | RiskLaplace (19.5594, 0.3408) |
Aguascalientes | 34 | AGUASCALIENTES | 105,000 | 0.65 | RiskLaplace (19.5644, 0.33496) | |
Guanajuato | 35 | LEÓN | 110,000 | 0.73 | RiskLaplace (19.5183, 0.32495) | |
Jalisco | 36 | ZAPOPAN | 390,000 | 0.72 | RiskLoglogistic (18.47193, 0.94869, 5.5621) | |
Michoacán | 37 | ZAMORA | 90,000 | 0.71 | RiskLaplace (19.6637, 0.32359) | |
Guanajuato | 38 | IRAPUATO | 430,000 | 0.73 | RiskLaplace (19.5297, 0.31447) | |
Guanajuato | 39 | CELAYA | 180,000 | 0.72 | RiskLaplace (19.5235, 0.32444) | |
Michoacán | 40 | URUAPAN | 130,000 | 0.79 | RiskLoglogistic (18.1592, 1.2971, 7.5307) | |
Colima | 41 | COLIMA | 55,000 | 0.79 | RiskLoglogistic (18.1186, 1.1784, 7.112) | |
Michoacán | 43 | MORELIA | 135,000 | 0.73 | RiskLaplace (19.5371, 0.30931) | |
Jalisco | 44 | EL CASTILLO | 345,000 | 0.64 | RiskLoglogistic (18.52751, 0.91876, 5.1437) | |
Michoacán | 45 | LÁZARO CÁRDENAS | 830,000 | 0.73 | RiskLaplace (18.7947, 0.33233) | |
Colima | 46 | MANZANILLO | 465,000 | 0.71 | RiskLaplace (18.773, 0.31928) | |
Center | Morelos | 47 | CUAUTLA | 60,000 | 0.75 | RiskLaplace (19.3723, 0.31474) |
Puebla | 48 | PUEBLA | 425,000 | 0.71 | RiskLaplace (19.2147, 0.31217) | |
Puebla | 49 | TEHUACÁN | 45,000 | 0.72 | RiskLaplace (19.2166, 0.32322) | |
Querétaro | 50 | QUERÉTARO | 230,000 | 0.72 | RiskLaplace (19.4604, 0.31185) | |
Edo. De México | 51 | SAN JUAN IXHUATEPEC | 225,000 | 0.62 | RiskLoglogistic (18.26004, 0.9894, 5.5995) | |
Morelos | 52 | CUERNAVACA | 135,000 | 0.76 | RiskLoglogistic (18.0638, 1.2074, 7.239) | |
Edo. De México | 53 | TOLUCA | 195,000 | 0.69 | RiskLoglogistic (17.5463, 1.7658, 11.077) | |
CDMX | 54 | AZCAPOTZALCO | 1,500,000 | 0.74 | RiskLoglogistic (18.0401, 1.1, 6.6497) | |
Hidalgo | 55 | PACHUCA | 170,000 | 0.71 | RiskLoglogistic (18.0877, 1.0409, 6.3148) | |
CDMX | 56 | BARRANCA DEL MUERTO | 125,000 | 0.73 | RiskLoglogistic (18.26353, 0.99106, 5.6165) | |
CDMX | 57 | AÑIL | 235,000 | 0.67 | RiskLoglogistic (18.24477, 0.99028, 5.7233) | |
South | Guerrero | 58 | IGUALA | 60,000 | 0.7 | RiskLaplace (19.4913, 0.30988) |
Guerrero | 59 | ACAPULCO | 235,000 | 0.62 | RiskLaplace (19.1366, 0.31701) | |
Oaxaca | 60 | OAXACA | 110,000 | 0.76 | RiskLaplace (19.3487, 0.31066) | |
Oaxaca | 61 | SALINA CRUZ* | 1,479,000 | 0.76 | RiskLogistic (18.86307, 0.18242) | |
Oaxaca | 62 | SALINA CRUZ | 205,000 | 0.75 | RiskLogistic (18.86307, 0.18242) | |
Chiapas | 63 | TUXTLA GUTIÉRREZ | 105,000 | 0.71 | RiskLogistic (19.02036, 0.17406) | |
Chiapas | 64 | TAPACHULA* | 24,500 | 0.62 | RiskLaplace (19.3375, 0.30994) | |
Chiapas | 65 | TAPACHULA II | 65,000 | 0.78 | RiskLaplace (19.3375, 0.30994) | |
Gulf | Veracruz | 66 | POZA RICA | 55,000 | 0.7 | RiskLaplace (18.8571, 0.31891) |
Veracruz | 67 | PEROTE | 25,000 | 0.74 | RiskLoglogistic (17.8551, 1.265, 7.42) | |
Veracruz | 68 | XALAPA | 45,000 | 0.6 | RiskLoglogistic (17.8126, 1.2419, 7.1738) | |
Veracruz | 69 | ESCAMELA | 98,000 | 0.72 | RiskLaplace (19.0548, 0.32629) | |
Veracruz | 70 | VERACRUZ | 536,000 | 0.66 | RiskLaplace (18.4593, 0.32756) | |
Veracruz | 71 | TIERRA BLANCA | 71,000 | 0.69 | RiskLaplace (19.0025, 0.31694) | |
Veracruz | 72 | MINATITLÁN | 10,000 | 0.59 | RiskLogistic (18.67753, 0.18353) | |
Tabasco | 73 | VILLAHERMOSA | 328,500 | 0.72 | RiskLaplace (18.9172, 0.31921) | |
Southeast | Yucatán | 74 | PROGRESO | 280,500 | 0.71 | RiskLaplace (18.4223, 0.32023) |
Campeche | 75 | CAMPECHE | 265,000 | 0.79 | RiskLaplace (18.9739, 0.31608) | |
Yucatán | 76 | MÉRIDA | 148,000 | 0.77 | RiskLaplace (18.4635, 0.31978) |
Appendix E
References
- Morales, A.; Pérez, M.; Pérez, J.; De León, S. Energías renovables y el hidrógeno: Un par prometedor en la transición energética de México. Investig. Cienc. 2017, 25, 92–101. [Google Scholar] [CrossRef]
- Ehsan, S.; Abdul, M. Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development. Renew. Sustain. Energy Rev. 2016, 57, 850–866. [Google Scholar] [CrossRef]
- Orecchini, F.; Bocci, E. Biomass to hydrogen for the realization of closed cycles of energy resources. Energy 2007, 32, 1006–1011. [Google Scholar] [CrossRef]
- De León Almaráz, S. Multi-Objective Optimization of a Hydrogen Supply Chain. Ph.D. Thesis, Toulouse Institute of Technology, Toulouse, France, 2014. [Google Scholar]
- Parker, N. Optimizing the Design of Biomass Hydrogen Supply Chains Using Real-Word Spatial Distributions: A Case of Study Using California Rice Straw. Master’s Thesis, University of California, Berkeley, CA, USA, 2007. [Google Scholar]
- Rico, J. Desarrollo de una Red de Valor Con Base a la Gestión de Bioenergía, Para Determinar Estrategias de Negocios. Ph.D. Thesis, Instituto Tecnológico de Orizaba, Orizaba, Mexico, 2015. [Google Scholar]
- Azzaro-Pantel, C. Hydrogen Supply Chain Design, Deployment and Operation; Elsevier: Amsterdam, The Netherlands, 2018; ISBN 9780128111987. [Google Scholar]
- Kim, J.; Moon, I. Strategic design of hydrogen infrastructure considering cost and safety using multiobjective optimization. Int. J. Hydrogen Energy 2008, 33, 5887–5896. [Google Scholar] [CrossRef]
- Almansoori, A.; Shah, N. Design and operation of a stochastic hydrogen supply chain network under demand uncertainty. Int. J. Hydrogen Energy 2012, 37, 3965–3977. [Google Scholar] [CrossRef]
