Novel Analysis of the Fractional-Order System of Non-Linear Partial Differential Equations with the Exponential-Decay Kernel
Abstract
:1. Introduction
2. Preliminaries and Concepts
3. Remarks
4. Road Map of the Suggested Method
5. Error Analysis and Convergence
6. The General Discussion of the VITM
7. Applications
7.1. Example 1
7.2. Case 1
7.3. Case 2
8. Results and Discussion
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sabatier, J.A.T.M.J.; Agrawal, O.P.; Machado, J.T. Advances in Fractional Calculus; Springer: Dordrecht, The Netherlands, 2007; Volume 4, No. 9. [Google Scholar]
- Atangana, A.; Baleanu, D. Caputo–Fabrizio Derivative Applied to Groundwater Flow within Confined Aquifer. J. Eng. Mech. 2017, 143, 4016005. [Google Scholar] [CrossRef]
- Abbas, M.I. Controllability and Hyers-Ulam stability results of initial value problems for fractional differential equations via generalized proportional-Caputo fractional derivative. Miskolc Math. Notes 2021, 22, 491–502. [Google Scholar] [CrossRef]
- Akdemir, A.O.; Butt, S.I.; Nadeem, M.; Ragusa, M.A. New General Variants of Chebyshev Type Inequalities via Generalized Fractional Integral Operators. Mathematics 2021, 9, 122. [Google Scholar] [CrossRef]
- Alshabanat, A.; Samet, B. A numerical study of a coupled system of fractional differential equations. Filomat 2020, 34, 2585–2600. [Google Scholar] [CrossRef]
- Rezapour, S.; Iqbal, M.Q.; Hussain, A.; Zada, A.; Etemad, S. Fixed Point and Endpoint Theories for Two Hybrid Fractional Differential Inclusions with Operators Depending on an Increasing Function. J. Funct. Spaces 2021, 2021, 4512223. [Google Scholar] [CrossRef]
- Sidhardh, S.; Patnaik, S.; Semperlotti, F. Geometrically non-linear response of a fractional-order nonlocal model of elasticity. Int. J. Non-linear Mech. 2020, 125, 103529. [Google Scholar] [CrossRef]
- Amin, R.; Senu, N.; Hafeez, M.B.; Arshad, N.I.; Ahmadian, A.; Salahshour, S.; Sumelka, W. A Computational AlgorithmL for the numerical solution of non-linear fractional integral equations. Fractals 2022, 30, 2240030. [Google Scholar]
- Patnaik, S.; Sidhardh, S.; Semperlotti, F. Geometrically non-linear analysis of nonlocal plates using fractional calculus. Int. J. Mech. Sci. 2020, 179, 105710. [Google Scholar] [CrossRef]
- Shah, R.; Khan, H.; Baleanu, D.; Kumam, P.; Arif, M. A semi-analytical method to solve family of Kuramoto–Sivashinsky equations. J. Taibah Univ. Sci. 2020, 14, 402–411. [Google Scholar] [CrossRef]
- Khan, H.; Shah, R.; Kumam, P.; Arif, M. Analytical Solutions of Fractional-Order Heat and Wave Equations by the Natural Transform Decomposition Method. Entropy 2019, 21, 597. [Google Scholar] [CrossRef] [Green Version]
- Shah, R.; Khan, H.; Kumam, P.; Arif, M.; Baleanu, D. Natural Transform Decomposition Method for Solving Fractional-Order Partial Differential Equations with Proportional Delay. Mathematics 2019, 7, 532. [Google Scholar] [CrossRef] [Green Version]
- Khan, H.; Shah, R.; Baleanu, D.; Kumam, P.; Arif, M. Analytical Solution of Fractional-Order Hyperbolic Telegraph Equation, Using Natural Transform Decomposition Method. Electronics 2019, 8, 1015. [Google Scholar] [CrossRef] [Green Version]
