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1. Introduction

In this paper, we study the distribution of zeros of the first-order differential equation
with several delays:

X0+ Y Bt — o) =0, > M
=1

where q; € C([tp,0),[0,00)),0 < v; < vy < --- < vy, | =1,2,...,m. With Equation (1),
we associate an initial function ¢(t) where ¢ € C([tg — v, to], R).

The qualitative properties of functional differential equations have attracted the atten-
tion of many researchers; see [1-31]. In particular, the oscillation theory of Equation (1) has
received increasing interest in recent years; see for example [1,2,8-10,12,16-18]. However,
only a few works have considered the distance between zeros of Equation (1) and its
general forms. For more details about this topic, we refer to the works of El-Morshedy and
Attia [14] and McCalla [20]. This encourages us to study this property for Equation (1) and
clarify the influence of the several delays in the distribution of zeros of Equation (1).

The distance between zeros of all solutions of the equation

x'(t) +q(t)x(t—v) =0, t > to, ()
where v > 0, g € C([tg,00),[0,0)), has attracted the interest of many mathematicians;
for example, [4-7,11-14,20-22,24-30]. The purpose of most of these works was to obtain
new estimations for the upper bound (UB) between successive zeros of all solutions.
McCalla [20] proved that the upper and lower bounds for the distance between consecutive
zeros of Equation (2) are determined by the first zero of the fundamental solution of

Equation (2). Motivated by the ideas of [15,31], Zhou [30] obtained estimations of UB
x(t—v)

x(t) 7

of all solutions of Equation (2) by using the upper and lower bounds of the ratio
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where x(t) is a positive solution of Equation (2) on a bounded interval. Since then, many

efforts have been made to obtain new results by improving the bounds of the ratio x(xt(_t)v )

for example, see [13,14,22,25,27,28]. Furthermore, the authors [13,14,26] obtained new
criteria of iterative types for UB of all solutions of Equation (2).

On the other hand, some studies have obtained some fundamental results for the
lower bound (LB) between successive zeros of Equation (2); see [5-7,13,20,21]. Barr [5]
and El-Morshedy [13] proved that the zeros of a solution of Equation (2) with an initial
function that has a finite number of zeros do not accumulate. In addition, McCalla [20]
and El-Morshedy [13] showed that any solution of Equation (2) with an initial function of a
constant sign has at most one zero in any interval of length v. In the following example, we
show that the LB of a solution of Equation (1) with an initial function of a constant sign
cannot be greater than any one of the delays. Therefore, the latter result of McCalla [20]
and El-Morshedy [13] cannot be extended to Equation (1).

Example 1. Consider the differential equation

() + g ()x(t—1)+ga(t)x(t—4) =0, t>0, 3)
with the initial function
p(t) =t, te[—4,0],
where
x1, ift S [O, 2],
g1(t) = 1000(B1 —a1)(t —2) +waq, ift € [2,2.001],
B1, if t > 2.001,
ay, ifl‘ S [0,2],
g2(t) = { 1000(By — &) (t —2) +ap, ift € [2,2.001],
B2, ift > 2.001.

For t € [0,1], we have

K1) = 90) - [ p@(w-1do— [ )i - e
t

t
—oq ./0 $(w—1)dw — ay ./0 P(w —4)dw = (ag +4ay)t — %(041 + az)tz.
Let x1(t) = (a1 +4a)t — (w1 + a2)f?, t € [0,1]. Furthermore, for t € [1,2], it follows that
t t
x() = x(1) - [ gt - Do - [ p(@)xw - i
t t
= x1(1) —my /1 x1(w—1)dw — 0(2/1 P(w —4)dw

1 5010 o 3012 9
- (a%+a1a2)t3—<a12+ 12+2>t2+<1+ 12+4a2)t

6 2 2 2 2
ﬁ_%_l&xlzxz
2 3 6
Let
1 Soqu o 3012 9aqu
x(t) = 6(ﬂc%+tx1az)t3—<tx12+ ;2+22>t2+<21+ ;2+40<2)t
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Finally, assume for t € [2,3] that

w(t) = x) - [ a@rto-Dio- [ g - i
2.001 ' t
= 0@ - [ (1000081~ a)(@ ~2) + (@ - Ddo —py [ xaw—Dde
_ /22'001(1000(;52 — ) (w —2) + ) p(w — 4)dw — B /;001 $(w — 4)daw.

