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Abstract: All current recommendation algorithms, when modeling user–item interactions, basically
use dot product. This dot product calculation is derived from matrix factorization. We argue that an
inherent drawback of matrix factorization is that latent semantic vectors of users or items sometimes
do not satisfy triangular inequalities, which may affect the performance of the recommendation.
Recently, metric factorization was proposed to replace matrix factorization and has achieved some
improvements in terms of recommendation accuracy. However, similar to matrix factorization, metric
factorization still uses a simple, linear fashion. In this paper, we explore leveraging nonlinear deep
neural networks to realize Euclidean distance interaction between users and items. We propose a
generic Neural Metric Factorization Framework (NMetricF), which learns representations for users
and items by incorporating Euclidean metric factorization into deep neural networks. Extensive exper-
iments on six real-world datasets show that, compared to the previous recommendation algorithms
based purely on rating data, NMetricF achieves the best performance.

Keywords: neural metric factorization; euclidean distance; collaborative filtering; deep learning

1. Introduction

Servers and web pages connected to the Internet show an explosive trend. Massive
amounts of information are presented to us at the same time. YouTube, for example, at-
tracts millions of people around the world, with billions of hours of video played every
day. There are tens of thousands of movies on Netflix, millions of books on Amazon
and hundreds of millions of products on Taobao. Traditional search algorithms can only
present users with the same results of sorting items but can not provide corresponding
services for different users’ interests and hobbies. In order to overcome the information
failure caused by information overload, the personalized recommendation system came
into being. For each specific user, the personalized recommendation algorithm evaluates
the user’s preferences based on his online interaction history (e.g., purchase, click, browse,
comment, etc.), combined with some auxiliary information (e.g., attributes, social connec-
tions, text, knowledge graph, etc.). Finally, it selects the N items from the candidate set and
recommends them to the user.

The recommender system essentially models the user’s behavioral history, item at-
tributes and some contextual information to infer the user’s interests and recommend items.
Therefore, the practical recommendation algorithm needs strong expansibility and can
conveniently integrate various auxiliary information. In the process of recommendation,
the most important information undoubtedly is user–item rating data among all kinds of
information because rating data is an explicit feedback that most directly reflects the user’s
preferences. However, rating information is always sparse; therefore, rating prediction
has become one of the natural objectives of the recommender system. Rating prediction
is to infer unknown ratings based on the users’ existing ratings of the items, so as to
achieve the recommendation according to predicting ratings. Some famous business media
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sites, such as Netflix, Douban, IMDb, etc., consciously collect user ratings to help with
recommendations.

By factoring the rating matrix, the user latent semantic matrix and item latent semantic
matrix can be obtained to represent the features of all users and all items, respectively.
The product of the two matrices is used to model the user’s predicted ratings for the item.
Neural networks have been proved to have the ability to solve the practical problems
of nonlinear ambiguous functions. They have performed well in many domains, such
as image processing, speech recognition, and text categorization, etc. In addition, some
researchers combined them to predict the ratings and also received good results. However,
due to the defects of matrix factorization, this research still needs to be promoted. Here, we
will study applying neural metric factorization in rating prediction.

The dot product does not satisfy the triangular inequality, so it means the matrix
factorization can not obtain the optimal solution and reduces its performance. In view of
this defect, we use a neural network for the matrix to realize rating predictions.

The main contributions of this paper :

• By reversing the rating matrix, we switch the research perspective on user–item
ratings to that of user–item distance. That is, we no longer study the degree of match
between user preferences and item characteristics, but instead study the distance
between them.

• We propose a Neural Metric Factorization (NMetricF) model. Instead of using inner
products to express user–item similarity in previous papers, Euclidean distance is
used to measure user–item distance. The distance matrix predicted by this method is
finally inverted again and used as the prediction score matrix.

• We have performed extensive comparative experiments and analyses for our model
and the baseline models, and the results show that NMetricF outperforms the baseline
approaches for both rating prediction and item sorting tasks. In particular, NMetricF’s
generalization ability is even better.

This paper is organized as follows: in Section 2, we describe some research work
related to our study, and in Section 3, we give some preparatory knowledge. In Section 4,
we show our recommendation model and explain each part in detail; in Section 5, we
compare and analyze the recommendation performance with the corresponding baseline
methods on two types of tasks: rating prediction and item ranking, respectively. Finally, in
Section 6, we summarize our work and provide an outlook on future research.