- Güler, M.G.; Geçici, E.; Erdoğan, A. Design of a future hydrogen supply chain: A multi period model for Turkey. Int. J. Hydrogen Energy 2021, 46, 16279–16298. [Google Scholar] [CrossRef]
- Gabrielli, P.; Charbonnier, F.; Guidolin, A.; Mazzotti, M. Enabling low-carbon hydrogen supply chains through use of biomass and carbon capture and storage: A Swiss case study. Appl. Energy 2020, 275, 115245. [Google Scholar] [CrossRef]
- Quarton, C.J.; Samsatli, S. The value of hydrogen and carbon capture, storage and utilization in decarbonizing energy: Insights from integrated value chain optimization. Appl. Energy 2020, 257, 113936. [Google Scholar] [CrossRef]
- Li, L.; Manier, H.; Manier, M.-A. Hydrogen supply chain network design: An optimization-oriented review. Renew. Sustain. Energy Rev. 2019, 203, 342–360. [Google Scholar] [CrossRef]
- Ochoa, J.; Azzaro, C.; Martinez, G.; Aguilar, A. Social cost-benefit assessment as a post-optimal analysis for hydrogen supply chain design and deployment: Application to Occitania (France). Sustain. Prod. Consum. 2020, 24, 105–120. [Google Scholar] [CrossRef]
- Zakaria, I.H.; Ibrahim, J.A.; Othman, A.A. Waste biomass toward hydrogen fuel supply chain management for electricity: Malaysia perspective. In Proceedings of the AIP Conference Proceedings, Kedah, Malaysia, 11–13 April 2016; Volume 1761, p. 020111. [Google Scholar] [CrossRef] [Green Version]
- Lam, H.L.; Ng, W.P.; Ng, R.T.; Ng, E.H.; Aziz, M.K.A.; Ng, D.K.S. Green strategy for sustainable waste-to-energy supply chain. Energy 2013, 57, 4–16. [Google Scholar] [CrossRef]
- Gumte, K.; Pantula, P.; Miriyala, S.; Mitra, K. Achieving wealth from bio-waste in a nationwide supply chain setup under uncertain environment through data driven robust optimization approach. J. Clean. Prod. 2021, 291, 125702. [Google Scholar] [CrossRef]
- Goodzarzian, F.; Wamba, S.; Mathiyazhagan, K.; Taghipour, A. A new bi-objective green medicine supply chain network design under fuzzy environment: Hybrid metaheuristic algorithms. Comput. Ind. Eng. 2021, 160, 107535. [Google Scholar] [CrossRef]
- Abdolazimi, O.; Esfandarani, M.S.; Shishebori, D. Design of a supply chain network for determining the optimal number of items at the inventory groups based on ABC analysis: A comparison of exact and meta-heuristic methods. Neural Comput. Appl. 2021, 33, 6641–6656. [Google Scholar] [CrossRef]
- Paul, A.; Shukla, N.; Paul, S.K.; Trianni, A. Sustainable supply chain management and multi-criteria decision-making methods: A systematic review. Sustainability 2021, 13, 7104. [Google Scholar] [CrossRef]
- Tordecilla, R.; Juan, A.; Montoya, J.; Quintero, C.; Panadero, J. Simulation-optimization methods for designing and assessing resilient supply chain networks under uncertainty scenarios: A review. Simul. Model. Pract. Theory 2021, 106, 102166. [Google Scholar] [CrossRef]
- Hosseini, S.; Ghatreh, M.; Abbasi, F. A novel hybrid approach for synchronized development of sustainability and resiliency in the wheat network. Comput. Electron. Agric. 2020, 168, 105095. [Google Scholar] [CrossRef]
- Gital, Y.; Bilgen, B. Multi-objective optimization of sustainable biomass supply chain network design. Appl. Energy 2020, 272, 115259. [Google Scholar] [CrossRef]
- Rasi, R.; Sohanian, M. A multi-objective optimization model for sustainable supply chain network with using genetic algorithm. J. Model. Manag. 2021, 16, 714–727. [Google Scholar] [CrossRef]
- Zailan, R.; Lim, J.; Manan, Z.; Wan, S.; Mohammadi, B.; Jamaluddin, K. Malaysia scenario of biomass supply chain-cogeneration system and optimization modeling develpment: A review. Renew. Sustain. Energy Rev. 2021, 148, 111289. [Google Scholar] [CrossRef]
- Nunes, L.; Causer, T.; Ciolkosz, D. Biomass for energy: A review on supply chain management models. Renew. Sustain. Energy Rev. 2020, 120, 109658. [Google Scholar] [CrossRef]
- Seo, S.-K.; Yun, D.-Y.; Lee, C.-J. Design and optimization of a hydrogen supply chain using a centralized storage model. Appl. Energy 2020, 262, 114452. [Google Scholar] [CrossRef]
- Yuen, S.; Shen, B.; Dong, W.; Yong, S.; Akbar, M.; Sunarso, J. Techno-economic analysis for biomass supply chain: A state-of-the-art review. Renew. Sustain. Energy Rev. 2021, 135, 110164. [Google Scholar] [CrossRef]
- Rafique, R.; Jat, M.; Rehman, H.; Zahid, M. Bioenergy supply chain optimization for addressing energy deficiency: A dynamic model for large-scale network designs. J. Clean. Prod. 2021, 318, 128495. [Google Scholar] [CrossRef]
- Li, L.; Manier, H.; Manier, M.-A. Integrated optimization model for hydrogen supply chain network design and hydrogen fueling station planning. Comput. Chem. Eng. 2020, 134, 106683. [Google Scholar] [CrossRef]
- Ochoa, J.; Azzaro, C.; Aguilar, A. Optimization of a hydrogen supply chain network design under demand uncertainty by multi-objective genetic algorithms. Comput. Chem. Eng. 2020, 140, 106853. [Google Scholar] [CrossRef]
- Debernardi, H.; Ortiz, H.; Rosas, D. Energía Disponible en el Campo Cañero Mexicano. Códoba, Veracruz. 2014. Available online: https://www.atamexico.com.mx/wp-content/uploads/2017/11/3-DIVERSIFICACI%C3%93N-2015.pdf (accessed on 3 April 2020).
