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Abstract: Nowadays, with the rapid development of computed tomography (CT), the theoretical ex-
pansion of CT reconstruction has become the crucial ingredient to break through technical bottlenecks.
This article supplements relevant knowledge of the method for constructing CT projection-wise
filters. From the perspective of the mathematical principle of CT reconstruction, the second-order
divided-difference back projection (SDBP) technique is firstly proposed, which is an implementation
of accurate and efficient inverse Radon transform. On the basis of the SDBP technique, a brand new
computational model for filter expressions is derived. The model reveals the correlation between
the convolution kernel for data restoration and the filter expression and also specifies the principle
of filter construction. On the proposed filter construction model, the decomposition form of filters
is discovered for the first time. A series of basic filters are acquired, which can be used to compose
filters in actual need. According to the superposition principle, the properties of a filter depend on
the decomposed basic filters. The selection of the kernel function on the properties of basic filters
clarifies the general rule of filter construction. These theories proposed in this article are of reference
value for the filter optimization research in the CT reconstruction field.

Keywords: inverse Radon transform; CT reconstruction; SDBP; filter construction; kernel function;
Hilbert transform; basic filters

1. Introduction

Computed tomography (CT) is a commonly used nondestructive diagnostic imaging
technology [1,2]. Reconstruction-algorithm-related technology has always been the research
focus. From the perspective of applied mathematics, CT reconstruction is essentially
an inverse problem of the Radon transform [3]. Therefore, the properties of the Radon
transform have always been the research topic in the CT reconstruction field [4–7]. Among
all algorithms based on the inverse Radon transform, the filtered back projection (FBP)
technique is a typical case [8], which is convenient to implement. However, due to the
divergence of the ideal ramp function, the FBP technique cannot be equivalent to the
rigorous Radon inverse transform. An accurate and efficient inverse Radon transform
method is essential to the theoretical research of CT reconstruction.

For discrete projection data, the performance of the CT projection-wise filter is an
important factor that affects the CT image quality. Presently, the most commonly used
filters in FBP are the R-L filter [9] and S-L filter [10]. The CT image reconstructed by the R-L
filter has a clear contour and high spatial resolution, but the image is affected by an obvious
Gibbs phenomenon [11]. Compared with the R-L filter, the CT image reconstructed by the
S-L filter has a lighter Gibbs phenomenon and less pixel value error, but the sharpness of
the contour edge is lower. Additionally, the reconstructed image quality usually needs to be
quantified by evaluating indexes [12,13]. On the other hand, not all filters can be obtained
by the traditional design method, which is realized by the inverse Fourier transform after
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windowing the ramp function in the frequency domain [14]. For that reason, scholars have
also studied some filter designing methods, which have achieved remarkable results [15–18].
Recently, a class of neural network and deep learning-based filter optimizing methods have
been proposed and shown some advantages of machine learning [19–21]. However, most
of the proposed methods are aimed at certain targets without widespread applicability.
Filter optimizing methods based on machine learning can be used to obtain some local
optimal solutions, but in most cases, they cannot be proved to be a global optimal solution.
The supplement of a theoretical basis is necessary.

This article has three main modules related to filter construction: the SDBP technique,
the computational model for filters, and the basic composition of filters. Among them, the
SDBP technique contributes a new approach for inverse Radon transform; the computa-
tional model for filters reveals the relationship between filter function and convolution
kernel of data preprocessing; the basic composition of filters shows the decomposition and
essential elements of filters. Their corresponding theorems are proposed and proved in the
order of logical recurrence.

As an extension of the inverse Radon transform in the form of Hilbert transform, this
article introduces an inverse Radon transform formula in the form of second-order divided
difference back projection (SDBP). Different from the FBP technique, the SDBP technique
calculates the second-order divided difference instead of filtering during data preprocess-
ing. Theoretically, the SDBP technique is an approach for accurate CT reconstruction for
dense sampling.

On the SDBP technique, a generalized construction model for CT projection-wise filters
is proposed. It begins with the discrete projection data being restored into a continuous
function by convolution with kernel function. By applying the SDBP formula to the restored
second-order difference projection function, the relationship between filter function and
convolution kernel is revealed. As an application, a variety of filters can be acquired by
applying different kernel functions to the proposed computational model. In particular, the
R-L filter and S-L filter can be acquired, respectively, with sinc kernel and rectangular kernel.
As an image evaluation index, the root mean square error (RMSE) is used to evaluate the
reconstruction accuracy of different filters. The result shows that the delta filter has the
minimum reconstruction error among the tested filters.

By further applying the filter construction model, it is proved that any kind of filter can
be decomposed into basic filters. Through simulations of CT reconstruction for the Shepp–
Logan phantom and the digital resolution chart, some characteristics of the basic filters are
demonstrated, which provide guidance for the filter design using other techniques. This
study provides sufficient theoretical basis for the analysis of filters and makes a foundation
for filter optimizing methods.

2. Inverse Radon Transform with SDBP Technique

The SDBP technique is an approach for the inverse Radon transform. For the projection
data of dense sets, the SDBP technique is a practicable way to achieve accurate analytical
reconstruction of the target function. The SDBP technique also provides an approach for
CT reconstruction with a discrete sinogram, even if the sampling is not equidistant.