2. Related Work

The main tasks of the recommender system include rating prediction, item ranking
and next-item recommendation, which are widely used in specific applications, such as
library book recommendation, academic paper citation recommendation, friend prediction
or recommendation in social networks, product recommendation or rating prediction in
e-commerce. In all situations, the interaction information (e.g., rating matrix) is often
very sparse, and the sparsity sometimes reaches more than 90%. The rating prediction is
essentially a matrix filling task, and how to predict missing values as accurately as possible
through the information with less data is the key problem. Solutions to some similar
problems will be introduced here.

Earlier classical work such as matrix factorization [1–3] tried to factorize a user–item
implicit feedback to obtain user feature matrix and item feature matrix. Further research
work also includes: Sanjay [4] proposed a probabilistic matrix factorization model that
unites topic modeling and social networks. This is a hierarchical Bayesian model that
automatically infers useful potential topics and social information and their importance
for collaborative filtering from training data. Wang [5] explained the scores and words
obtained by using implicit data, integrated collaborative filtering into probability modeling,
and recommended scientific articles to online users. Lee [6] assumes that some parts of
the matrix are low rank. Under the guidance of this idea, such a matrix is used to fit
the scoring data in the recommender system. Kim [7] generated feature vectors of items
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by convolutional neural networks with the help of auxiliary text information of items
(e.g., movie plot text), and then the convolution network and MF are fused to achieve
the purpose.

Although matrix factorization has had a lot of achievements, it has the drawback
that the dot product cannot satisfy all inequality relations between vectors at the same
time, which greatly limits its performance (we will explain this defect in Section 3.1).
Therefore Dziugaite [8], He [9], and Wu [10] have proposed different models to alleviate
this problem. However, these algorithms are all still based on the idea of the matrix
factorization algorithm or the combination of matrix factorization and neural network,
which cannot fundamentally avoid the defect of matrix factorization. Zhang [11] proposed
a method of substituting metric factorization for matrix factorization, which can bypass the
dot-product and satisfy triangular inequalities. Hsieh [12] proposed a collaborative metric
learning algorithm; this method extends metric factorization to collaborative filtering.

3. Preliminaries

In this section, we gradually introduce the idea of neural metric factorization in the
following steps. Furthermore, we clarify the context from traditional matrix factorization
to neural metric factorization.

3.1. Drawback of Matrix Factorization

The matrix factorization is essentially the inner product of latent vectors. Com-
pared with the initial matrix, the decomposed vector is very small, and the feature rep-
resentation ability of the latent vector is greatly discounted. Meanwhile, the represen-
tation process of the inner product is too simple. For example, assuming that we have
four users: U1, U2, U3, U4, we use Sim(m, n) to represent the similarity between Um, Un,
the similarities based on interaction matrix are: Sim(2, 3) > Sim(1, 2) > Sim(1, 3), and
Sim(4, 1) > Sim(4, 3) > Sim(4, 2). After matrix factorization, the four vectors are embedded
into the low-dimensional space (here, we take two-dimension as an example for draw-
ing). We use the vector’s included angle to represent similarity; the smaller the angle, the
greater the similarity, as shown in Figure 1. We find that under the condition that U1, U2, U3
satisfy the first inequality, no matter how U4 is positioned, it cannot satisfy the second
inequality. Therefore, although matrix factorization achieves low-dimensional embedding
and simplifies calculation, it also loses some semantic relations, which makes the feature
representation contradictory.

Figure 1. Defects in matrix factorization.

