Painlevé Test and Exact Solutions for (1 + 1)-Dimensional Generalized Broer–Kaup Equations
Abstract
:1. Introduction
2. Painlevé Test and Painlevé Integrability
3. Bäcklund Transformations and Two Reductions
4. Soliton Solutions and Rational Solutions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ablowitz, M.J.; Clarkson, P.A. Solitons, Nonlinear Evolution Equations and Inverse Scattering; Cambridge University Press: New York, NY, USA, 1991. [Google Scholar]
- Weiss, J.; Tabor, M.; Carnvale, C. The Painlevé property for partial differential equations. J. Math. Phys. 1983, 24, 522–526. [Google Scholar] [CrossRef]
- Kruskal, M.D.; Joshi, N.; Halburd, R. Analytic and asymptotic methods for nonlinear singularity analysis: A review and extensions of tests for the Painlevé property. Lect. Notes Phys. 1997, 495, 171–205. [Google Scholar]
- Zhang, S.L.; Wu, B.; Lou, S.Y. Painlevé analysis and special solutions of generalized Broer-Kaup equations. Phys. Lett. A 2002, 300, 40–48. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, K.; Gupta, R.K. Painlevé analysis, Lie symmetries and exact solutions for (2+1)-dimensional variable coefficients Broer-Kaup equations. Commun. Nonlinear Sci. Numer. Simulat. 2012, 17, 1529–1541. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, M.T.; Qian, W.Y. Painleve analysis for a forced Korteveg-de Vries equation arisen in fluid dynamics of internal solitary waves. Therm. Sci. 2015, 19, 1223–1226. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, M.T. Painlevé integrability and new exact solutions of the (4+1)-dimensional Fokas equation. Math. Probl. Engin. 2015, 2015, 367425. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.F.; Han, Z.; Tam, H.W. An integrable hierarchy and Darboux transformations, bilinear Bäcklund transformations of a reduced equation. Appl. Math. Comput. 2013, 219, 5837–5848. [Google Scholar] [CrossRef]
- Gardner, C.S.; Greene, J.M.; Kruskal, M.D.; Miura, R.M. Method for solving the Korteweg-de Vries equation. Phys. Rev. Lett. 1967, 19, 1095–1197. [Google Scholar] [CrossRef]
- Hirota, R. Exact envelope-soliton solutions of a nonlinear wave equation. J. Math. Phys. 1973, 14, 805–809. [Google Scholar] [CrossRef]
- Matveev, V.B.; Salle, M.A. Darboux Transformation and Soliton; Springer: Berlin/Heidelberg, Germany, 1991. [Google Scholar]
- Wang, M.L. Exact solutions for a compound KdV-Burgers equation. Phys. Lett. A 1996, 213, 279–287. [Google Scholar] [CrossRef]
- Fan, E.G. Travelling wave solutions in terms of special functions for nonlinear coupled evolution systems. Phys. Lett. A 2002, 300, 243–249. [Google Scholar] [CrossRef]
- He, J.H.; Wu, X.H. Exp-function method for nonlinear wave equations. Chaos Soliton. Fract. 2006, 30, 700–708. [Google Scholar] [CrossRef]
- Zhang, S.; Xia, T.C. A generalized auxiliary equation method and its application to (2+1)-dimensional asymmetric Nizhnik-Novikov-Vesselov equations. Phys. A Math. Theor. 2007, 40, 227. [Google Scholar] [CrossRef]
- Ma, W.X.; Lee, J.H. A transformed rational function method and exact solutions to 3+1 dimensional Jimbo-Miwa equation. Chaos Soliton. Fract. 2009, 42, 1356–1363. [Google Scholar] [CrossRef] [Green Version]
- Tian, S.F.; Zhang, H.Q. Riemann theta functions periodic wave solutions and rational characteristics for the (1 + 1)-dimensional and (2 + 1)-dimensional Ito equation. Chaos Soliton. Fract. 2013, 47, 27–41. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, D.D. The third kind of Darboux transformation and multisoliton solutions for generalized Broer-Kaup equations. Turk. J. Phys. 2015, 39, 165–177. [Google Scholar] [CrossRef]
- Zhang, S.; Zheng, X.W. N-soliton solutions and nonlinear dynamics for two generalized Broer-Kaup systems. Nonlinear Dyn. 2022, 107, 1179–1193. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Xu, B. Painlevé Test and Exact Solutions for (1 + 1)-Dimensional Generalized Broer–Kaup Equations. Mathematics 2022, 10, 486. https://doi.org/10.3390/math10030486
Zhang S, Xu B. Painlevé Test and Exact Solutions for (1 + 1)-Dimensional Generalized Broer–Kaup Equations. Mathematics. 2022; 10(3):486. https://doi.org/10.3390/math10030486
Chicago/Turabian StyleZhang, Sheng, and Bo Xu. 2022. "Painlevé Test and Exact Solutions for (1 + 1)-Dimensional Generalized Broer–Kaup Equations" Mathematics 10, no. 3: 486. https://doi.org/10.3390/math10030486
APA StyleZhang, S., & Xu, B. (2022). Painlevé Test and Exact Solutions for (1 + 1)-Dimensional Generalized Broer–Kaup Equations. Mathematics, 10(3), 486. https://doi.org/10.3390/math10030486