- SAGARPA. Planeación Agrícola Nacional 2017–2030. 2016. Available online: https://www.gob.mx/agricultura/acciones-y-programas/planeacion-agricola-nacional-2017-2030-126813 (accessed on 22 March 2020).
- CONADESUCA. 6to. Informe Estadístico del Sector Agroindustrial de la Caña de Azúcar en México, Zafras 2009–2010/2018–2019, Comité Nacional para el Desarrollo Sustentable de la Caña de Azúcar. 2019. Available online: https://siiba.conadesuca.gob.mx/Archivos_Externos/6to_informe_estad%C3%ADstico.pdf (accessed on 17 February 2020).
- Comisión Nacional de Hidrocarburos. Reservas de Hidrocarburos en México Conceptos Fundamentales y Análisis. 2018. Available online: https://www.gob.mx/cnh/documentos/analisis-de-informacion-de-las-reservas-de-hidrocarburos-de-mexico-al-1-de-enero-del-2018?idiom=es (accessed on 25 February 2020).
- IRENA. Hydrogen from Renewable Power: Technology Outlook for the Energy Transition; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2018; Available online: www.irena.org (accessed on 30 March 2020).
- Ferrero, D.; Gamba, M.; Lanzini, A.; Santarelli, M. Power-to-gas hydrogen: Techno-economic assessment of processes towards a multi-purpose energy carrier. Energy Procedia 2016, 101, 50–57. [Google Scholar] [CrossRef] [Green Version]
- Mendoza, A.; Cadena, A.; de Buen, O. Estudio de Pesos y Trasnportes, Secretaría de Comunicaciones y Transporte. 2010. Available online: http://www.dof.gob.mx/nota_detalle.php?codigo=5508944&fecha=26/12/2017 (accessed on 18 April 2020).
Reference | Objective Function | Feedstock (Energy Source) | Hydrogen Production Technology | Case Study |
---|---|---|---|---|
[8] | Total cost minimization Total relative risk minimization | NG, renewable electricity | SMR, electrolysis | South Korea |
[9] | Total cost minimization | NG, oil, coal, biomass, solar power | SMR, biomass and coal gasification, electrolysis | Great Britain |
[10] | Total cost minimization | NG, coal, biomass, solar, wind, hydroelectric, geothermal | SMR, coal and biomass gasification, electrolysis | Turkey |
[11] | Total cost minimization GWP minimization | NG, biomass, electricity | SMR, gasification, electrolysis | Swiss |
[12] | NPV maximization Emissions minimization | NG, wind power | Electrolysis | Great Britain |
[14] | Total Cost minimization GWP minimization | NG, renewable electricity, nuclear power | SMR, electrolysis | France (Midi-Pyrénées) |
[15] | - | Coal, biomass | Electrolysis, gasification | Malaysia |
[16] | NPV maximization Transport cost minimization | Biomass | - | Malaysia |
Nomenclature | Description |
---|---|
Alk | Alkaline electrolysis |
CCUS | Carbon capture, utilization and storage |
CONACYT | Consejo Nacional de Ciencia y Tecnología |
CONADESUCA | Comité Nacional para el Desarrollo Sustentable de la Caña de Azúcar |
FCEV | Fuel cell electric vehicle |
GA | Genetic algorithm |
GHG | Greenhouse gas |
GWP | Global warming potential |
HSC | Hydrogen supply chain |
HSCN | Hydrogen supply chain network |
MILP | Mixed integer linear programming |
Min | Minimize |
MW | Mega watt |
MWh | Mega watt hour |
NG | Natural gas |
NPV | Net present value |
O&M | Operation and maintenance |
OF | Objective function |
PEM | Proton exchange membrane electrolysis |
SCBA | Social cost–benefit analysis |
SDS | Storage and dispatch station |
SMR | Steam methane reforming |
TOPSIS | Technique for order of preference by similarity to ideal solution |
Indices | |
i | Sugar mills |
p | Hydrogen production technology |
r | Identification number for regions |
t | Identification number for storage and dispatch stations |
z | Production period |
Decision Variables | |
Fit | Hydrogen flow rate between sugar mill i and station t (ton/year) |
PEip | Electrolysis plant type p at sugar mill i logic variable with values of 0 or 1 |
PH2ipz | Hydrogen production rate during period z from plant type p at sugar mill i (ton/year) |
Parameters | |
ADt | Available storage capacity at station t (m3) |
AExpt | Total annual expenses of hydrogen stored at station t ($/year) |
AProft | Annual profit generated at station t ($/year) |
ATollCit | Annual toll costs between sugar mill i and storage station t ($/year) |
CAlmt | Annual storage cost at station t ($/year) |
Capexp | Capital expenditures for electrolysis plant type p ($/MW) |
CapInstip | Installed capacity of plant type p at sugar mill i (MW) |