3.2. Metric Factorization

The idea in Reference [11] is as follows: The rating matrix of the user–item (range
1–5 of the score) is first flipped (subtract each score from the maximum score of 5), the
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obtained matrix is called the distance matrix. For example, in the rating matrix, assuming
that the user’s rating for the item is 5, which is changed to 0 by flipping operation (5-5).
That is to say, the distance between u and i is 0. If u’s rating for i is 1, after flipping the
operation (5-1), it becomes 4; that is to say, the distance between u and i is 4. The logical
meaning of this approach is that if a user scores an item highly, it means that they have
some similarity in the attributes of interest, so the distance is small; on the contrary, if a user
scores an item extremely low, it means that he does not like the item, then the user and the
item are not similar in the attributes of interest, so the distance is far away. Now consider
the positions of U1, U2, U3, U4 in distance. Because Sim(2, 3) > Sim(1, 2) > Sim(1, 3), U2 is
the closest to U3 in Euclidean distance, followed by distance between U2 and U1, and the
biggest is the distance between U1 and U3. We use the Euclidean distance between two
vectors to represent similarity; the smaller the Euclidean distance, the greater the similarity,
as shown in Figure 2. Then, because Sim(4, 1) > Sim(4, 3) > Sim(4, 2), that is, U4 is nearest
to U1, followed by the distance to U3, and the farthest distance to U2, we use a red ring
(minimum radius) to express the possible positions of U4 satisfying the minimum distance
to U1, a yellow ring (centered in radius) to indicate the possible position of U4, which
satisfies the distance from U3, and a green ring (largest radius) to indicate the possible
position of U4, which satisfies the maximum distance from U2. The coincidence region of
the three rings is the positions of U4, which satisfies the relationship of Sim(4, 1) > Sim(4, 3)
> Sim(4, 2). This shows that the Euclidean distance is more reasonable than the angle in
describing relationships between vectors in low-dimensional space.

Figure 2. Using Euclidean distance to describe vectors.

Next, we explain metric factorization, but first, we flip the rating matrix into a metric
(or distance) matrix:

D(u, i) = Max(R)− R(u, i) (1)

In the dataset used in our experiment, the maximum user rating for items is 5, so the
Max(R) here is 5. The following illustrative example:

If we regard the rating matrix as a similarity matrix, that is to say, the user’s rating
on the item is the similarity between the user’s interest and the item’s attribute, then
similarly, each observation value in the metric (or distance) matrix formed after flipping
can be regarded as the distance between the user’s interest and the item’s attribute. The
metric matrix is then decomposed into a low-dimensional user latent semantic matrix
U and a distance operation of a low-dimensional item latent semantic matrix, that is,
D(u, i) = U − I. For example, the user2–item3 distance in Figure 3 is:

du,i = D(2, 3) = U2 − I3 =
√
(U1

2 − I1
3 )

2 + (U2
2 − I2

3 )
2 (2)
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Figure 3. Rating matrix is turned into a distance matrix, and then, metric factorization is performed.

Among them, U2 represents the second line of U, which is the latent semantic vector
of user2, I3 is the third column of I, which is the latent semantic vector of item3. U2 − I3 is
the Euclidean distance between the latent semantic vectors of user2 and item3. This is the
process of Metric Factorization.

3.3. Why Do We Introduce Neural Metric Factorization

We find that although Metric Factorization (FML [11]) is superior to the traditional
Matrix Factorization (MF) in rating prediction, its overall effect is still not good enough.
Although Euclidean distance is introduced to metric factorization instead of inner product,
it is only a simple linear combination of square deviation in every dimension of the latent
semantic vector, without introducing a nonlinear relationship, and it fails to consider the
different levels of importance of each dimension (the weight of each dimension is the same),
so it is also true. Thus, it is impossible to characterize the complex interactions. Thus, a
more general framework of metric factorization is implemented by using a deep neural
network. By introducing a nonlinear activation function and deeper neural layers based on
the original linear computation, the expressive ability of the model can be better improved.
Next, we will describe this method in detail.

4. Proposed Methodology

In this section, we introduce our neural metric factorization (NMetricF) model. Figure
4 shows the implementation model of the NMetricF method. Suppose there are M users
and N items, and the ratings of user u on item i are denoted as r ∈ RM∗N . The rating
matrix R is always sparse, i.e., many entries in R are missing, and one of the tasks of the
recommendation system is to derive (or predict) the missing entries in R. To this end, the
idea of our proposed method is that first, we convert the rating matrix into a distance
matrix DM∗N by using Equation (1). Although D is still a sparse matrix, there are still some
user–item distance entries. Then, the model in Figure 1 is fitted for the existing entries
in D. This process is able to incidentally learn the embeddings of all users and all items,
and further, the distance interactions of the learned user and item embeddings are used to
estimate the missing entries in D. In this way, all the missing entries in D are filled. Finally,
D is then re-inverted into an estimate of R, which is the predicted rating matrix.

Then, starting from the input layer, we introduce the model’s input layer, embedding
layer, metric interaction layer, nonlinear hiding layers, and output layer in detail. In the
process, we have proved that Metric Factorization is one case of NMetricF in a simple
form; in other words, our NMetricF model is the generalization of Metric Factorization.
Finally, we provide the loss functions and optimization settings for our model on two
different tasks.