2.1. Radon Transform

Each • refers to a variable, and each ⊗ refers to a function. Given a target real function
f (•), for

→
x = [x, y]T ∈ R2, assume that f

(→
x
)

satisfies the following conditions:

Hypothesis 1.

1. f
(→

x
)

is continuous;

2. The double integral
s

∣∣∣ f(→x )∣∣∣√
→
x

T→
x

d2→x extending over the whole plane, converges;
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3. For any arbitrary point
→
x on the plane, lim

ε→0+

∫ 2π
0 f

(
→
x +

→
ϕ
ε

)
dϕ = 0, where

→
ϕ = [cos ϕ, sin ϕ]T .

Definition 1. The Radon transform of f
(→

x
)

is a linear integral transform in the plane, which is
defined as

R[ f ](r, ϕ) :=
∫
R

f
(

r
→
ϕ + τ

→
ϕ⊥

)
dτ, (1)

where r is the distance of straight line
{

L :
→
ϕ

T→
x − r = 0

}
from the origin;

→
ϕ⊥ = [sin ϕ,− cos ϕ]T.

The Radon-transformed functions defined in Equation (1) and the original functions
constitute a function space of bijections.

2.2. SDBP Technique

For r ∈ R and ϕ ∈ (0, 2π], given the Radon transformR[ f ](r, ϕ) of the target function
f
(→

x
)

to be solved, assume thatR[ f ](r, ϕ) satisfies the following conditions:

Hypothesis 2.

1. The integral
∫
R|R[ f ](r, ϕ)|dr converges;

2. lim
s→0

∆2
r [R[ f ](r, ϕ)](s) = 0, where ∆2

r [⊗](s) of s ∈ R is the second-order difference operator

with respect to variabler, and more specifically

∆2
r [R[ f ](r, ϕ)](s) := R[ f ](r− s, ϕ)− 2R[ f ](r, ϕ) +R[ f ](r + s, ϕ);

3. The first-order partial derivative ∂
∂rR[ f ](r, ϕ) is continuous, or only has removable discontinuities;

4. The second-order partial derivative ∂2

∂r2R[ f ](r, ϕ) is continuous, or only has removable or
jump discontinuities.

On the premise of the Radon transformR[ f ](r, ϕ) meeting Hypothesis 2, the formula
of the SDBP technique for the inverse Radon transform is shown as follows:

Theorem 1. For
→
x ∈ R2, r ∈ R, s ∈ R, and ϕ ∈ [0, 2π),

f
(→

x
)
= − 1

4π2 lim
ε→0+

∫ 2π

0

∫ +∞

ε

∆2
r [R[ f ](r, ϕ)](s)

s2

∣∣∣∣r=→ϕT→
x

dsdϕ. (2)

If s→ 0, the integrand is equal to the mean value of second-order partial derivatives
ofR[ f ](r, ϕ) on both sides of the index position, as

lim
s→0

∆2
r [R[ f ](r, ϕ)](s)

s2 =
1
2

(
∂2

∂r2R[ f ](r+, ϕ) +
∂2

∂r2R[ f ](r−, ϕ)

)
.

Compared with the inverse Radon transform in the form of the Hilbert transform,
the SDBP technique is operable, for it avoids the derivation process and the divergence
of the Hilbert-transformed function at singularity. The SDBP technique is not same as the
second-order differential operation of lambda tomography [22]. Compared with FBP, SDBP
is also quite different in the data processing of projection values. SDBP does not need
to introduce a filter function. Its realization process can be summarized as the following
three steps:

1. Calculation of the second-order divided difference of the projection function under a
certain projection angle;

2. Linear integration of the second-order divided difference at the projection position of
the target point, which is calculated in step 1;
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3. Rotational integration of the linear integral value calculated in step 2, also known as the
back projection progress.

Proof of Theorem 1. In order to facilitate the subsequent proofs, some properties of
Fourier transform are introduced primarily. The rules of functional relations of Fourier
transform are shown in Appendix A, in which the rules cited in this article are represented
by ‘Rule Number’.

For the target f
(→

x
)

, on the promise that f
(→

x
)

satisfies Hypothesis 1, then according
to the properties of Fourier transform, there is

f
(→

x
)

= F−1
→
ξ

[
F→x [ f ]

](→
x
)

=
x

R2

F→x [ f ]
(→

ξ

)
· exp

(
2πi
→
ξ

T→
x
)

d2
→
ξ ,

where
→
ξ = (ξ, ψ)T are the independent variables in frequency domain corresponding to

→
x ;

i represents the imaginary unit; F→x [⊗]
(→

ξ

)
is the 2D Fourier transform for independent

variables
→
x ; and F−1

→
ξ

[⊗]
(→

x
)

is the inverse 2D Fourier transform for independent variables
→
ξ . Replace variable

→
ϕρ←

→
ξ , and combined with the Jacobian determinant, there is

d2
→
ξ =

∣∣∣∣ cos ϕ −ρ sin ϕ
sin ϕ ρ cos ϕ

∣∣∣∣dρdϕ = ρdρdϕ.