- Shah, R.; Khan, H.; Mustafa, S.; Kumam, P.; Arif, M. Analytical Solutions of Fractional-Order Diffusion Equations by Natural Transform Decomposition Method. Entropy 2019, 21, 557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madani, M.; Fathizadeh, M.; Khan, Y.; Yildirim, A. On the coupling of the homotopy perturbation method and Laplace transformation. Math. Comput. Model. 2011, 53, 1937–1945. [Google Scholar] [CrossRef]
- Khan, Y.; Wu, Q. Homotopy perturbation transform method for non-linear equations using He’s polynomials. Comput. Math. Appl. 2011, 61, 1963–1967. [Google Scholar] [CrossRef] [Green Version]
- Morales-Delgado, V.F.; Gómez-Aguilar, J.F.; Yépez-Martínez, H.; Baleanu, D.; Jiménez, R.E.; Olivares-Peregrino, V.H. Laplace homotopy analysis method for solving linear partial differential equations using a fractional derivative with and without kernel singular. Adv. Differ. Equ. 2016, 2016, 1. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Nohara, B.T.; Liao, S. Series solutions of coupled Van der Pol equation by means of homotopy analysis method. J. Math. Phys. 2010, 51, 63517. [Google Scholar] [CrossRef] [Green Version]
- Shah, R.; Khan, H.; Baleanu, D. Fractional Whitham–Broer–Kaup Equations within Modified Analytical Approaches. Axioms 2019, 8, 125. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, N.; Yasmin, H.; Ali, A.; Bariq, A.; Al-Sawalha, M.M.; Mohammed, W.W. Numerical Methods for Fractional-Order Fornberg-Whitham Equations in the Sense of Atangana-Baleanu Derivative. J. Funct. Spaces 2021, 2021, 2197247. [Google Scholar] [CrossRef]
- Iqbal, N.; Wu, R. Pattern formation by fractional cross-diffusion in a predator-prey model with Beddington-DeAngelis type functional response. Int. J. Mod. Phys. 2019, 33, 1950296. [Google Scholar] [CrossRef]
- Iqbal, N.; Yasmin, H.; Rezaiguia, A.; Kafle, J.; Almatroud, A.O.; Hassan, T.S. Analysis of the Fractional-Order Kaup–Kupershmidt Equation via Novel Transforms. J. Math. 2021, 2021, 2567927. [Google Scholar] [CrossRef]
- Huebner, K.H.; Dewhirst, D.L.; Smith, D.E.; Byrom, T.G. The Finite Element Method for Engineers; John Wiley & Sons: Hoboken, NJ, USA, 2001. [Google Scholar]
- Smith, G.D.; Smith, G.D.; Smith, G.D.S. Numerical Solution of Partial Differential Equations: Finite Difference Methods; Oxford University Press: Oxford, UK, 1985. [Google Scholar]
- Keskin, Y.; Oturanc, G. Reduced Differential Transform Method for Partial Differential Equations. Int. J. Nonlinear Sci. Numer. Simul. 2009, 10, 741–750. [Google Scholar] [CrossRef]
- Gupta, P.K. Approximate analytical solutions of fractional Benney–Lin equation by reduced differential transform method and the homotopy perturbation method. Comput. Math. Appl. 2011, 61, 2829–2842. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, W.W.; Albosaily, S.; Iqbal, N.; El-Morshedy, M. The effect of multiplicative noise on the exact solutions of the stochastic Burgers’ equation. Waves Random Complex Media 2021, 1–13. [Google Scholar] [CrossRef]
- Veeresha, P.; Prakasha, D.G.; Baskonus, H.M. An efficient technique for a fractional-order system of equations describing the unsteady flow of a polytropic gas. Pramana 2019, 93, 1–13. [Google Scholar] [CrossRef]
- Klebanov, I.; Panov, A.; Ivanov, S.; Maslova, O. Group analysis of dynamics equations of self-gravitating polytropic gas. Commun. Nonlinear Sci. Numer. Simul. 2017, 59, 437–443. [Google Scholar] [CrossRef]
- Moradpour, H.; Abri, A.; Ebadi, H. Thermodynamic behavior and stability of Polytropic gas. Int. J. Mod. Phys. D 2016, 25, 1650014. [Google Scholar] [CrossRef] [Green Version]