Assume that a1 = By = 3 and ay = B = 0.001, using Maple software, we obtain
x2(1.5) = 0.5659375, x2(1.7) = —0.1879135000, x3(2.3) = 0.159833338.

Consequently, x(t) has at least two zeros in the interval [1.5,2.3], and hence the LB of Equation (3)
with the initial function ¢(t) cannot be greater than 1.

Motivated by the recent contributions of [3,13,14,28], in this work, we obtain new
estimations for the UB of all solutions of Equation (1). Furthermore, our results improve
upon many previous results for both Equations (1) and (2). In addition, we show that a
fundamental result for the LU of some solutions of Equation (2) is valid for the case of
several delays. Finally, two illustrative examples are given to demonstrate the effectiveness
and improvement of our results.

2. Main Results

Let D(x) be the UB of all solutions of Equation (1) on the interval [ty, o). The following
result is an extension of ([5], Lemma 5) and ([13], Lemma 2.2) for Equation (1).

Theorem 1. If ¢ and q; have, respectively, a finite number of zeros in [ty — Uy, to] and any bounded
subinterval of [tg, 00), forall | = 1,2,...,m, then the solution x(t) of Equation (1) associated with
¢ has only a finite number of zeros in any bounded subinterval of [t(, c0).

Proof. Assume, for the sake of contradiction, that x() has infinitely many zeros in [Ty —
v1, Tp), for some Ty > t. Then, x(t) has also infinitely many zeros in [Ty — vy, Tp]. In view
of Equation (1), x(¢) has infinitely many zeros in [Ty — v1 — v, Tp — v1]. Thus there exists
T1 < Ty — vg such that x(t) has infinitely many zeros in [T; — vy, T1]. Continuing this
process k times such that fp — v, < Ty —v1 < tp and x(t) has infinitely many zeros in
[Tx — vy, Tx], we have the following two cases:

Case 1: x(t) has infinitely many zeros in [Ty — vy, fo]. This contradicts our assumption
that ¢(f) has a finite number of zeros in [fg — Uy, to].

Case 2: x(t) has infinitely many zeros in [tg, Tx]. Then x/(t) has infinitely many
zeros in [ty, Ty]. Therefore x(t) has infinitely many zeros in [tg — Uy, Ty — v1]. In view of
Ty — v1 < to, 50 [to — Um, Tx — v1] C [tg — U, to]. Therefore, ¢(t) has infinitely many zeros
in [tg — v, to], which is a contradiction. The proof of the theorem is complete. []

Letl,j € {1,2,...,m},t—v]- < w < t,and

Qll,j(‘*’) = q(w), fort > to,

w
Q;fj(cu) = qi(w—nvj) - Q;?,j_l(wl)dwl, fort >ty +nvy, n=273....
=Y
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Furthermore, letj € {1,2,...,m}, and {W]-"}nzl be a sequence of positive numbers
such that

t
T+ Zlmzl ftfvj Qll,j(w)dw
l#]t : > ler
1— ftivj Qj (w)dw
1+ Kt Ty fim, Qf (@)oo
]

fOI't 2 tO"‘Um,

>W!" fort>ty+nv, n=23....
k —(-1)\ st = < 9
- Y T (W) S, @ (w)de

Lemma 1. Assume that n € N, j € {1,2,...,m} and x(t) is a positive solution of Equation (1)
on [Ty, T1), To > to, Ty = Ty + 20, + nv;. Then,

o) > Wy fort € [To + 2vy, + nvj, Tq] @)
x(t) - ]’ ]’ 7
and
n k (-1 ¢
Z H( )) /t Q}‘Ij(w)dw <1, for t € [To + 20y + nvj, Ty).
k=11=2 —Uj

