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1. Introduction

The main goal of this work is the study of the unique solvability issues for a spe-
cial initial value problem to a class of equations with a distributed Riemann–Liouville
derivative. The concept of distributed derivative is firstly encountered, apparently, in the
works of A.M. Nakhushev [1,2]. Equations with distributed fractional derivatives appear
in various fields of investigations applied to the mathematical modelling of some real
processes, when an order of a fractional derivative in a model continuously depends on
the process parameters: in the kinetic theory [3], in the theory of viscoelasticity [4] and
so on [5–7]. Numerical methods of solving such equations were developed in the last
decades; see [8,9] and the references therein. The qualitative properties of equations with
distributed fractional derivatives are investigated in the works of A.M. Nakhushev [1,2],
A.V. Pskhu [10,11], S. Umarov and R. Gorenflo [12], T.M. Atanacković, Lj. Oparnica and
S. Pilipović [13], A.N. Kochubei [14] and others.

Consider the distributed order equation

c∫
b

ω(α)Dα
t z(t)dα = Az(t) + g(t), t ∈ (0, T], (1)

with the Riemann–Liouville derivative Dα
t and with a closed linear operator A in a Banach

space Z , where −∞ < b ≤ 0 ≤ m − 1 < c ≤ m ∈ N, ω : (b, c) → C, ω 6≡ 0, T > 0,
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g : [0, T] → Z . The Cauchy problem for such an equation with the Gerasimov–Caputo
distributed derivative was studied in the case of a bounded operator A in [15]. A special
initial value problem

c∫
m−1−k

ω(α)Dα−m+k
t z(0)dα = zk, k = 0, 1, . . . , m− 1, (2)

for Equation (1) with the Riemann–Liouville distributed derivative was researched in [16]
with a bounded operator A. Similar results for initial value problems to equations with a
degenerate linear operator at the distributed derivative are also obtained in [15].

Necessary and sufficient conditions on a closed operator A for the existence of an
analytic in a sector resolving operators family are obtained for homogeneous Equation (1)
with the Gerasimov–Caputo distributed derivative in [17] with c ∈ (0, 1] and in [18]
with c > 1. In [19] analogous result was obtained for Equation (1) with a discretely
distributed Gerasimov–Caputo derivative; Reference [20] is devoted to the existence issues
for strongly continuous resolving operators family of the homogeneous Equation (1) with
the Gerasimov–Caputo derivative. The obtained results on resolving operators families
allowed, in [17–20], the research of the unique solvability of inhomogeneous Equation (1)
and to investigate some properties of the equation, such as the continuity in the operator
norm at zero of a resolving family, conditions for the boundedness of a generating operator
A, a perturbation theorem for a class of generators A and others.

All the mentioned results were obtained for b = 0; here, we will consider case b ≤ 0,
but this will not bring any significant changes to our reasoning.

In the second section, the statement of initial value problem (2) for Equation (1) with
the Riemann–Liouville derivative is obtained and properties of functions, which arise when
applying the Laplace transform to the distributed fractional derivative, are investigated.
In the third section, the theorem on analytic in a sector inverse Laplace transforms is
generalized to the case of functions with a power singularity at zero. A theorem on
conditions for the operator A, which are necessary and sufficient for the existence of
analytic in a sector resolving family of operators of homogeneous Equation (1) is proved
in the fourth section. This result was applied to studying problem (1), (2) in the fifth
section. The last section contains an application of obtained abstract results to a study
of a class of initial boundary value problems for equations with a distributed fractional
derivative in time and polynomials with respect to a self-adjoint elliptic differential operator
in spatial variables.