4.1. General Framework

Figure 4 is the general framework of NMetricF. Generally speaking, our model com-
bines the computation of metric factorization and the powerful learning ability of deep
nonlinear neural networks to model sparse data. Therefore, it is a machine learning engi-
neering for real-valued vectors. Let us start with the input layer and introduce the model
in detail.
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Figure 4. The framework of neural metric factorization, where ŷu,i represents the predicted distance
in the rating prediction task or the predicted probability in the item ranking task. yu,i represents the
true distance in the rating prediction task or the true hit probability in the item ranking task.

4.2. Input Layer

Suppose the dataset is a sparse matrix, and it is rating one. As shown in Figure 4, the
user’s ID is converted to the m-dimensional one-hot vector U(u∈ Rm) as the user’s input
at the bottom left of Figure 4, and the item’s ID is converted to the n-dimensional one-hot
vector i(i∈ Rn) as the item’s input at the bottom right of Figure 4. One-hot vector can
uniquely identify each user or item but cannot contain semantic information. As a simple
example, there are three one-hot values, specifically they are a = [1,0,0], b = [0,1,0], c = [0,0,1].
By calculating the Euclidean distance between different vectors in one-hot representation,
we find that | ab |=| bc |=| ac |=

√
2, which means that no matter how semantically similar

or different a, b and c are, the distance between them is always
√

2. Therefore, one-hot
vector cannot express semantic information. To overcome this problem, we map one-hot
vectors to low-dimensional, real-valued and dense vectors.

4.3. Embedding Layer

It is obtained by connecting a fully-connected one above the user input layer and item
input layer, respectively. It projects users and items into a k-dimensional (k�m, k� n)
and dense embedding space. The formal representation is as follows:

eu = Pm∗k
T · u

ei = Pn∗k
T · i

(3)

where Pm∗k
T and Pn∗k

T are weight matrixes, and they are u − u and i − i embedding
layers, respectively. eu and ei represent embedding of u and i, respectively. Subsequent
training will enable NMetricF to learn the semantic-rich embeddings.

4.4. Metric Interaction Layer + Multi-Layer Perception (MLP)

Since both eu and ei are k-dimensional dense vectors, it is easy to calculate the distance
between them; that is, subtracting the elements one by one. If only the neurons that
represent the difference are squared, it connects to the output one with only one neuron
and the square root calculation, which is simplified to the ordinary metric factorization
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model (i.e., FML [11]). This simplified form does not introduce a nonlinear hidden layer,
so it is essentially a linear regression model similar to matrix factorization. For the sake of
obtaining a more accurate result of NmetricF, we use multi-layer MLP, through the gradual
dimension reduction of the fully connected layer and nonlinear activation functions, to
achieve a more generalized matrix factorization and obtain a more powerful ability to
mine complex interactions between users and items. The specific practices are as follows(	
denotes element-wise subtraction):

h0 = eu 	 ei

h1 = Relu(W1
Th0 + b1)

........

hL−1 = Relu(WL−1
ThL−2 + bL−1)

ŷu,i = WL
ThL−1 + bL or

ŷu,i = σ(WL
ThL−1 + bL)

(4)

where Wk ,bk, and Relu() are standard expressions and meanings. ŷu,i is u’s predicted rating
(without sigmoid function) or probability of preference (with sigmoid function) on the
item i.

4.5. Optimization Method

NMetricF can be applied to various prediction tasks. In the experiment of this paper,
we will conduct experiments for two kinds of tasks, respectively: the rating prediction is
essentially a regression task, so we use Mean Square Error (MSE) to optimize our model,
plus the regular term, so the loss function is:

Loss =
1
| D |∑ (u,i)∈D

(yui − ŷui)
2 + λ‖W‖2 (5)

where D is entries observed in the metric, yu,i distance between u and i, and ŷu,i is predicted
distance. Equation (5) is the objective function that needs to be minimized in the rating
prediction task. During the experiments, the Adam algorithm is used to minimize the
objective function.

On the other hand, in the ranking recommendation experiment, we choose the com-
mon cross-entropy function:

Loss = − 1
| D |∑ (u,i)∈D

[yui ln ŷui + (1− yui) ln(1− ŷui)] + λ‖W‖2 (6)

5. Experiments

In order to fully test the effectiveness of NMetricF, we perform extensive ablation
experiments on two recommended tasks: rating prediction and item ranking.