CapTrans | Transportation mode capacity (ton) |
CCombit | Fuel transportation costs between sugar mill i and storage station t ($/year) |
CCondt | Conditioning cost per ton of hydrogen at station t ($/ton) |
CFPip | Annual fixed production cost for plant type p at sugar mill i ($/year) |
CFUPip | Fixed production costs per ton of hydrogen for plant type p at sugar mill i ($/ton) |
CIPip | Production investment capital ($) |
CMantit | Maintenance expenses for transportation mode between sugar mill i and storage station t ($/year) |
CMOit | Annual transportation labor costs between sugar mill i and station t ($/year) |
CProdt | Annual hydrogen production costs stored at station t ($/year) |
CTransit | Transportation cost between sugar mill i and storage station t ($/year) |
CUAlm | Storage cost per ton of hydrogen at station t ($/ton) |
CUPip | Production cost per ton of hydrogen for plant type p at sugar mill i ($/ton) |
CVUPip | Variable production cost per ton of hydrogen for plant type p at sugar mill i ($/ton) |
dit | Distance between sugar mill i and storage station t (km) |
DMT | Availability of transportation mode (days/year) |
DOpz | Operational days during period z (days) |
EC | Fuel economy of transportation mode (km/L) |
EConsp | Electricity consumption per ton of hydrogen p (MW/ton) |
EnAc | Conditioning energy required per ton of hydrogen (MW/ton) |
FCEVPerf | FCEV performance (km/ton of hydrogen) |
FPt | Fuel price per liter at station t ($/L) |
GasPerf | Medium size combustion vehicle performance (km/L of gasoline) |
GM | Maintenance expenses of transportation mode ($/km) |
GWPTotal | System’s annual total GWP (eq kg CO2/year) |
NUTit | Number of transport units between sugar mill i and station t |
Opexp | Annual operating expense ratio to CAPEX of plant type p (%) |
PCGAlm | Storage GWP per ton of hydrogen (kg CO2 eq/ton) |
PCGP | Production GWP per ton of hydrogen (kg CO2 eq/ton) |
PCGTrans | Transportation GWP per ton of hydrogen (kg CO2 eq/ton) |
PEEr | Electric power price at station t ($/MW) |
PGWP | Production GWP (eq. kg CO2/year) |
PHMaxipz | Maximum hydrogen production during period z from plant type p at sugar mill i (ton) |
PVAr | Water cubic meter price at region r ($/m3) |
PVGast | Reference fuel price per liter at station t ($/L) |
PVH2t | Hydrogen selling price at station t ($/ton) |
SC | Monthly driver wage ($/month) |
SGWP | Storage GWP (eq kg CO2/year) |
TCD | Charge and discharge time of transportation mode (h/trip) |
TGWP | Transportation GWP (eq. kg CO2/year) |
TollCit | Toll cost for hydrogen transportation units per trip ($) |
TotalUtt | Annual total utilities at station t ($/year) |
Tripsit | Annual trips amount required between sugar mill i and station t (trips/year) |
TUW | Transport unit weight (ton) |
Vm | Average speed for transportation Unit (km/h) |
WConsp | Water consumption per ton of hydrogen at plant type p (m3/ton) |
Parameter | Value |
---|---|
Population | 30,000 |
Crossing rate | 0.5 |
Mutation rate | 0.1 |
Solution method | Order |
Stopping conditions | |
Max. Change | 0.005% |
Max. Iterations without improvement | 20,000 |
Parameter | Value |
---|---|
Population | 36,500 |
Number of generations | 73,000 |
Crossing rate | 0.9 |
Mutation rate | 0.5 |
Parameter | Alkaline | PEM | Reference |
---|---|---|---|
ECons (kWh/kgH2) | 49 | 52 | [36] |
Performance (HHV) (%) | 71 | 64 | |
CAPEX ($/kW) | 507.8 | 740.5 | |
Opex (%CAPEX/year) | 3 | 2 | |
Lifetime (years) | 20 | 20 | |
WCons (m3/ton H2) | 9 |
Parameter | Storage Unit | |
---|---|---|
Minimum Capacity (kg) | 500 | [7,9] |
Maximum capacity (kg) | 10,000 | |
Investment capital ($) | 5,542,595 | |
CAlm ($/kg H2) | 0.722 | |
Lifetime (years) | 20 | |
SGWP (kg CO2 per ton H2) | 704 | |
Maximum storage time (days) | 10 | Assumption |
Parameter | Value | Scale | Reference |
---|---|---|---|
TUW | 40 | Ton | [9] |
SC | 736 | $/month | [35] |
EC | 2.3 | km/L | [7] |
FP | - | - | Appendix D |
TCD | 2 | Hours per trip | [7] |
CMant | 2.42 | $/km | [7] |
Vm | 67 | km/h | |
DMT | 18 | Hours/day | Assumption |
TGWP | 62 | g CO2 per ton-km | [4] |
CapTrans | 3.5 | Ton | |
TransCapex | 293,756 | $ | [7] |
Parameter | Value |
---|---|
FCEVPerf | 0.98 kg H2/100 km |
Annual average distance traveled for medium size vehicles | 15,000 km/year |
Parameter | Profit O.F. | GWP O.F. |
---|---|---|
Number of production units | 50 ALK | 50 ALK |