Proof. Integrating Equation (1) from t — v; to t, we get

x(t) — x(t—vj) + qu w —v)dw = 0. (5)
t=vi 1=
It is clear that
ot m ot
/t Y gi(w)x(w —vy)dw = t Q}’j(w) j)dw + Z / Ql] —v)dw.  (6)
“Yil=1 —Yj t=v;
'

On the other hand, using the integration by parts, it follows that

/tiu. Qji(w)x(w —vp)dw = /:Uvd</twv Q]](an)dwl) (w —vj)dw
= x(i’—U])/tin]l’](w)dw

t w
—/ X (w— v]-)/ Qji(wr)dwdw.
t—v t—v;

J
This together with Equation (1) leads to

t t
/t—vv le-/]-(w)x(w —vj)dw = x(t—vj) /t—u le-,]-(w)dw

7
t

m w
[ Y xw—vy—vm(@ =) [* 0fjw)dorde,
il Y

t—

thatis

t t t
/t Q}-/]-(w)x(w - vj)dw = x(t— vj) le-,]-(w)dw + x(w — 2vj) Q%j(w)dw
—u;

t—v; t—v;

+/ (w—vj—vy) le/]-(w)dw
t=vi=1

1#
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Substituting into (6), we get
t
/ qu w—v)dw = x(tfvj)/ Q] derZ/ Ql] w —vy)dw
t—=v; 1= t—v; t—v;
o
t
+ 1, x(w —2vj) sz-lj(w)dw )
—v
+ —v;—vy) ij(w)dw
t=vj 1 1

17

Since x(t) > 0 for t € [Ty, T1], we have x'(t) < 0, for t € [Ty + vm, T1]. Then, for t €
[To + 2vy, + vj, Ty, it follows that

t
/t x(w — 207) Q2 (w)dew + x(w — vj — 1) Q}(w)daw > 0.
—Yj t= U]l 1
I#j

In view of this and the nonincreasing nature of x(t), (7) gives

t mooet
/ Z q1(w —vp)dw > x(f — v]-) Q},j(w)dw + x(t) 2 / Qll,j(w dw
t U t*Uj 1=1 t*U]'
I#]
This together with (5) leads to
t . mooet
x(t) = x(t — vj) + x(t - v]-)/t Q@)+ () E/t 0} (w)dw <0,
Y =179
I#]

for t € [Ty + 2vy + vj, T1]. Thatis

(1 - /tiv Q]l',j(w)dw> x(t—vj) >x(t) | 1+ i /tiv Qll,]-(w) >0,

for t € [Ty + 2vy + vj, Ty].

Consequently
t
s(t—vy) L TEE ey Qll,f(“”d“’
2> > W/, forte [To+2vm+ v, T, (8)
x(t) 1—ft . // dw
and

t
/ Qli(w)dw <1, fort € [Ty+ 20, +vj, Ty).
t—v; 7
]

Again, the integration by parts leads to

t t
/tiv‘ x(w —2v;) sz»,j(w)dw = x(t— 20]') sz»,i(w)dw

t*l},‘

w
+ Z x(w —2v; - )qj(w—Zv]-)/ Q]Z’j(wl)dwldw
JE=vj 1 Jt—v;
%

t w
+ x(w —3vj)q;(w — 2v)) /t , Q]%j(wl)dwldw,
Jt=v)

Jt—v;
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that is,

Substituting into (7), we obtain

/tUZ%

t
/t_v' x(w —2v;) Q]Z,j(w)dw

As before, using the positivity of x(t) on [Ty, T;], we obtain

2 t
Y q(w)x(w —v)dw > Zx(t—kv]-)/t
= k=1 v

2 m t
Y Y [ ofjwide,
k=111 t=vj

for t € [Ty + 2vup + 2v;, T1). In view of (8), we have

From this and (9), we get

/tt ﬁ’h

“YVi=1

Substituting into (5), it follows that

x(t —v;)

x(t —2v;) > x(t —vj)

w—v)dw >

le, for t € [To + 2vy + 20}, Ty].