On each task, we first introduce the experimental setup, including datasets, evaluation
metrics, and baseline methods. Then, we will present in detail the comparison of exper-
imental results between our method and the baseline methods. Finally, we analyze and
summarize the comparison of these results with the purpose of answering the following
questions:

RQ1. Is the NMetricF method superior to baselines on the rating prediction task?
RQ2. How about the generalization ability of NMetricF?
RQ3. Does metric factorization have more advantages than matrix factorization for

the task of predicting missing entries of the sparse rating matrix?
RQ4. Does NMetricF outperform baseline methods for item recommendation ranking

tasks?
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5.1. Evaluation for Rating Prediction
5.1.1. Experiment Settings

Datasets. To perform the rating prediction task, we select the following four real-world
datasets for comparison experiments: MovieLens-100K, MovieLens-1M, MovieLens-Latest
and Goodbooks. These four datasets can be divided into two categories for presentation.

Goodbooks http://fastml.com/goodbooks-10k/(accessed on 26 January 2022). Gook-
books is widely used in book recommendation, which comes from Goodreads website and
contains 5,976,479 ratings of the 10,000 most popular books by 53,424 users.

Movielens https://grouplens.org/datasets/movielens/ (accessed on 26 January 2022).
Movielens is a set of datasets collected from movie recommendation websites. There
are several versions corresponding to different data volumes, such as Movielens-100K,
Movielens-1M, and Movielens-Latest, etc.

The statistical information of all datasets is shown in Table 1:

Table 1. Statistics of four datasets (# denotes “Number of”).

Datasets Users Items Ratings Density

Goodbooks 53,424 10,000 5,976,479 1.12%
Movielens-100K 943 1682 100,000 6.31%
Movielens-1M 6040 3952 1,000,209 4.19%

Movielens-Latest 283,228 193,886 27,753,444 0.05%

Evaluation Metrics. After randomly shuffling all rating entries, the dataset is divided
into 80% and 20% for the training and test sets, respectively. During the training of the
model, another 2% of the samples from the training set are randomly sampled as the
validation set to monitor the overfitting moments.

We employ the widely used metric Root Mean Square Error (RMSE) to assess the error
in rating predictions. RMSE is defined as follows:

RMSE =

√
∑(u,i)∈R(yui − ŷui)

| R | (7)

where R represents the set of all user–item rating entries, yu,i is the real rating of the item i
by user u, and ŷui is the predicted rating of the item i by user u.

Baselines. We compare NMetricF with the following competitive rating predicting
methods:

• BPMF [13]. BPMF utilizes a Bayesian approach to implement a probability matrix
factorization. Automatic control of the model capacity is achieved by integrating all
parameters and hyperparameters.

• NRT [14]. NRT uses a gated recurrent network to generate tips to mimic the user’s
experiences and feelings, which in turn are used to predict ratings.

• NNMF [8]. NNMF approximates the entries of a matrix with a multi-layer feed-
forward neural network.

• NCF [9]: NCF uses a neural network architecture to implement matrix factorization.
Note that in our paper, we fine-tune the NCF model to predict user–item ratings.

• FML [11]: FML identifies a low-rank structure from the distance factor space and
performs recommendation jointly with metric learning methods and factor-based
models.

Implementation Details. We run NMetricF’s code on a GTX1080 GPU. We use the
lecun _uniform distribution to initialize the weight parameters of the model and use
Adam/L2 to optimize/regularize the model. For the number of layers of Multi-Layer
Perceptron, we set them in order from 1 to 6 for comparison experiments, and a batch
normalization layer is added between every two layers instead of the dropout layer. If
not specified, the default parameters of the model are set as follows: (1) regularization

http://fastml.com/goodbooks-10k/
https://grouplens.org/datasets/movielens/
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coefficient = 0.02, (2) number of MLP layers = 6 (200-150-100-50-25-1), (3) epochs = 200, (4)
batch size = 512, (5) learning rate = 0.001 and (6) activation function = ’relu’.