The orthogonal direction integral of the rectangular coordinate system is transformed
into the rotation direction integral of the polar coordinate system. According to the central
slice theorem [23], there is

f
(→

x
)

=
1
2

∫ 2π

0

∫
R
Fr[R[ f ](r, ϕ)](ρ) · exp

(
2πiρ

→
ϕ

T→
x
)
· |ρ|dρdϕ, (3)

where Fr[⊗](ρ) is the Fourier transform with respect to variable r. For |ρ| in Equation (3),
there is

|ρ| = ρsgn(ρ) = −isgn(ρ) · iρ,

where sgn(•) represents the sign function. According to Rule 6, there is

δ(r) = F [1](ρ) = Fr

[
r · 1

r

]
(ρ) =

i
2π
· d

dρ

(
Fr

[
1
r

]
(ρ)

)
,

where δ(•) represents the Dirac delta function. Combined with the principle of parity in-
variance,

Fr

[
1
r

]
(ρ) = −πisgn(ρ).

By the inverse Fourier transform, there is

F−1
ρ [−isgn(ρ)](r) =

1
πr

, (4)

whereF−1
ρ [⊗](r) is the inverse Fourier transform with respect to variable ρ in the frequency

domain. According to Rule 5, there is

F−1
ρ [iρ · Fr[R[ f ](r, ϕ)](ρ)](r) =

1
2π
· ∂

∂r
R[ f ](r, ϕ). (5)
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By substituting Equations (4) and (5) into Equation (3), and according to Rule 1
and Rule 7, the inverse Radon transform formula in the form of the Hilbert transform is
obtained, as

f
(→

x
)
=

1
4π

∫ 2π

0
Hτ

[
∂

∂τ
R[ f ](τ, ϕ)

]
(r)
∣∣∣∣r=→ϕT→

x
dϕ, (6)

where Hτ [⊗](r) is the Hilbert transform with respect to variable τ.
In Equation (6), the derivative term in the Hilbert transform is sensitive to the minor

errors in the projections, which is not conducive to accurate reconstruction. The Hilbert
transform is defined using the Cauchy principal value (marked with p.v.) as

Hτ

[
∂

∂τ
R[ f ](τ, ϕ)

]
(r) := p.v.

∫
R

1
π(r− τ)

· ∂

∂τ
R[ f ](τ, ϕ)dτ. (7)

On the basis that the anomalous integral in Equation (7) converges, the right side of
Equation (7) can be transformed by the partial integration as∫ 1

r− τ
· ∂

∂τ
R[ f ](τ, ϕ)dτ =

R[ f ](τ, ϕ) + C
r− τ

−
∫ R[ f ](τ, ϕ) + C

(r− τ)2 dτ, (8)

where C is a constant. To ensure the validity of the partial integration, the convergence of the
integral on the right side of Equation (8) must be guaranteed, so there is C = −R[ f ](r, ϕ).
Equation (6) is further equivalent to

f
(→

x
)
=

1
4π2 · p.v.

∫ 2π

0

∫
R

R[ f ](r, ϕ)−R[ f ](τ, ϕ)

(r− τ)2

∣∣∣∣r=→ϕT→
x

dτdϕ. (9)

Eliminate the singularity of the integrand in Equation (9), then replace variable
s← r− τ . Equation (2) is obtained, which is the formula of SDBP technique. Theorem 1
is proved. �

3. Computational Model for Filter Expressions

On the basis of the SDBP technique, a filter construction method is proposed. Im-
plemented in the spatial domain, the method reveals the relationship between the filter
function and convolution kernel, which can be used to restore discrete sampling data into
continuous functions by convolution.

3.1. Projection Data Preprocess

For the target f
(→

x
)

, on the premise that the projection of f
(→

x
)

at any angle is
systematic sampling data, it is assumed that the known conditions are as follows:

Hypothesis 3.

1. The sampling interval of the detector is d, d ∈ R+;
2. The projection angles are discrete at equal intervals, and M is the number of total projections;
3. For m ∈ N and n ∈ Z, the projection value is defined as

Pm(n) :=
∫
R
R[ f ](r, ϕm) · δ(r− nd)dr,

where ϕm = 2πm/M.

In order to acquire the continuous second-order difference projection function at
any angle whose domain is R, the discrete projection signal should be converted into a
continuous function. The continuous second-order difference projection function ∆2

n

[
P̃m

]
(ŝ)
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of ŝ ∈ R is constructed by projection values Pm(n), where ŝ is the normalized variable of s
as ŝ = s/d. The constructed ∆2

n

[
P̃m

]
(ŝ) is expressed as follows:

Definition 2. For m ∈ N, n ∈ Z, ν ∈ Z, and ŝ ∈ R,

∆2
n

[
P̃m

]
(ŝ) := ∑

ν∈Z

(
∆2

n[Pm](ν) · k(ŝ− ν)
)

, (10)

where k(•) represents the convolution kernel function, and k(ŝ) of ŝ ∈ R satisfies the following conditions:

Hypothesis 4. For ν ∈ Z, ŝ ∈ R,

1. k(ŝ) is piecewise continuous, and the integral
∫
R k(ŝ)dŝ = 1;

2. k(ŝ) = k(−ŝ) , k(ν)
∣∣
ν 6=0 = 0, and lim

t→∞
k(ŝ) = 0;

3. k(ŝ) is differentiable at any ŝ = ν 6= 0;

4. The second-order derivative d2k(ŝ)
dŝ2 is continuous in the deleted neighborhood of any ŝ = ν 6= 0,

and d2k(ŝ)
dŝ2 converges on both sides of any ŝ = ν 6= 0.