)

t t
g (17.tivjQ}-,j(w)dwfwjll/tiujQ%j(w)dw)2 1+zz [ oy | >0,

—11=1"7t-0
1%

for t € [Ty + 2vy + 2v;, T1). Therefore,

x(t —vj)

t
1+ 2%11 2%1 ft—v]- Q;C,]'(w)dw
j

x(t)

1- fttfv]- Q},j(w)dw - le ftt,vj Q]%]«(W)dw -

>W?, forte [Ty+2vu, +2vj, Ty,
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and
t t
/ Q}j(w)dw + le / sz-j(w)dw <1, forte€ [To+2vm +2vj, T1].
t*Uj 5 t*U]' g
Continuing in this process n times, we obtain
tom o
/ Y g(w)x(w—v)dw = Y x(t—kv)) / Qj/j(w)dw
== k=1 o
n o m t
+ ) Z/ x(w— (k=1)v; —vy) Ql](a;)dw
k=11=1"17Yj
I#]
t
+/t x(@ — (n+1)v)) Q1 (w)dew
—v;
t m
—|—/ Y x(w —nvj —vy) Q?]H (w)dw,
t—v; 1=
=
and ( )
x(t—v;
T)] > an—l/ for t € [Ty + 204 + (n — 1)vj, Ty]. (10)

Using the positivity of x(¢) on [Ty, T;], we obtain

t m t n om t
/t_ Y i(@)x(w — v)dew > Y x(t — kvy) ng].(w)dwﬂ(t)zz/t_ Qf (w)dew, (1)

Vi 1=1 k=1 t=v; k=11=17t7Yj
fort € [Ty + 2v, + nvj, Ty].
Clearly
k=1,2,.... (12)

In view of t — (I — 1)v; € [To + 20 + (n — (I = 1))vj, Tt — (I = 1)v;], for t € [Ty + 2vp
+nvj, TiJand ! = 2,3,...,n, it follows from (10) that

x(t—ly) )

x(t—(—1)vj) = ’

From this and (12), we get

for t € [Ty + 2vu + nvj, Ty).

k
x(t —kv;) > x(t —vj) HWJ-’Z*U*l), fort € [To +2vym +nv;, Ty], k=12,....
1=2
Substituting into (11), we have

[ Eawio-oe > xe-o) ST [0 0w

V=1 k=11=2

Substituting into (5), it follows that

k

x(t —v;) (1 -y TI(we )

k=11=2 Jt=v;
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for t € [Ty + 2vy, + nvj, Ty]. Therefore

1 n m t k d
x(t - v)) + Yk—1 21;]1 ft—uj Ql/](w) w

>
O T a-g L (W) g, 9 (@)

, fort € [Tg + 20 + nvj, T1],

and

nk t
Y IT(w ) / Qf (w)dw <1,  fort € [Ty +2vy + nvj, Ty).
j b, j
k=11=2 ]
The proof of the lemma is complete. [J

Theorem 2. Assume thatn € Nandj € {1,2,...,m}. If

n Kk -1 t
ZH(Wf‘( - ))/ Qf (w)dw > 1, forall t > tg + nvy, (13)
k=11=2 t ’

—v;
then every solution of Equation (1) is oscillatory and D(x) < 20y, + nv;.

Proof. Assume, for the sake of contradiction, that there exists a solution x () of Equation (1)
such that x(t) > 0 on [Ty, Ty], for some Ty > to, Ty > Tp + 2v + nv;. In view of Lemma 1,
we have

n k t
Y H(wwfl)) / Qfj(w)dw < 1, for t € [Ty + 2vp + nvj, T1],
Pl A t—v;

which contradicts (13). The proof of the theorem is complete. [

Theorem 3. Assume thatn € Nand j € {1,2,...,m}. If

t m t=v1 (y-1 n nyom
/ ) QI(w)ef‘“‘”’ (T2 oW+ 5 (wl))dwldw >1, forallt > to+ vy + v,
tfvl 1=1

then every solution of Equation (1) is oscillatory and D(x) < 3vy + v1 + nv;.