5.1.2. Performance Comparison (RQ1)

In this subsection, we will compare the NMetricF performance with baselines on the
rating prediction tasks. Table 2 summarizes the details of all methods. We adopt RMSE
to evaluate our experimental rating prediction results. In Table 2, the smaller the value of
RMSE, the better the performance of the model. To facilitate the comparison of results across
models, for each dataset, the best performance is highlighted in bold, while the second-best
performance is underlined. The improvement is calculated as follows. For example, our
method achieves a minimum RMSE value of 0.734, while the minimum RMSE value in the
baseline method is 0.829, which is the second-best performance. Thus, the performance
improvement rate of our method is calculated as follows: (0.829 − 0.734)/0.829 × 100%,
representing the rate of improvement of the best performance over the second-best perfor-
mance. To summarize, we can draw three observations from the experimental results:

Table 2. RMSE comparison between NMetricF and baseline Models. (Best performance is in boldface
and the second-best is underlined.)

Datasets Movielens-100 K Movielens-1 M Movielens-Latest Goodbooks

Models Root Mean Square Error

BPMF 0.928 0.869 0.942 0.833
BiasedSVD 0.916 0.839 0.874 0.841

NRT 0.913 0.880 0.869 0.821
NNMF 0.907 0.842 0.869 0.825

NCF 0.902 0.820 0.870 0.814
FML 0.891 0.836 0.855 0.798

NMetricF 0.738 0.731 0.742 0.747
Imporve 17.2% 10.9% 13.2% 6.4%

• In general, our NMetricF performs the best among all compared methods. Specifically,
on the Movielens-100K dataset, the RMSE value of NMetricF is 0.738, which is 17.2%
lower in error compared to the second-best method, FML (0.891); on the Movielens-
1M dataset, the RMSE value of NMetricF is 0.731, which is 10.9% lower in error
compared to the second-best method, NCF ( 0.820) which is 10.9% lower in error; on the
Movielens-latest dataset, the RMSE value of NMetricF is 0.742, which is 13.2% lower
in error compared to the second-best method FML (0.855); on the Goodbooks dataset,
the RMSE value of NMetricF is 0.747. On the Goodbooks dataset, the RMSE value of
NMetricF is 0.747, which is 6.4% lower than the second-best method, FML (0.798).

• All the experiments in Table 2 can be divided into three categories: BPMF and Bi-
asedSVD are traditional matrix factorization-based models; NRT, NNMF and NCF are
neural network-based models; and FML and NMetricF are metric factorization-based
models. As can be seen from the table, NRT, NNMF and NCF generally outperform
BPMF and BiasedSVD, which proves that the neural network-based model outper-
forms the matrix factorization-based model, which we believe is due to the inclusion
of nonlinear mapping and more hidden layers in the former compared with the
latter, thus resulting in the stronger fitting ability of the former. Further, FML and
NMetricF generally outperform NRT, NNMF and NCF, which proves that the metric
factorization-based model outperforms the neural network-based model, and we
believe that this is due to the greater generalization ability of the metric factors used
in the former. This will be quantitatively analyzed and explained later in Formula (8).

• Table 2 also shows that the performance of NCF and FML are relatively close, but both
are far worse than NMetricF. We believe this is because NCF introduces deep neural
networks, but the shortcomings of the dot product still exist; conversely, FML uses
metric factorization instead of the dot product, but lacks the deep nonlinear mapping
capability of neural networks. It is inspired by this that we propose NMetricF—
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which employs metric factorization as an interaction and implements this interaction
computation through deep learning techniques—combining exactly the strengths of
NCF and FML. As a result, our approach makes substantial progress in performance.

5.1.3. The Advantage of Distance Learning over Dot Product (RQ2, RQ3)

A fundamental difference between our model and NCF is that our model uses metric
factorization and NCF uses matrix factorization, so in order to prove the superiority of
metric factorization over matrix factorization and to investigate the generalization ability
of NMetricF, we compile NMetricF and NCF with exactly the same parameters. The two
models have exactly the same hyper-parameters as the following: embedding size = 200,
number of nonlinear hidden layers = 6 (200-150-100-50-25-1). Figure 5 shows the error
trends of NMetricF and NCF during training on the four data sets.

(a) NMetricF vs. NCF performance on ML-100 k (b) NMetricF vs. NCF performance on ML-1 M

(c) NMetricF vs. NCF performance on Latest (d) NMetricF vs. NCF performance on ML-1 M

Figure 5. Performance comparison of NMetricF and NCF with the same complexity. (a) NMetricF vs.
NCF performance on ML-100 k. (b) NMetricF vs. NCF performance on ML-1 M. (c) NMetricF vs.
NCF performance on Latest. (d) NMetricF vs. NCF performance on ML-1 M.