Number of transport units | 73 | 55 |
Number of storage units | 275 | 286 |
Investment capital costs | ||
Production capital cost | $373,654,974 | $373,654,974 |
Transport capital cost | $5,402,025 | $4,070,019 |
Storage capital cost | $1,524,213,622 | $1,585,182,167 |
Total capital cost | $1,903,270,621 | $1,962,907,160 |
Operating costs | ||
Production | $188,692,213 | $188,692,213 |
Transport | $5,682,987 | $2,242,429 |
Storage | $27,354,603 | $28,880,026 |
Total Outcome | $221,729,804 | $219,815,777 |
Average cost per unit ($/kg H2) | $3962 | $3928 |
Profit estimation | ||
Total hydrogen production (ton/year) | 55,965 | 55,965 |
Average selling price ($/ton) | $8938 | $8782 |
Total income | $500,220,813 | $491,490,525 |
Annual profit | $278,491,009 | $271,675,857 |
Net profit margin | 55.67% | 44.72% |
GWP (kg eq. CO2) | ||
Production | - | - |
Transport | 39,399,360 | 39,399,360 |
Storage | 19,783,361 | 7,015,414 |
Total GWP (kg eq.CO2) | 59,182,721 | 46,414,774 |
GWP per unit (kg eq. CO2/ton H2) | 1057 | 829 |
Optimization time (s) | 17,388 | 21,728 |
E.P. Location | SDS | Hydrogen Flow (Ton/Year) | Production Cost ($/Ton) | Transportation Cost ($/Ton) | Storage Cost ($/Ton) | Total Cost per Unit ($/Ton) | Selling Price ($/Ton) | Profit ($/Year) |
---|---|---|---|---|---|---|---|---|
El Molino | Guamúchil | 880 | 1984.82 | 265.82 | 290.91 | 2541.55 | 9198.38 | 5,858,008 |
Puga | 1414 | 1984.82 | 266.11 | 290.91 | 2541.85 | 9198.38 | 9,412,337 | |
El Dorado | Culiacán | 479 | 1984.82 | 35.71 | 290.91 | 2311.44 | 9163.75 | 3,282,257 |
Quesería | 1292 | 3269.16 | 367.73 | 290.91 | 3927.80 | 9163.75 | 6,764,828 | |
Ameca | Tepic | 1050 | 3269.16 | 81.73 | 290.91 | 3641.80 | 9085.17 | 5,715,544 |
Bellavista | 641 | 3269.16 | 97.94 | 290.91 | 3658.01 | 9085.17 | 3,478,795 | |
José Ma Morelos | 648 | 3269.16 | 151.03 | 290.91 | 3711.10 | 9085.17 | 3,482,392 | |
Melchor Ocampo | 1162 | 3269.16 | 138.41 | 290.91 | 3698.48 | 9085.17 | 6,259,316 | |
Tala | 1714 | 3269.16 | 82.71 | 290.91 | 3642.83 | 9085.17 | 9,328,207 | |
Aarón Sáenz | Zacatecas | 1104 | 3456.53 | 171.07 | 500.74 | 4128.34 | 9030.35 | 5,411,801 |
El Mante | 976 | 3456.53 | 172.05 | 500.74 | 4129.32 | 9030.35 | 4,783,390 | |
San Miguel del Naranjo | 1980 | 3456.53 | 163.51 | 500.74 | 4120.78 | 9030.35 | 9,720,987 | |
Alianza Popular | Aguascalientes | 1216 | 3456.53 | 161.64 | 500.79 | 4118.96 | 9032.66 | 5,975,092 |
Plan de Sal Luis | 1400 | 3456.53 | 225.29 | 500.79 | 4182.61 | 9032.66 | 6,790,102 | |
Lázaro Cárdenas | Zamora | 273 | 3269.16 | 81.68 | 500.79 | 3851.62 | 9078.54 | 1,426,943 |
Pedernales | 436 | 3269.16 | 106.04 | 500.79 | 3875.98 | 9078.54 | 2,268,306 | |
Santa Clara | 655 | 3269.16 | 38.51 | 500.79 | 3808.45 | 9078.54 | 3,451,896 | |
Tamazula | 1566 | 3269.16 | 59.58 | 500.79 | 3829.52 | 9078.54 | 8,219,934 | |
Plan de Ayala | Celaya | 1325 | 3456.53 | 201.18 | 500.79 | 4158.50 | 9013.80 | 6,433,280 |
El Higo | 1957 | 3436.98 | 182.47 | 500.79 | 4120.24 | 9013.80 | 9,576,710 | |
Pánuco | 1918 | 3436.98 | 254.86 | 500.79 | 4192.63 | 9013.80 | 9,247,004 | |
Atencingo | Cuautla | 1827 | 3617.09 | 25.44 | 557.81 | 4200.34 | 8944.01 | 8,666,645 |
Casasano | 645 | 3617.09 | 19.30 | 557.81 | 4194.20 | 8944.01 | 3,063,613 | |
Calipam | Tehuacán | 233 | 3617.14 | 53.49 | 557.81 | 4228.44 | 8872.10 | 1,081,978 |
El refugio | 475 | 3616.80 | 76.18 | 557.81 | 4250.79 | 8872.10 | 2,195,132 | |
Constancia | 886 | 3436.98 | 64.24 | 557.81 | 4059.04 | 8872.10 | 4,264,358 | |
Motzorongo | 1341 | 3436.98 | 58.99 | 557.81 | 4053.78 | 8872.10 | 6,461,356 | |
Emiliano Zapata | Iguala | 1187 | 3617.09 | 50.39 | 557.81 | 4225.29 | 8998.92 | 5,666,304 |
López Mateos | Oaxaca | 1607 | 3616.80 | 76.47 | 557.81 | 4251.08 | 8933.10 | 7,523,971 |
Tres Valles | 2396 | 3436.98 | 86.00 | 557.81 | 4080.80 | 8933.10 | 11,626,096 | |
Huixtla | Tapachula | 1202 | 3616.80 | 25.98 | 557.81 | 4200.59 | 8927.95 | 5,682,255 |
El Modelo | Perote | 1079 | 3436.98 | 44.20 | 528.29 | 4009.48 | 8845.38 | 5,217,947 |
Mahuixtlán | 436 | 3436.98 | 48.72 | 528.29 | 4014.00 | 8845.38 | 2,106,469 | |
La Gloria | Xalapa | 1581 | 3436.98 | 29.91 | 528.29 | 3995.19 | 8816.01 | 7,621,740 |
San Pedro | 1273 | 3436.98 | 82.86 | 528.29 | 4048.13 | 8816.01 | 6,069,513 | |
El Carmen | Escamela | 577 | 3436.98 | 19.79 | 528.29 | 3985.07 | 8797.40 | 2,776,722 |