Proof. Asbefore, let x(t) be a positive solution of Equation (1) on [Ty, T}], for some Ty > to,
Th > To + 3vm + v1 + nvj. In view of Equation (1), we get

X(H) = x(t—vy) +/tivll_ﬁ1ql(w)x(w—vl)dw —0. (14)

Dividing Equation (1) by x(t), and integrating the resulting equation from w — v; to t — vy,
we obtain

t—vq x(wq—vy) _
x(w—vp) = x(t - vl)ef‘“—vz h—1 9 (01) “gpy - der=0

From this and (14), it follows that
t m I— *(wy—vy)
x(t) —x(t —vy) + x(t —vq) / ) ql(w)efw*“l L= () @y %1 gy — 0, (15)
t*l)l =1

Since x/(t) < 0, for t € [Ty + vy, T1], then for j < I; < m, we have

x(wl—vll)Zx(wl—v]-), w—v<w<t—v, t—-n<w<t, 1=12,...,m,
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for t € [Ty + 3vy, + v1, T1]. From this and (15), we obtain

x(t) —x(t—vy) + x(t —vq)

t—v j—1 x(wy—vy ) x(wq—v
/ qu fw—ull <Z[1:1 qn (w1) x(wl)l inx( ):11 =iy (“’1)>d‘uldw <o, (16)
t Ull

€ [To +3vy + vy, Ty]. Forl = 1,2,...,m, it follows from (4) that

x(w(lw_;r)EWf, w—v<w<t—v, t—vy<w<t forr=1,2,...,]j
1

for t € [Ty + 3vy, + v1 + nv,, Ty]. This together with (16) implies that

t m f v n
x(t) — x(t —vy) + x(t — Ul>/ Z%(co) o (Bh 2 Wi W5 T n))dn g <0,

V=1

for t € [To + 3vy + v1 + nvj, Ty].
Therefore

( + x t_ 0 < Z 171 cfl l;ll (Z{;zll '711 (wl)wﬁ‘i'vvjn Zlﬂll:/'qll (wl))dwldw _ 1) S 0/

t—vy =

fort € [Ty + 3vy + v1 + nvj, T1]. This contradiction completes the proof. [
Letje€{1,2,...,m}, and

S v Y 21 a1 (w1)dewr
0i(t) = Zqz /_UI i(w)e 1=t dw,  t>to+ vm+0;,

ey

t ot m7 anl d
Qn(t) — Z Q?*l (t) Q;lfl ((,L))ij*vj Z11171 I (w1) “-)ldw n=23,.

t*Ul
for t > to +n(vm +v;).

Theorem 4. Assume that n € N. If

1
(H/ dw) > m™, forallt > tg+ (2n + 1)vy, (17)

then, every solution of Equation (1) is oscillatory and D(x) < (2n+ 3)vy,

Proof. Let x(t) be a positive solution of Equation (1) on [Ty, T1], for some Ty > fo,
T1 > To+ (2n + 3)vy. It follows from Equation (1) that

x(t) —x(t—v) + Zq] (w—vj)dw =0, I=12,...,m.
tvl]

Multiplying both sides by g;(t) and summing up from 1 to m, we get

m

m
)Y ait) 2'11 f—vz+2qz /t Zq, (w —vj)dw = 0.
1=1 =

Ul]
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From Equation (1), we obtain
m
x(t) Y aqi(t) + / Z gi(w —vj)dw = 0.
=1 t U]]
ot m
Let Vq(t) = x(t)ejfo Y=y (@4 mpon Vi(t) > 0on [Ty, Ty], and
m t m t ym_ d
Vl,(t) + 2 ql(t) /t ; 2 q]‘(CU)Vl (w - Uj)ef“”vj =14 (w1) wldw =0. (18)
I=1 —U =1

In view of x'(t) < 0 on [Ty + vy, T1], we have

() +x(t) Y q(t) <o, for t € [Tp + 2vy, Ty).