From Figure 5 we can see that NMetricF outperforms NCF on both the training and
validation sets on each epoch of the training process, provided that the various hyperpa-
rameters are identical. This indicates that the distance-based metric factorization is indeed
better than the similarity-based matrix factorization. In addition, from Figure 5a–c, we can
see that the RMSE values of NCF on the validation set are less stable and oscillate more
severely, indicating that NCF shows an overfitting problem. In contrast, NMetrciF only
shows a slight overfitting in (a), (c) and almost no overfitting in (b), (d). This indicates
that the generalization ability of NMetrciF is excellent. To explain the difference in gener-
alization ability between the two methods, we introduce the error bound formula from
computational learning theory:

E(h) ≤ Ê(h) + Op(

√
| H |

n
) (8)

where Ê(h) is the training error, and E(h) is the validation error. |H| is the size of the
model space or hypothesis space. If the model has more parameters or a larger range of
parameter values, then the larger |H| is, the more complex the model is. n represents the
number of training samples. From Formula (8), we can see that for different models on

the same training set (i.e., n is the same), if |H| is larger, Op(
√
|H|
n ) is also larger, which
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results in a larger difference between E(h) and Ê(h), i.e., the more severe overfitting. In
our opinion, the dot-product operation used for matrix factorization makes the values
of neurons entering the MLP less stable, which leads to a larger change in the parameter
values of the model during the training process, and eventually leads to an increase in
|H|. According to Formula (8), this is the reason for the severe overfitting of NCF. On the
contrary, the metric calculation used in NMetricF is based on subtraction, and the result
must be more stable than that of dot-product, which makes our model have a smaller
hypothesis space, i.e., the |H| value is smaller, so the validation error and training error
are closer. Therefore, our proposed NMetricF method does not suffer from overfitting
problems and has better generalization ability than other methods.

5.2. Evaluation for Item Ranking
5.2.1. Experiment Settings

Datasets. To perform the item ranking task, we select the following two real-world
datasets for comparison experiments: FilmTrust and EachMovie.

FilmTrust https://www.librec.net/datasets.html (accessed on 26 January 2022) . FilmTrust
is a dataset with trust relationships and movie ratings that were extracted from the FilmTrust
website in June 2011 by Guo et al. It contains 35,497 ratings for 2071 movies by 1508 users.
Movies are rated ranging from 0.5 to 4 ( [0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4] ).

EachMovie http://networkrepository.com/rec-eachmovie.php (accessed on 26 Jan-
uary 2022) . EachMovie is provided by the Compaq Systems Research Center. It contains
2,811,717 ratings for 74,424 movies from 1636 users. Movies are rated by six different levels
ranging from 1 to 6.

The ranking task in recommendation systems does not focus on the accuracy of
predicted ratings but often selects and ranks items based on the probability of users liking
them. Therefore, for the above dataset, we first convert the explicit feedback (ratings) to
implicit feedback (0 or 1) during preprocessing as follows. For user set U = {U1, U2, . . . Um}
and item set I= {I1, I2, . . . In}, we generate u− i interaction matrix Y= {yui |u ∈ U, i ∈ I}
based on the rating information, where

yui =

{
1 if u has interacted with i;
0 otherwise

(9)

Note that if u rates i, yui is 1, representing a positive instance. Conversely, if user u did
not rate item i, yui is set to 0, representing a negative instance. After pre-processing, the
statistical characteristics of the two datasets is shown in Table 3:

Table 3. Statistics of four datasets (# denotes “Number of”).

Datasets # Users # Items # Ratings Density
FilmTrust 1508 2071 35,497 1.14%

EachMovie 1636 74,424 2,811,717 2.31%

Evaluation Method. Unlike the practice of rating prediction, the process of ranking
recommendation is as follows: for one user, a trained model is used to compute the
probability of that user liking all items, and then, based on these probabilities, the items
are ranked from largest to smallest, and finally, the top K ones are selected, which are
recommended. The method for evaluating this task is often a combination of Precision@K
and Recall@K. Precision measures the ratio of the number of items accurately recommended
to the total number of recommendations (i.e., K), and recall calculates the ratio of the number
of items accurately recommended to the total number of correct items.

Baselines. We compare the performance of NMetricF with the following methods on
the item ranking task.