3.2. Conversion Relation between Convolution Kernels and Filter Functions

The reconstructed value f
(→

x
)

of
→
x ∈ R2 can be approximated by the following

formula [14]:

f̃
(→

x
)

=
πd
M

M−1

∑
m=0

∑
n∈Z

(
Pm

(⌊
→
ϕ

T
m
→
x /d + 1/2

⌋
− n

)
· h(n)

)
, (11)

where
→
ϕm = (cos ϕm, sin ϕm)

T ; b•c represents the floor function, which gives the largest
integer no greater than the input real number; h(n) is the expression of filter, which can be
obtained by k(ŝ) as follows:

Theorem 2. For n ∈ Z\{0} , τ ∈ R, there is

h(n)
∣∣n 6=0 =

1
2πd2 Hτ

[
dk(τ)

dτ

]
(n); (12)

if n = 0, there is
h(0) = − ∑

n∈Z\{0}
h(n). (13)

For any given kernel function, its corresponding filter is uniquely determined. On the
other hand, the kernel function corresponding to any given h(n) is not unique.

Given the analytic function (not unique) of h(n)
∣∣n 6=0 , which is h(r̂) of r̂ ∈ R, where r̂

is the normalized variable of r as r̂ = r/d, the corresponding convolution kernel of h(r̂) is
as follows:

Theorem 3. For ŝ ∈ R, τ ∈ R, there is

k(ŝ) = 2πd2Hτ

[∫
h(τ)dτ

]
(ŝ). (14)

By applying the proposed computational model, a variety of new filters can be ob-
tained by designing the interpolation functions. Conversely, according to Equation (14),
the kernel functions corresponding to some commonly used filters are revealed. Therefore,
the filter expression is closely related to the restoration process of the projection signal.



Mathematics 2022, 10, 579 7 of 18

Proof of Theorem 2. For the discrete projections, according to the SDBP technique, the
inverse transform can be approximately expressed as

f
(→

x
)
≈ − 1

2πM
lim

ε→0+

M−1

∑
m=0

∫ +∞

ε

∆2
r [R[ f ](r, ϕm)](s)

s2

∣∣∣∣r=→ϕT
m
→
x

ds.

Replace variable ŝ← s/d , then replace the second-order difference with ∆2
n

[
P̃m

]
(ŝ) in

Equation (10). The estimation formula of reconstructed f
(→

x
)

can be acquired as

f̃
(→

x
)

= − 1
2πdM

lim
ε→0+

M−1

∑
m=0

∫ +∞

ε

∆2
n

[
P̃m

]
(ŝ)

ŝ2

∣∣∣∣∣n=b→ϕ T
m
→
x

d + 1
2 c

dŝ, (15)

According to Equation (10), Equation (15) can be further transformed into

f̃
(→

x
)

= − 1
2πdM

lim
ε→0+

M−1

∑
m=0

∑
ν∈N+

(
∆2

n[Pm](ν) · p.v.
∫
R

k(ν− τ)

τ2 dτ

)∣∣∣∣∣n=b→ϕ T
m
→
x

d + 1
2 c

. (16)

In light of the operational characteristics of discrete convolution, Equation (16) can be
transformed into Equation (11) in which

h(n)
∣∣n 6=0 = − 1

2π2d2 · p.v.
∫
R

k(n− τ)

τ2 dτ. (17)

By performing partial integral in Equation (17), there is

h(n)
∣∣n 6=0 =

1
2πd2 · p.v.

∫
R

1
πτ
· dk(n− τ)

dτ
dτ.

Additionally, if k(ŝ) satisfies Hypothesis 4 and is not differentiable at countable discrete
points, dk(ŝ)

dŝ refers to the generalized derivative. Combined with the definition of the Hilbert
transform, Equation (12) can be acquired. Since the sum of all the Pm(n) coefficients in
Equation (16) is zero, Equation (13) holds. Theorem 2 is proved. �

Proof of Theorem 3. Inversely, if the analytic function h(ŝ) of ŝ ∈ R is given, then h(ŝ)
satisfies Equation (17) as

h(ŝ) = − 1
2π2d2 · p.v.

∫
R

k(ŝ− τ)

τ2 dτ.