El Potrero | 1707 | 3436.98 | 21.91 | 528.29 | 3987.18 | 8797.40 | 8,211,057 | |
La providencia | 811 | 3436.98 | 30.11 | 528.29 | 3995.38 | 8797.40 | 3,894,444 | |
Progreso | 913 | 3436.98 | 48.23 | 528.29 | 4013.51 | 8797.40 | 4,367,711 | |
San Cristobal | 560 | 3436.98 | 18.81 | 528.29 | 3984.09 | 8797.40 | 2,695,459 | |
San Miguelito | 525 | 3436.98 | 55.60 | 528.29 | 4020.87 | 8797.40 | 2,507,675 | |
San Nicolas | 1103 | 3436.98 | 23.48 | 528.29 | 3988.75 | 8797.40 | 5,303,941 | |
La margarita | Tierra Blanca | 1226 | 3616.80 | 17.04 | 528.29 | 4162.13 | 8773.28 | 5,653,241 |
Cuatotolapan | 835 | 3436.98 | 60.31 | 528.29 | 4025.59 | 8773.28 | 3,964,315 | |
San Cristobal | 2584 | 3436.98 | 28.68 | 528.29 | 3993.96 | 8773.28 | 12,349,672 | |
Benito Juárez | Villahermosa | 1438 | 3436.98 | 26.18 | 528.29 | 3991.45 | 8733.89 | 6,819,600 |
Santa Rosalia | 781 | 3436.98 | 27.31 | 528.29 | 3992.58 | 8733.89 | 3,702,945 | |
Azsuremex | Campeche | 223 | 3436.98 | 166.31 | 547.35 | 4150.69 | 8760.07 | 1,027,891 |
La Joya | 826 | 3553.49 | 32.12 | 547.35 | 4132.96 | 8760.07 | 3,821,972 | |
Pucte | 1602 | 3553.49 | 103.05 | 547.35 | 4203.88 | 8760.07 | 7,298,984 | |
- | Total | 55,965 | - | - | - | - | - | 278,491,009 |
- | Average | 1119 | 3352.11 | 94.50 | 486.00 | 3961.94 | 8938.11 | 5,569,820 |
E.P. Location | SDS | Hydrogen Flow (Ton/Year) | Production Cost ($/Ton) | Transportation Cost ($/Ton) | Storage Cost ($/Ton) | Total Cost per Unit ($/Ton) | Selling Price ($/Ton) | Profit ($/Year) |
---|---|---|---|---|---|---|---|---|
El Dorado | Culiacán | 479 | 1984.82 | 35.71 | 290.91 | 2311.44 | 9163.75 | 3,282,247 |
El Molino | Tepic | 880 | 1984.82 | 12.03 | 290.91 | 2287.82 | 9085.17 | 5,981,676 |
Puga | 1414 | 1984.82 | 12.18 | 290.91 | 2287.92 | 9085.17 | 9,611,305 | |
Aarón Sáenz | Cd. Victoria | 1104 | 3456.58 | 41.85 | 531.24 | 4029.67 | 8841.90 | 5,312,714 |
Alianza Popular | 1216 | 3456.58 | 102.55 | 531.24 | 4090.37 | 8841.90 | 5,777,865 | |
San Miguel del Naranjo | 1562 | 3456.58 | 63.65 | 531.24 | 4051.47 | 8841.90 | 7,482,657 | |
Pánuco | 1918 | 3436.98 | 94.70 | 531.24 | 4062.92 | 8841.90 | 9,166,055 | |
El Mante | Cd. Mante | 976 | 3456.58 | 10.36 | 531.24 | 3998.18 | 8783.10 | 4,670,094 |
San Miguel del Naranjo | 418 | 3456.58 | 39.24 | 531.24 | 4027.06 | 8783.10 | 1,988,030 | |
Plan de Ayala | Cd. Valles | 1325 | 3456.58 | 7.66 | 531.24 | 3995.48 | 8809.97 | 6,379,213 |
Plan de SL | 1400 | 3456.58 | 19.55 | 531.24 | 4007.37 | 8809.97 | 6,723,660 | |
El Higo | 1957 | 3436.98 | 37.03 | 531.24 | 4005.26 | 8809.97 | 9,402,801 | |
Ameca | Zapopan | 1050 | 3269.16 | 30.40 | 500.79 | 3800.34 | 8990.47 | 5,449,620 |
Bellavista | 641 | 3269.16 | 28.83 | 500.79 | 3798.77 | 8990.47 | 3,327,871 | |
Tala | 1714 | 3269.16 | 15.08 | 500.79 | 3785.02 | 8990.47 | 8,922,122 | |
Santa Clara | Zamora | 655 | 3269.16 | 38.56 | 500.79 | 3808.50 | 9078.54 | 3,451,876 |
Lázaro Cárdenas | Uruapan | 273 | 3269.16 | 39.15 | 500.79 | 3809.09 | 9000.49 | 1,417,253 |
Pedernales | 436 | 3269.16 | 69.30 | 500.79 | 3839.24 | 9000.49 | 2,250,304 | |
Quesería | Colima | 1292 | 3269.16 | 17.34 | 500.79 | 3787.28 | 8927.31 | 6,640,918 |
Tamazula | 1566 | 3269.16 | 43.32 | 500.79 | 3813.26 | 8927.31 | 8,008,598 | |
José María Morelos | Manzanillo | 648 | 3269.16 | 90.77 | 500.79 | 3860.71 | 8667.29 | 3,114,665 |
Melchor Ocampo | 1162 | 3269.16 | 98.62 | 500.79 | 3868.57 | 8667.29 | 5,576,116 | |
Atencingo | Cuautla | 1827 | 3617.14 | 25.44 | 557.81 | 4200.39 | 8944.01 | 8,666,588 |
Casasano | 645 | 3617.14 | 19.30 | 557.81 | 4194.25 | 8944.01 | 3,063,593 | |
Calipam | Tehuacán | 233 | 3617.14 | 53.44 | 557.81 | 4228.39 | 8872.10 | 1,081,986 |
Emiliano Zapata | Cuernavaca | 1187 | 3617.14 | 22.74 | 557.81 | 4197.69 | 8915.18 | 5,599,657 |
Huixtla | Tapachula | 1202 | 3616.80 | 25.98 | 557.81 | 4200.59 | 8927.90 | 5,682,213 |
Mahuixtlán | Xalapa | 436 | 3436.98 | 27.31 | 528.29 | 3992.58 | 8816.01 | 2,103,009 |
El Carmen | Escamela | 577 | 3436.98 | 19.74 | 528.29 | 3985.02 | 8797.40 | 2,776,734 |
El Potrero | 1707 | 3436.98 | 21.91 | 528.29 | 3987.18 | 8797.40 | 8,211,016 | |
La Providencia | 811 | 3436.98 | 31.58 | 528.29 | 3996.86 | 8797.40 | 3,893,227 | |
Progreso | 913 | 3436.98 | 48.23 | 528.29 | 4013.51 | 8797.40 | 4,367,679 | |
San José de Abajo | 560 | 3436.98 | 33.79 | 528.29 | 3999.07 | 8797.40 | 2,687,057 | |
San Miguelito | 525 | 3436.98 | 55.60 | 528.29 | 4020.87 | 8797.40 | 2,507,667 | |