Vi(t) = <x'(t) () f qll(t)>efft0 Lz (@d o fort e [Ty + 20 Ti]. (19)
=1
From this and (18), we get
0+ ilvl(t — ) fﬁ /f , gy w)el s H I
j= =1
for t € [Ty + 4vy, Ty]; thatis,

201 ) Va(t—vj) <0, for t € [Ty + 4vy, Ty). (20)
Integrating from t —v; tot,1 =1,2,...,m, we obtain

t
Vi(t) = Vi(t —v;) + - 201 (w = vj)dw <0, for t € [Ty + 5vp, T1].
Hj=1

Multiplying by Q} (t) and summing up from 1 to m, we get
Vi) +vi(e) Y- 0 +Zﬂz /t 201 (w — vj)dw <0,
I=1 U1 j=1
fort € [Ty + 5vm, Th].
L - Jio Zh =1 O (@)de
et Va(t) = Vy(t)edo ==t . Clearly V,(t) > 0 on [Ty, Ty], and

S v i 0 (wl)dwldw <

+ZQZ V[ Y 0lw) Vel vyle
t U]] 1
for t € [Ty + 5, Ty]. It follows from (19) and (20) that

m b m 1
Vi(E) = (v{(t) NACHY Qlll(t)>e1’0 L0 @0 o for b € [Ty + 4o, Ty
=1

Therefore
m

Va(t) + Y QF (1) Va(t —vj) <0, fort € [Ty + 6vm, Thl.
j=1
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Repeating the above procedure n times, we obtain

m
Vi) + 3 Q1) Vu(t —vj) <0, fort € [Ty + (21 +2)vm, Thl,
j=1

toym n—1
where V, (t) = Vn_1(t)eff0 i O @A 4 V, () < 0fort € [Ty + 2nvy,, T1]. Integrating
the above inequality from t — v; to t, we get

V() — Vu(t —vy) —|—Z/ Vi(w —vj)dw <0, fort € [Ty + (2n +3)vy, Ti].

Using the positivity and nonincreasing nature of V,(t) on [Ty + 2nv,,, T;], we have

m t
w(t—vp) Z w(t—v)) /t_vl O (w)dw,  fort € [To+ (2n+ 3)vm, T1].

By the arithmetic—geometric mean, we get
1 1
m m m t m
Va(t—vp) > m(H Vn(t—vj)> (n/tvz Q?(w)dw) , forte [To+ (2n+3)vy, Tyl
]:

j=1

Taking the product of both sides, we have

for t € [Ty + (2n + 3) vy, T1], which in turn implies
m

1
m ¢ m

I H/ Of (w)dw | <m™, fort € [Ty + (2n+ 3)vm, Tu.

1=1\j=1"t"v

This contradicts (17), and hence the proof of the theorem is complete. O

Remark 1.

(1) Theorem 2 with m = 1 improves ([13], Theorem 2.6) and ([14], Corollary 2.24);

(2)  Theorem 4 with m = 1 improves ([13], Theorem 2.3);

(3)  The techniques used in this work can be extended to study the oscillation of first-order differen-
tial equations with several nonmonotonous delays.

In the following, we introduce two illustrative examples to show the strength and
accuracy of our results.