- Matinfar, M.; Saeidy, M. Homotopy analysis method for solving the equation governing the unsteady flow of a polytropic gas. World Appl. Sci. J. 2010, 9, 980–983. [Google Scholar]
- Maitama, S. Exact solution of equation governing the unsteady flow of a polytropic gas using the natural decomposition method. Appl. Math. Sci. 2014, 8, 3809–3823. [Google Scholar] [CrossRef]
- He, J.-H. Homotopy perturbation technique. Comput. Methods Appl. Mech. Eng. 1999, 178, 257–262. [Google Scholar] [CrossRef]
- He, J.-H. Application of homotopy perturbation method to non-linear wave equations. Chaos Solitons Fractals 2005, 26, 695–700. [Google Scholar] [CrossRef]
- Das, S.; Gupta, P.K. An Approximate Analytical Solution of the Fractional Diffusion Equation with Absorbent Term and External Force by Homotopy Perturbation Method. Z. Naturforschung A 2010, 65, 182–190. [Google Scholar] [CrossRef]
- Yildirim, A. An Algorithm for Solving the Fractional Nonlinear Schrödinger Equation by Means of the Homotopy Perturbation Method. Int. J. Nonlinear Sci. Numer. Simul. 2009, 10, 445–450. [Google Scholar] [CrossRef]
- Yang, X.-J. A new integral transform method for solving steady heat-transfer problem. Therm. Sci. 2016, 20, 639–642. [Google Scholar] [CrossRef] [Green Version]
- He, J. A new approach to non-linear partial differential equations. Commun. Nonlinear Sci. Numer. Simul. 1997, 2, 230–235. [Google Scholar] [CrossRef]
- He, J.-H.; Wu, X.-H. Variational iteration method: New development and applications. Comput. Math. Appl. 2007, 54, 881–894. [Google Scholar] [CrossRef] [Green Version]
- Wazwaz, A.-M. The variational iteration method for analytic treatment for linear and non-linear ODEs. Appl. Math. Comput. 2009, 212, 120–134. [Google Scholar]
- Wazwaz, A.-M. The variational iteration method for rational solutions for KdV, K(2,2), Burgers, and cubic Boussinesq equations. J. Comput. Appl. Math. 2007, 207, 18–23. [Google Scholar] [CrossRef] [Green Version]
- Caputo, M.; Fabrizio, M. On the singular kernels for fractional derivatives. some applications to partial differential equations. Progr. Fract. Differ. Appl. 2021, 7, 1–4. [Google Scholar]
- Ahmad, S.; Ullah, A.; Akgül, A.; De la Sen, M. A Novel Homotopy Perturbation Method with Applications to Nonlinear Fractional Order KdV and Burger Equation with Exponential-Decay Kernel. J. Funct. Spaces 2021, 2021, 8770488. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alesemi, M.; Iqbal, N.; Botmart, T. Novel Analysis of the Fractional-Order System of Non-Linear Partial Differential Equations with the Exponential-Decay Kernel. Mathematics 2022, 10, 615. https://doi.org/10.3390/math10040615
Alesemi M, Iqbal N, Botmart T. Novel Analysis of the Fractional-Order System of Non-Linear Partial Differential Equations with the Exponential-Decay Kernel. Mathematics. 2022; 10(4):615. https://doi.org/10.3390/math10040615
Chicago/Turabian StyleAlesemi, Meshari, Naveed Iqbal, and Thongchai Botmart. 2022. "Novel Analysis of the Fractional-Order System of Non-Linear Partial Differential Equations with the Exponential-Decay Kernel" Mathematics 10, no. 4: 615. https://doi.org/10.3390/math10040615
APA StyleAlesemi, M., Iqbal, N., & Botmart, T. (2022). Novel Analysis of the Fractional-Order System of Non-Linear Partial Differential Equations with the Exponential-Decay Kernel. Mathematics, 10(4), 615. https://doi.org/10.3390/math10040615