Adolfo López Mateos | Veracruz | 1607 | 3616.80 | 62.97 | 528.29 | 4208.06 | 8522.45 | 6,933,222 |
El Modelo | 1079 | 3436.98 | 28.44 | 528.29 | 3993.71 | 8522.45 | 4,886,503 | |
La Gloria | 1581 | 3436.98 | 29.32 | 528.29 | 3994.60 | 8522.45 | 7,158,529 | |
Motzorongo | 1341 | 3436.98 | 50.34 | 528.29 | 4015.62 | 8522.45 | 6,043,655 | |
San Cristobal | 2584 | 3436.98 | 68.22 | 528.29 | 4033.50 | 8522.45 | 11,599,444 | |
San Nicolás | 1103 | 3436.98 | 55.80 | 528.29 | 4021.07 | 8522.45 | 4,965,017 | |
San Pedro | 1273 | 3436.98 | 44.25 | 528.29 | 4009.53 | 8522.45 | 5,744,944 | |
El Refugio | Tierra Blanca | 475 | 3616.80 | 33.74 | 528.29 | 4178.83 | 8773.23 | 2,182,339 |
La Margarita | 1226 | 3616.80 | 17.04 | 528.29 | 4162.13 | 8773.23 | 5,653,206 | |
Constancia | 886 | 3436.98 | 26.62 | 528.29 | 3991.90 | 8773.23 | 4,236,264 | |
Tres Valles | 2396 | 3436.98 | 12.13 | 528.29 | 3977.41 | 8773.23 | 11,490,797 | |
Cuatotolapam | Minatitlán | 835 | 3436.98 | 44.94 | 528.29 | 4010.22 | 8623.23 | 3,851,868 |
Azsuremex | Villahermosa | 223 | 3436.98 | 109.48 | 528.29 | 4074.75 | 8733.89 | 1,038,987 |
Benito Juárez | 1438 | 3436.98 | 26.18 | 528.29 | 3991.45 | 8733.89 | 6,819,623 | |
Santa Rosalía | 781 | 3436.98 | 27.31 | 528.29 | 3992.58 | 8733.89 | 3,702,960 | |
La Joya | Campeche | 826 | 3553.49 | 32.12 | 547.35 | 4132.96 | 8760.07 | 3,822,004 |
San Rafel Pucté | Yucatán | 1602 | 3553.49 | 74.71 | 547.35 | 4175.54 | 8524.36 | 6,966,830 |
- | Total | 55,965 | - | - | - | - | - | 271,675,857 |
- | Average | 1097 | 3354 | 40.72 | 513.11 | 3907.96 | 8803.93 | 5,433,517 |
Parameter | Values |
---|---|
Number of production units | 50 ALK |
Number of transport units | 59 |
Number of storage units | 279 |
Investment capital costs | |
Production capital cost | $373,654,974 |
Transport capital cost | $4,366,020 |
Storage capital cost | $1,546,384,002 |
Total capital cost | $1,924,404,997 |
Operating costs | |
Production | $188,692,213 |
Transport | $3,550,495 |
Storage | $29,250,926 |
Total outcome | $275,197,558 |
Average cost per unit ($/kg H2) | $3958 |
Profit estimation | |
Total hydrogen production (ton/year) | 55,965 |
Average selling price ($/ton) | $8875 |
Total income | $496,691,192 |
Annual profit | $275,226,444 |
Net profit margin | 55.40% |
GWP (kg CO2 eq.) | |
Production | 0 |
Transport | 39,399,360 |
Storage | 12,044,332 |
Total GWP (kg CO2 eq.) | 51,443,692 |
GWP per unit (kg CO2/ton H2) | 919 |
Optimization time (s) | 19,879 |
E.P. Location | SDS | Hydrogen Flow (Ton/Year) | Production Cost ($/Ton) | Transportation Cost ($/Ton) | Storage Cost ($/Ton) | Total Cost Per Unit ($/Ton) | Selling Price ($/Ton) | Profit ($/Year) |
---|---|---|---|---|---|---|---|---|
El Dorado | Culiacán | 479 | 1984.82 | 35.71 | 290.91 | 2311.44 | 9163.75 | 3,282,247 |
El Molino | Tepic | 880 | 1984.82 | 12.03 | 290.91 | 2287.82 | 9085.17 | 5,981,676 |
Puga | 1414 | 1984.82 | 12.18 | 290.91 | 2287.92 | 9085.17 | 9,611,305 | |
San Miguel del Naranjo | Matehuala | 1980 | 3456.58 | 86.84 | 531.24 | 4074.66 | 8982.42 | 9,717,387 |
Aarón Sáenz | Cd. Victoria | 1104 | 3456.58 | 41.85 | 531.24 | 4029.67 | 8841.90 | 5,312,714 |
Pánuco | 1918 | 3436.98 | 94.70 | 531.24 | 4062.92 | 8841.90 | 9,166,055 | |
El Mante | Cd. Mante | 976 | 3456.58 | 10.36 | 531.24 | 3998.18 | 8783.10 | 4,670,094 |
Plan de Ayala | Cd. Valles | 1325 | 3456.58 | 7.17 | 531.24 | 3994.99 | 8809.97 | 6,379,864 |
Alianza Popular | 1216 | 3456.58 | 26.96 | 531.24 | 4014.78 | 8809.97 | 5,830,960 | |
El Higo | 1957 | 3436.98 | 37.03 | 531.24 | 4005.26 | 8809.97 | 9,402,801 | |
Plan de SL | S.L.P. | 1400 | 3456.58 | 126.67 | 531.24 | 4114.49 | 8835.66 | 6,609,652 |
Ameca | Zapopan | 1050 | 3269.16 | 30.40 | 500.79 | 3800.34 | 8990.47 | 5,449,620 |
Bellavista | 641 | 3269.16 | 28.83 | 500.79 | 3798.77 | 8990.47 | 3,327,871 | |
José María Morelos | 648 | 3269.16 | 84.53 | 500.79 | 3854.47 | 8990.47 | 3,328,129 | |
Melchor Ocampo | 1162 | 3269.16 | 64.73 | 500.79 | 3834.68 | 8990.47 | 5,991,035 | |
Tala | 1714 | 3269.16 | 15.08 | 500.79 | 3785.02 | 8990.47 | 8,922,122 | |
Quesería | Zamora | 1292 | 3269.16 | 124.41 | 500.79 | 3894.35 | 9078.54 | 6,697,967 |
Santa Clara | 655 | 3269.16 | 38.56 | 500.79 | 3808.50 | 9078.54 | 3,451,876 | |
Tamazula | 1566 | 3269.16 | 59.58 | 500.79 | 3829.52 | 9078.54 | 8,219,962 | |