Example 2. Consider the differential equation
x'(t) +0.001 x(f — 1) +0.667 x(t — 1.5) =0, t>15.
This equation has the form of Equation (1) with

q1(t) = 0.001, qa(t) =0.667, v3 =1, vy=15.
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t

1k ¢ ;
S IIw, Y Qf 5 (w)dw = t Qb (w)dw = /t g2 (w)dw = 1.005,

z
—Uy

for all t. Theorem 2 with j = 2 and n = 1 implies that D(x) < 3v, = 4.5. However, all the results
of [14] cannot give this estimation, as we will show. Let P = 0.001 + 0.667, h(t) = t — vy and
gr(t) =t —d,vq,r=1,2,3. Since

ot 81(t) ) w
/ ()Pefgl(“’) Fduy / ( )Pefg1<‘*’1)P 2 Jordew > 1.0006874,  for 61 = 0.843,
81(t 81(w

where

t t
b = Pefgl“) Pdw/ Pdw.
g1(t)

Then, ([14], Theorem 2.17) with n = 1 implies that
D(x) < sup{ (gl’?’(h’z(t)) - t) = 1.5} = 30,01 + 20y = 5.529.

Also, it is clear for 6y = 0.88 that

t
/ Pdw = Péyv;.
(1)

Therefore

t 1 t w
Pdw+ 5 [P [ Pdwrdew > 1007,
/gz(f) 1= Poyor Joon” Sty
A direct application of ([14], Theorem 2.23) with n = 2 leads to
D(x) < sup{ (gz_z(h_z(t)) - t) Dt 1.5} = 20501 + 2up = 4.76.

Finally, since

t t
D, = Pelssin P / Pdw, > 076313,
&

3(t)
and

t w w
/ DyeJsse) Prden / D;dew;dw > 1.003,
$3(h) 83(w)

for 63 = 0.9231. Then, according to ([14], Corollary 2.15) with n = 2, we obtain
D(x) < sup{ (g;2(h*2(t)) - t) = 1.5} = 20501 + 20 = 4.8462.
Example 3. Consider the differential equation
() +ax(t—03)+Bx(t—1)=0, t>1, (21)
where o, B > 0. It follows from Equation (1) that

n(t)=a, @pt)=p v1=03 v,=1
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Therefore

2 (/2 2 2 2 ;
H(H A Q}<w>dw> = HI(Xa0 [ eliaabore

I=1 \j=1"f"u 1=1 t—=y

/t ﬁefut)fl Ben dw)

Jt—v;

2
x Y q(t)
=1

3ap B 2B Lp 3B 3B Bp
= 1032(Be —Be’” —neld )(Belo —ae5” — Bel ),

where B = a + B. Consequently,

2 t %
H(]‘[ /t_ Q}(w)dw) > 025,

1=1 \j=1

forall & > 0.845 and B > 0.3. According to Theorem 4 withn = 1, D(x) < 5. We remark
here that all corresponding results of [14] cannot give this estimation for « = 0.845 and p = 0.3.
For example, using Maple software, we have

t

11 k
Y TTRu—g-1@ / Zi(w)dw ~ 048985718,
k=11=2 8(t)

where g(t) =t—0.3, =03(a + B),

Zi(w) = a+p,
Zu(w) = Zl(w—0.3(n—1))/g(t)Zn,1(w1)dw1, we (g(t),t), n=253...,
and

Ro(2) =1, Rl(g):i Ru(0) = Ru(¢) n=23....

1-¢
Therefore, ([14], Theorem 2.23) with n = 11 fails to apply to (21) when o = 0.845 and p = 0.3.

Rnfz(g) + ]_ — eéRan(é) !

3. Conclusions

In this work, the distance between consecutive zeros of all solutions of Equation (1)
was studied. We have developed and generalized some methods used by [13,14,27]
for Equation (2) and obtained many new approximations for the UB of all solutions of
Equation (1). We also proved that some solutions of Equation (1) have separate zeros.
The differences between the distribution of zeros for Equations (1) and (2) have been dis-
cussed. The techniques introduced in this work can be used to study the distribution of
zeros for some other equations, such as differential equations with several variable delays
and neutral differential equations.
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The following abbreviations are used in this paper:

UB The upper bound between successive zeros of a solution of a differential equation
LB  The lower bound between successive zeros of a solution of a differential equation
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