• BPR [15]. BPR performs item ranking based on the maximized posterior probability of
Bayesian theory.

https://www.librec.net/datasets.html
http://networkrepository.com/rec-eachmovie.php


Mathematics 2022, 10, 503 12 of 14

• WRMF [16]. WRMF proposes to view implicit feedback such as user behavior as signs
of like and detestation for item recommendation.

• NeuMF [9]. NeuMF maps one-hot representations embedding space and then models
users’ preferences for items by dot-product embeddings. This is a classical and general
approach to use neural networks for item recommendation.

• CDAE [10]. CDAE uses an auto-encoder network to generate distributed representa-
tions by learning ratings, which in turn predicts the missing items in the rating matrix.

• CML [12]. CML is a collaborative metric learning algorithm; this method extends
metric factorization to collaborative filtering.

• FML [11]. FML identifies a low-rank structure from the metric factor space and
performs collaborative filtering jointly with metric learning methods and factor-
based models.

5.2.2. Performance Comparison (RQ4)

In this subsection, we will compare NMetricF performance with baselines on item
ranking task. Table 4 summarizes the results of all methods. We adopt Presicion@K and
Recall@K to evaluate our experimental ranking prediction results. In Table 4, the larger the
P@K or R@K value, the better the performance of the model. The best performance on each
dataset is highlighted in bold, and the second-best one is highlighted with an underline.
The improvement is calculated as follows. For example, our method achieves a maximum
P@K value of 0.486, while the maximum P@K value in the baseline method is 0.452, which
is the second-best performance. Thus, the performance improvement rate of our method is
calculated as follows: (0.486 − 0.452)/0.452 × 100%, representing the rate of improvement
of the best performance compared to the second-best performance. From Table 4 we can
draw the following conclusions:

Table 4. Comparison between NMetricF and baselines in terms of RMSE. (Best performance is in
boldface and second-best is underlined.)

Methods P@5 P@10 R@5 R@10

FilmTrust

BPR 0.417 0.346 0.396 0.618
WRMF 0.431 0.347 0.429 0.636
NeuMF 0.415 0.352 0.390 0.629
CDAE 0.431 0.357 0.440 0.652
CML 0.441 0.369 0.438 0.650
FML 0.456 0.361 0.467 0.672

NMetricF 0.486 0.399 0.483 0.690
Improve 6.6% 8.1% 3.4% 2.1%

EachMovie
BPR 0.341 0.288 0.307 0.443

WRMF 0.392 0.316 0.347 0.492
NeuMF 0.382 0.307 0.338 0.479
CDAE 0.397 0.313 0.354 0.492
CML 0.396 0.316 0.350 0.491
FML 0.418 0.338 0.368 0.510

NMetricF 0.425 0.351 0.379 0.531

Improve 1.7% 3.8% 3.0% 4.1%

• NMetricF is the best one among all methods. Specifically, on FilmTrust dataset,
compared with the suboptimal method, the performance of NMetricF is improved
by 6.6%, 8.1%, 3.4% and 2.1%, respectively, in four different evaluation indicators:
p@5, P@10, R@5 and R@10. On the EachMovie dataset, NMetricF outperforms the
second method with 1.7%, 3.8%, 3.0%, 4.1%, respectively, in four different evaluation
indicators: p@5, P@10, R@5 and R@10. These prove that NMetricF is still superior to
baseline methods on the ranking recommendation task.
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• Euclidean distance-based models (e.g., NMetricF) outperform dot-product-based ones
(e.g., NeuMF), demonstrating that distance interaction is better than dot-product
interaction for measuring and characterizing the relationship between the user profile
and item profile in the field of the recommender system.

6. Summary and Prospect

Combining metric factorization and deep learning techniques, we propose the neu-
ral metric factorization (NMetricF) method. This method first converts the user–item
rating matrix into a distance matrix and then fits the distance matrix using the metric
interaction of the neural network. Extensive experiments on six datasets demonstrate that
NMetricF greatly outperforms previous baseline methods for both rating prediction and
item ranking tasks.

NMetricF explores the role of Euclidean distance in recommendations. Experiments
show that Euclidean distance interaction can eliminate the incompatibility of triangular
inequalities caused by matrix factorization. In addition, large amounts of other structural
or auxiliary information indeed exist in real-world scenarios, such as social networks, item
contexts or review information. We can add this information to our proposed framework
to help with recommendations.

In the following work, we intend to use the neural metric factorization model for a
number of related areas in medical research [17–23], and we believe that this model may be
useful for applications such as disease prediction.
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