Pedernales | Irapuato | 436 | 3269.16 | 122.64 | 500.79 | 3892.58 | 9016.65 | 2,234,093 |
Lázaro Cárdenas | Uruapan | 273 | 3269.16 | 39.15 | 500.79 | 3809.09 | 9000.49 | 1,417,253 |
Calipam | Tehuacán | 233 | 3617.14 | 53.44 | 557.81 | 4228.39 | 8872.10 | 1,081,986 |
Constancia | 886 | 3436.98 | 64.24 | 557.81 | 4059.04 | 8872.10 | 4,264,375 | |
Motzorongo | 1341 | 3436.98 | 58.99 | 557.81 | 4053.78 | 8872.10 | 6,461,367 | |
Atencingo | Cuernavaca | 1827 | 3617.14 | 44.01 | 557.81 | 4218.96 | 8915.23 | 8,580,084 |
Casasano | 645 | 3617.14 | 24.66 | 557.81 | 4199.61 | 8915.23 | 3,041,575 | |
Emiliano Zapata | 1187 | 3617.14 | 22.74 | 557.81 | 4197.69 | 8915.23 | 5,599,716 | |
Mahuixtlán | Toluca | 436 | 3436.98 | 188.75 | 557.81 | 4183.55 | 8927.21 | 2,068,232 |
El Refugio | Azcapotzalco | 475 | 3616.80 | 194.60 | 557.81 | 4369.20 | 8856.19 | 2,131,316 |
La Margarita | 1226 | 3616.80 | 195.83 | 557.81 | 4370.43 | 8856.19 | 5,499,534 | |
El Potrero | Añil | 1707 | 3436.98 | 167.39 | 557.81 | 4162.18 | 8904.42 | 8,094,980 |
Progreso | 913 | 3436.98 | 188.65 | 557.81 | 4183.45 | 8904.42 | 4,310,236 | |
Adolfo López Mateos | Oaxaca | 1607 | 3616.80 | 76.47 | 557.81 | 4251.08 | 8933.10 | 7,524,008 |
Tres Valles | 2396 | 3436.98 | 86.00 | 557.81 | 4080.80 | 8933.10 | 11,626,131 | |
Benito Juárez | Tuxtla Gutiérrez | 1438 | 3436.98 | 79.47 | 557.81 | 4074.26 | 8781.48 | 6,768,982 |
Huixtla | Tapachula | 1202 | 3616.80 | 25.98 | 557.81 | 4200.59 | 8927.95 | 5,682,272 |
El Modelo | Xalapa | 1079 | 3436.98 | 29.96 | 528.29 | 3995.24 | 8816.01 | 5,201,617 |
La Gloria | 1581 | 3436.98 | 29.91 | 528.29 | 3995.19 | 8816.01 | 7,621,725 | |
El Carmen | Escamela | 577 | 3436.98 | 19.79 | 528.29 | 3985.07 | 8797.40 | 2,776,706 |
La Providencia | 811 | 3436.98 | 30.11 | 528.29 | 3995.38 | 8797.40 | 3,894,422 | |
San José de Abajo | 560 | 3436.98 | 33.79 | 528.29 | 3999.07 | 8797.40 | 2,687,057 | |
San Miguelito | 525 | 3436.98 | 55.60 | 528.29 | 4020.87 | 8797.40 | 2,507,667 | |
San Nicolás | 1103 | 3436.98 | 23.48 | 528.29 | 3988.75 | 8797.40 | 5,303,935 | |
San Cristobal | Tierra Blanca | 2584 | 3436.98 | 28.68 | 528.29 | 3993.96 | 8773.28 | 12,349,769 |
San Pedro | 1273 | 3436.98 | 63.21 | 528.29 | 4028.49 | 8773.28 | 6,040,122 | |
Cuatotolapam | Minatitlán | 835 | 3436.98 | 44.94 | 528.29 | 4010.22 | 8623.23 | 3,851,868 |
Santa Rosalía | Villahermosa | 781 | 3436.98 | 27.31 | 528.29 | 3992.58 | 8733.89 | 3,702,960 |
Azsuremex | Mérida | 223 | 3436.98 | 208.10 | 547.35 | 4192.44 | 8524.41 | 966,030 |
La Joya | 826 | 3553.49 | 79.57 | 547.35 | 4180.40 | 8524.41 | 3,588,160 | |
San Rafel Pucté | 1602 | 3553.49 | 74.71 | 547.35 | 4175.54 | 8524.41 | 6,966,908 | |
- | Total | 55,965 | - | - | - | - | - | 275,198,425 |
- | Average | 1119 | 3352.11 | 66.40 | 519.01 | 3937.52 | 8874.71 | 5,503,968 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reyes-Barquet, L.M.; Rico-Contreras, J.O.; Azzaro-Pantel, C.; Moras-Sánchez, C.G.; González-Huerta, M.A.; Villanueva-Vásquez, D.; Aguilar-Lasserre, A.A. Multi-Objective Optimal Design of a Hydrogen Supply Chain Powered with Agro-Industrial Wastes from the Sugarcane Industry: A Mexican Case Study. Mathematics 2022, 10, 437. https://doi.org/10.3390/math10030437
Reyes-Barquet LM, Rico-Contreras JO, Azzaro-Pantel C, Moras-Sánchez CG, González-Huerta MA, Villanueva-Vásquez D, Aguilar-Lasserre AA. Multi-Objective Optimal Design of a Hydrogen Supply Chain Powered with Agro-Industrial Wastes from the Sugarcane Industry: A Mexican Case Study. Mathematics. 2022; 10(3):437. https://doi.org/10.3390/math10030437
Chicago/Turabian StyleReyes-Barquet, Luis Miguel, José Octavio Rico-Contreras, Catherine Azzaro-Pantel, Constantino Gerardo Moras-Sánchez, Magno Angel González-Huerta, Daniel Villanueva-Vásquez, and Alberto Alfonso Aguilar-Lasserre. 2022. "Multi-Objective Optimal Design of a Hydrogen Supply Chain Powered with Agro-Industrial Wastes from the Sugarcane Industry: A Mexican Case Study" Mathematics 10, no. 3: 437. https://doi.org/10.3390/math10030437
APA StyleReyes-Barquet, L. M., Rico-Contreras, J. O., Azzaro-Pantel, C., Moras-Sánchez, C. G., González-Huerta, M. A., Villanueva-Vásquez, D., & Aguilar-Lasserre, A. A. (2022). Multi-Objective Optimal Design of a Hydrogen Supply Chain Powered with Agro-Industrial Wastes from the Sugarcane Industry: A Mexican Case Study. Mathematics, 10(3), 437. https://doi.org/10.3390/math10030437