By the Fourier transform and according to Rule 7, there is

Fτ [h](ρ̂) = − 1
2π2d2 · Fτ [k](ρ̂) · Fτ

[
1
τ2

]
(ρ̂). (18)

For Fτ

[
1

τ2

]
(ρ̂), according to Rule 5, there is

Fτ

[
1
τ2

]
(ρ̂) = Fτ

[
− d

dτ

(
1
τ

)]
(ρ̂) = −2πiρ̂ · Fτ

[
1
τ

]
(ρ̂) = −2π2|ρ̂|. (19)

By substituting Equation (19) into Equation (18), the following equation is acquired
after performing the inverse Fourier transform as

k(ŝ) = d2F−1
ρ̂

(
Fτ [h](ρ̂)
|ρ̂|

)
(ŝ). (20)
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In Equation (20), there is

Fτ [h](ρ̂)
|ρ̂| = −2πisgn(ρ̂) · Fτ [h](ρ̂)

2πiρ̂
. (21)

According to Rule 5,

Fτ [h](ρ̂) = 2πiρ̂ · Fτ

[∫
h(τ)dτ

]
(ρ̂). (22)

By substituting Equation (22) into Equation (21), it can be deducted that

Fτ [h](ρ̂)
|ρ̂| = −2πisgn(ρ̂) · Fτ

[∫
h(τ)dτ

]
(ρ̂). (23)

According to Rule 7 and combined with Equation (4), the following equation is
acquired after performing the Fourier transform on both sides of Equation (23) as

F−1
ρ̂

(
Fτ [h](ρ̂)
|ρ̂|

)
(ŝ) = 2π · p.v.

∫
R

∫
h(τ)dτ

π(ŝ− τ)
dτ. (24)

By substituting Equation (24) into Equation (20), and combined with the definition of
the Hilbert transform, Equation (14) can be acquired. Theorem 3 is proved. �

It can be clearly observed that there is a reciprocal relationship between filter function
h(•) and kernel function k(•), which can be realized by the Hilbert transform, shown
as follows:

h(•)
2πd2Hτ [

∫
h(τ)dτ](•)
�

1
2πd2 Hτ [

dk(τ)
dτ ](•)

k(•).

Based on the principles above, the mutual conversion between the filter function and
kernel function can be realized. It shows the correlation between the filter expression and
convolution kernel, which is not available in the frequency domain windowing method
and the Riesz transform method [24].

4. Illustration with Examples

To verify the validity of the proposed method for constructing filters, we apply some
common kernels to the proposed model as examples, by which some known filters are
derived. We also compare the reconstruction errors of different filters.

4.1. R-L Filter: sin c(•) Kernel

If ∆2
n

[
P̃m

]
(ŝ) of ŝ ∈ R is the Whittaker–Shannon interpolation of ∆2

n[Pm](ν), then the
convolution kernel is the normalized sinc function as

k(ŝ) = sin c(πŝ).

The derivative of the normalized sinc function is

d
dτ

sin c(πτ) =
τ cos(πτ)− sin(πτ)

πτ2 .

According to Equation (12), there is

hsin c(n)
∣∣n 6=0 =

1
2πd2 · p.v.

∫
R

τ cos(πτ)− sin(πτ)

π2τ2(n− τ)
dτ = −1− (−1)n

2π2n2d2 ,
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By Equation (13),

hsin c(0) = − 1
π2d2 ∑

n∈N+

(−1)n − 1
n2 =

3ς(2)
2π2d2 =

1
4d2 ,

where ς(•) represents the Riemann zeta function, and ς(2) = π2

6 . Therefore, the filter
corresponding to the normalized sinc kernel is

hsin c(n) =

{
1

4d2 , n = 0

− 1−(−1)n

2π2n2d2 , n 6= 0
. (25)

Equation (25) is the expression of the R-L filter [9].

4.2. S-L Filter: Π(•) Kernel

If ∆2
n

[
P̃m

]
(ŝ) of ŝ ∈ R is the proximal interpolation of ∆2

n[Pm](ν), then the kernel
function is the unit rectangular function, as

k(ŝ) = Π(ŝ),

where Π(•) represents the unit rectangular function. The generalized derivative of unit
rectangular function is

d
dτ

Π(τ) := δ(τ + 1/2)− δ(τ − 1/2).

According to Equation (12), there is

hΠ(n)
∣∣n 6=0 =

1
2πd2

∫
R

δ(τ + 1/2)− δ(τ − 1/2)
π(n− τ)

dτ = − 2
π2d2(4n2 − 1)

.

By Equation (13),

hΠ(0) =
4

π2d2 ∑
n∈N+

1
4n2 − 1

=
2

π2d2 .

Therefore, the filter corresponding to the unit rectangular kernel is

hΠ(n) =

{
2

π2d2 , n = 0
− 2

π2d2(4n2−1) , n 6= 0 . (26)

Equation (26) is the expression of the S-L filter [10].

4.3. Delta Filter: δ(•) Kernel

If ∆2
n

[
P̃m

]
(ŝ) of ŝ ∈ R is the sampling function with each amplitude ∆2

n[Pm](ν), then
the convolution kernel is the unit delta function, as

k(ŝ) = δ(ŝ).

According to Equation (12), there is

hδ(n)
∣∣n 6=0 =

1
2πd2

∫
R

dδ(τ)

dτ
· 1

π(n− τ)
dτ = − 1

2πd2

∫
R

δ(τ)

π(n− τ)2 dτ = − 1
2π2n2d2 .
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By Equation (13),

hδ(0) =
1

π2d2 ∑
n∈N+

1
n2 =

ς(2)
π2d2 =

1
6d2 .

Therefore, the filter corresponding to the unit delta kernel is

hδ(n) =

{
1

6d2 , n = 0
− 1

2π2n2d2 , n 6= 0
. (27)

The expression of the delta filter shown in Equation (27) was firstly proposed by Yu-
chuan Wei et al. [25], and was introduced as a practical filter to approximate the ideal filter.

4.4. Imaging Tests

The Shepp–Logan phantom of 1024 × 1024 pixels was used to test the CT imaging
performance of different example filters. The number of projections was set to 720, and the
sampling interval of the detector was equal to the pixel size of the phantom. For further
comparison, Gaussian white noise of standard deviation σ was added to the sinogram to
test the performance of the filters in noise. The reconstructed images are shown in Figure 1.
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Figure 1. Reconstructed Shepp–Logan phantom images by exemplified filters: (a) R-L filter without
noise; (b) S-L filter without noise; (c) Delta filter without noise; (d) R-L filter in noise of σ = 5; (e) S-L
filter in noise of σ = 5; (f) Delta filter in noise of σ = 5.

To reflect the reconstruction accuracy more intuitively, we used the root mean square
error (RMSE) to evaluate the error between the reconstructed image and the original image.
The RMSE of CT image is defined as follows:

RMSE =

√√√√√√√√
N
∑

u=1

N
∑

v=1

(
f̃u,v − fu,v

)2

N
∑

u=1

N
∑

v=1
f 2
u,v

,
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where fu,v is the gray value of the original image pixel in row u and column v; f̃u,v is the
gray value of the reconstructed image pixel in row u and column v; N is the maximum
value of u and column v. By calculation, the RMSE table of reconstructed images is shown
in Table 1, which shows that the reconstructed image of delta filter has the smallest RMSE
under each noise intensity.

Table 1. RMSE of reconstructed images.

Noise Density R-L Filter S-L Filter Delta Filter

σ = 0 0.2672 0.2508 0.2431
σ = 1 0.3231 0.2919 0.2784
σ = 5 0.6544 0.5886 0.5332

5. Analysis of Basic Composition of Filters

In order to make further explorations in the rules of the filter properties changing with
the kernels, the basic components of filters are analyzed such that an arbitrary filter can be
decomposed into a combination of basic filters, which is similar to the Fourier transform.
The properties of basic filters provide guidance for the design of the kernel functions.

5.1. Decomposition of Kernel Functions

A generalized function can be described by Schwartz distribution. As for the kernel
function k(•), its Schwartz distribution is defined by

〈k,T〉 :=
∫
R

k(τ) · T(τ)dτ, (28)

where T(•) represents the test function.
By performing discretization, the local function in a definite interval is regarded as

a delta function whose amplitude is equal to the interval integral. In this way, the kernel
function can be decomposed to a combination of delta functions. Assume that the interval
between any adjacent integers is equally divided by piecewise intervals, then the discretized
kernel function can be defined as follows:

Definition 3. For ν ∈ Z, Λ ∈ R+, and τ ∈ RR,

k̃Λ(τ) := ∑
ν∈Z

(
δ

(
τ − 2ν + 1

2Λ

)
·
∫
R

k(τ) ·Π
(

Λτ − 2ν + 1
2

)
dτ

)
. (29)

Considering when Λ→ ∞, by applying Equation (28) to Equation (29), there is〈
k̃Λ,T

〉
|Λ→∞ = lim

Λ→∞
∑

ν∈Z

(
T

(
2ν + 1

2Λ

)
·
∫
R

k(τ) ·Π
(

Λτ − 2ν + 1
2

)
dτ

)
.

If T(•) is continuous within its domain, according to the first mean value theorem for
definite integrals, the discretized kernel k̃Λ(•) when Λ→ ∞ and the original kernel k(•)
have the identical Schwartz distribution,〈

k̃Λ,T
〉
|Λ→∞ = lim

Λ→∞
∑

ν∈Z

(∫
R

k(τ) · T(τ) ·Π
(

Λτ − 2ν + 1
2

)
dτ

)
= 〈k,T〉. (30)

To describe the basic elements of kernel functions, the delta_2 function δ2(•, λ) is
defined, which is described as follows:
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Definition 4. For λ ∈ R, τ ∈ R,

δ2(τ, λ) :=
1
2
(δ(τ − λ) + δ(τ + λ)), (31)

where λ represents the displacement of the delta functions from the origin.

According to the conditions in Hypothesis 4, k̃Λ(τ) can be expressed in the following
form as

k̃Λ(τ) = ∑
ν∈Z

(
aΛ(ν) · δ2

(
τ,

2ν + 1
2Λ

))
, (32)

where aΛ(ν) is the amplitude of delta_2 function,

aΛ(ν) =
∫
R

k(τ) ·Π
(

Λτ − 2ν + 1
2

)
dτ.

According to Hypothesis 4, a(ν) satisfies the following:

1. ∑
ν∈Z

aΛ(ν) = 1;

2. aΛ(ν) = aΛ(−ν);
3. For a finite fixed value of Λ, lim

ν→∞
aΛ(ν) = 0.

5.2. Filters of Basic Type

In the definition of Schwartz distribution, the delta_2 function is the basis function of
any kernel. According to Equations (12) and (31), if δ2(τ, λ) is the kernel function of τ ∈ R
and λ ∈ R\{Z\{0}}, there is

hδ2(n, λ)
∣∣n 6=0 = − 1

4πd2

∫
R

δ(τ − λ) + δ(τ + λ)

π(n− τ)2 dτ = − 1
4π2d2

(
1

(n− λ)2 +
1

(n + λ)2

)
. (33)

By Equation (13), the following equation can be acquired, as

hδ2(0, λ) = − 1
2π2λ2d2 −

1
2π2d2 ·

(
d

dτ ∑
n∈Z

(
1

n + τ

))
|τ=λ . (34)

The partial fraction decomposition of cotangent function can be used to calculate the
exact value of h(0). For τ ∈ R\Z, the sum of the sequence in Equation (34) is

∑
n∈Z

1
n + τ

= π cot(πτ).

Therefore,

hδ2(0, λ) =
1

2d2

(
1

sin2(πλ)
− 1

π2λ2

)
. (35)

Combined with Equation (33) and Equation (35), the filter expression corresponding
to delta_2 function kernel is

hδ2(n, λ) =


1

2d2

(
1

sin2(πλ)
− 1

π2λ2

)
, n = 0

− 1
4π2d2

(
1

(n−λ)2 +
1

(n+λ)2

)
, n 6= 0

. (36)

Equation (36) is the expression of basic filter series. In particular, hδ2(n, 0) is the delta
filter as λ = 0.

A filter can be decomposed into a linear combination of basic filters, which is expressed
as follows:
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Theorem 4. For n ∈ Z, λ ∈ R\{Z\{0}},

h(n) =
∫
R

k(λ) · hδ2(n, λ)dλ. (37)

Proof of Theorem 4. The operation in Equation (12) is a special case of Schwartz distribu-
tion expressed in Equation (28). Combined with Equation (30), it can be concluded that
k̃Λ(•) and k(•) correspond to the same filter when Λ→ ∞, which means

lim
Λ→∞

h̃Λ(n) = h(n),

where h̃Λ(n) corresponds to k̃Λ(τ). On the basis of the linearity in Equation (12), it can be
derived from Equation (32) that

h̃Λ(n) = ∑
ν∈Z

(
aΛ(ν) · hδ2

(
n,

2ν + 1
2Λ

))
. (38)

If k(τ) is continuous for τ ∈
(

ν
Λ , ν+1

Λ

)
, then

lim
Λ→∞

aΛ(ν) = lim
Λ→∞

(
1
Λ
· k
(

2ν + 1
2Λ

))
. (39)

Suppose that k(τ) is continuous for τ ∈ R. According to Equations (38) and (39),
there is

lim
Λ→∞

h̃Λ(n) = lim
Λ→∞

∑
ν∈Z

(
1
Λ
· k
(

2ν + 1
2Λ

)
· hδ2

(
n,

2ν + 1
2Λ

))
. (40)

By means of the definition of integral, Equation (37) can be obtained by the conversion
of Equation (40). Under the constraint of Hypothesis 4, it can be proved that Equation (37)
is still valid in the case that the kernel function contains finite discontinuities, which include
delta function components. Theorem 4 is proved. �

5.3. Imaging Tests

The Shepp–Logan phantom of 1024×1024 pixels was used to test the CT imaging
performance of different basic filters. The number of projections was set to 720, and the
sampling interval of the detector was equal to the pixel size of the phantom. The images of
the Shepp–Logan phantom were reconstructed by a number of basic filters with different λ,
and some results are shown in Figure 2.
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(a) λ = 1/2; (b) λ = 25/2; (c) λ = 49/2; (d) λ = 3/4; (e) λ = 7/8; (f) λ = 15/16.

In addition to RMSE, we used the average gradient module (AGM) to measure the
sharpness of the CT images. The image sharpness has a positive correlation with AGM.
The computing formula of the CT image AGM is as follows:

AGM =

N
∑

u=1

N−1
∑

v=1

∣∣∣ f̃u,v − f̃u,v+1

∣∣∣+ N−1
∑

u=1

N
∑

v=1

∣∣∣ f̃u,v − f̃u+1,v

∣∣∣
2N(N − 1)

.

The calculated RMSE and AGM of CT images reconstructed by basic filters are shown
in Figures 3 and 4, and the corresponding data set is provided in Appendix B.
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Figure 3. RMSE and AGM of CT images reconstructed by basic filters with different λ (λ = ν/10,
ν ∈ Z and λ /∈ Z\{0} ).
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Figure 4. RMSE and AGM of CT images reconstructed by basic filters with different λ (λ = 1/2 + ν

and ν ∈ Z ).

If the parameter λ is divided into two parts, integer and decimal, as λ = λ0 + λ1
(λ0 ∈ Z and λ1 ∈ (−1/2, 1/2]), it can be summarized from Figures 3 and 4 that the
reconstructed image gradually blurs with the increase in λ0 while λ1 is constant, and
the sharpness of the image increases as λ1 is closer to 0 while λ0 is constant. The RMSE
is minimal only when λ = 0. The phenomenon verifies that the delta filter has the
characteristic of minimal reconstruction error.

The simulated digital resolution chart of 1024 × 1024 pixels was reconstructed by
basic filters with different λ to highlight the phenomenon mentioned above. The number
of projections was set to 1440, and the sampling interval of the detector was equal to the
pixel size of the phantom. Some results are shown in Figure 5.
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Figure 5. Digital resolution chart images reconstructed by basic filters with different parameters:
(a) λ = 1/2; (b) λ = 25/2; (c) λ = 49/2; (d) λ = 3/4; (e) λ = 7/8; (f) λ = 15/16.
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By observing the local centers of the reconstructed images shown in Figure 6, it can be
noticed that the stripes near center become clearer as λ1 is closer to 0 while λ0 is constant,
indicating improved resolution.
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Figure 6. Local centers of digital resolution chart images reconstructed by basic filters with different
parameters: (a) λ = 1/2; (b) λ = 3/4; (c) λ = 15/16.

6. Discussion

The convolution kernel mentioned in this article is basically used for projection data
restoration. Meanwhile, the kernel is the inverse Fourier transform of the filtering window
function in the frequency domain. In that sense, the proposed method indicates that the
applicable window function has more possibilities, and even that the window function
does not necessarily have to converge. It shows from a side view that the traditional filter
design method does have some limitations.

As a conclusion, any CT image reconstructed through FBP is a linear superposition
of the images reconstructed by basic filters. However, there are more properties of basic
filters that need to be revealed. Additionally, the optimal composition of the basic filters
remains a subject to be studied. This article mainly describes the relevant theories of filter
construction, about the rationale extension and basic filter decomposition. The possible
applications of the theories need to be further explored, which are not discussed here.

7. Conclusions

The SDBP technique proposed in this article is an approach for an accurate inverse
Radon transform, which can be realized through a series of well-defined calculation pro-
cesses. The transformation between the filter function and convolution kernel is derived
from the SDBP formula. The conversion relationship indicates a systematic filter design
method, showing that a desired filter can be acquired by an appropriate convolution kernel.
By extension, a decomposition method of filters is proposed. For all filters used for CT
reconstruction, any of them can be decomposed into basic filters. Some characteristics
of the basic filters are demonstrated through simulations of CT reconstruction for the
Shepp–Logan phantom and the digital resolution chart. By comparing RMSE and AGM, it
is concluded that the error and resolution of the basic filter reconstructed image change pe-
riodically with parameter λ. As an inference, the properties of basic filters can be exploited
to construct filters that meet some certain index requirements.
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Appendix A

Table A1. Table of some functional Fourier transform pairs [26].

Rule Number Function Fourier Transform

0 f (x) Fx[ f ](ξ) =
∫
R f (x) · exp(−2πiξx)dx

1 a · f (x) + b · g(x) a · Fx[ f ](ξ) + b · Fx[g](ξ)
2 f (x− a) Fx[ f ](ξ) · exp(−2πiaξ)

3 f (ax) 1
|a| · Fx[ f ]

(
ξ
a

)
4 Fξ [ f ](x) f (−ξ)
5 dn

dxn f (x) (2πiξ)n · Fx[ f ](ξ)
6 xn · f (x)

(
i

2π

)n
· dn

dξnFx[ f ](ξ)
7 f (x) ∗ g(x) Fx[ f ](ξ) · Fx[g](ξ)
8 f (x) · g(x) Fx[ f ](ξ) ∗ Fx[g](ξ)

Appendix B

Table A2. Data set of RMSE and AGM of reconstructed Shepp–Logan images by basic filters with
different λ.

λ Value RMSE AGM

0 ±0.1 0.2824 0.2867 1.8782 1.9003
±0.2 ±0.3 0.2890 0.2942 1.9617 2.0801
±0.4 ±0.5 0.3221 0.3975 2.2354 2.4578
±0.6 ±0.7 0.5801 0.8699 2.7555 3.1952
±0.8 ±0.9 1.2499 1.6373 3.8340 4.5736
±1.1 ±1.2 1.6345 1.2620 4.5341 3.6529
±1.3 ±1.4 0.9700 0.8676 2.8780 2.3502
±1.5 ±1.6 0.9142 1.0400 2.0154 1.8432
±1.7 ±1.8 1.2166 1.4085 1.8012 1.8297
±1.9 ±2.5 1.5649 1.1463 1.9009 1.5652
±3.5 ±4.5 1.1787 1.1407 1.4371 1.3034
±5.5 ±6.5 1.1055 1.0779 1.2284 1.2093
±7.5 ±8.5 1.0533 1.0425 1.1680 1.1519
±9.5 ±10.5 1.0359 1.0189 1.1417 1.1248
±11.5 ±12.5 1.0056 0.9930 1.1149 1.0965
±13.5 ±14.5 0.9813 0.9711 1.0747 1.0532
±15.5 ±16.5 0.9614 0.9498 1.0377 1.0167
±17.5 ±18.5 0.9431 0.9384 0.9981 0.9874
±19.5 0.9365 0.9754
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