2. Equation with Distributed Riemann–Liouville Derivative

Let Z be a Banach space. Denote at β > 0, t > 0, h : R+ → Z , for example,
h ∈ C(R+;Z), the fractional Riemann–Liouville integral is defined by

Jβ
t h(t) :=

1
Γ(β)

t∫
0

(t− s)β−1h(s)ds,

where Γ(·) is the Euler gamma function. Let m− 1 < α ≤ m ∈ N, Dm
t h(t) be the usual

derivative of the m-th order of h, Dα
t h(t) := Dm

t Jm−α
t h(t) be the Riemann–Liouville frac-

tional derivative.
The Laplace transform of a function h : R+ → Z will be denoted by ĥ or Lap[h], if an

expression h is too long. By Ẑ denote the set of functions h : R+ → Z , such that the
Laplace transform ĥ is defined. The Laplace transform of the Riemann–Liouville fractional
derivative of an order α > 0 satisfies the equality (see [21]):

D̂α
t h(λ) = λα ĥ(λ)−

m−1

∑
k=0

Dα−1−k
t h(0)λk. (3)
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Here and further Dβ
t h(0) := lim

t→0+
Dβ

t h(t).

Denote by L(Z) the Banach space of all linear continuous operators from Z to Z ;
C l(Z) stands for the set of all linear closed operators, densely defined in Z , acting to the
space Z . We supply the domain DA of an operator A ∈ C l(Z) by the norm of its graph.
Thus, we have the Banach space DA.

Consider a distributed order equation:

c∫
b

ω(α)Dα
t z(t)dα = Az(t), t > 0, (4)

where −∞ < b ≤ 0 ≤ m− 1 < c ≤ m ∈ N, ω : (b, c) → C, ω 6≡ 0, A ∈ Cl(Z). Note that,
due to equality (3),

c∫
b

ω(α)D̂α
t z(λ)dα =

c∫
b

ω(α)λα ẑ(λ)dα−
m−1

∑
l=1

l∫
l−1

ω(α)
l−1

∑
k=0

Dα−1−k
t z(0)λkdα−

−
c∫

m−1

ω(α)
m−1

∑
k=0

Dα−1−k
t z(0)λkdα =

c∫
b

ω(α)λα ẑ(λ)dα−
m−1

∑
k=0

c∫
k

ω(α)Dα−1−k
t z(0)λkdα =

=

c∫
b

ω(α)λα ẑ(λ)dα−
m−1

∑
k=0

c∫
m−1−k

ω(α)Dα−m+k
t z(0)λm−1−kdα. (5)

Therefore, the natural initial value conditions for Equation (4) are:

c∫
m−1−k

ω(α)Dα−m+k
t z(0)dα = zk, k = 0, 1, . . . , m− 1, (6)

where

c∫
m−1−k

ω(α)Dα−m+k
t z(0)dα := lim

t→0+

c∫
m−1−k

ω(α)Dα−m+k
t z(t)dα, k = 0, 1, . . . , m− 1.

By a solution of problem (4), (6) we mean a function z ∈ C(R+; DA), such that there

exists
c∫

b
ω(α)Dα

t z(t)dα ∈ C(R+;Z), lim
t→0+

c∫
m−1−k

ω(α)Dα−m+k
t z(t)dα, k = 0, 1, . . . , m − 1,

and equalities (4) and (6) are fulfilled.
Denote Sθ, a := {µ ∈ C : | arg(µ− a)| < θ, µ 6= a} at θ ∈ (π/2, π], a ∈ R,

W(λ) :=
c∫

b

ω(α)λαdα, Wk(λ) :=
c∫

k

ω(α)λαdα, k = 0, 1, . . . , m− 1.

The following properties of these functions are available.

Lemma 1. ([17,20]). Let −∞ < b ≤ 0 ≤ m− 1 < c ≤ m ∈ N, ω ∈ L1(b, c). Then W, Wk,
k = 0, 1, . . . , m− 1, are analytic on the set Sπ,0.

Lemma 2. Let −∞ < b ≤ 0 ≤ m− 1 < c ≤ m ∈ N, ω ∈ L1(b, c), ω be continuous from the
left at the point c, lim

α→c−
ω(α) 6= 0. Then,

∃ε0 > 0 ∀ε ∈ (0, ε0) ∃C > 0 ∃$ > 0 ∀λ ∈ Sπ,0 \ {λ ∈ C : |λ| < $} |W(λ)| ≥ C|λ|c−ε. (7)
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Proof. For c1 ∈ (b, c), which is close enough to c, take arbitrary ε1 ∈ (0, c− c1); then for
large enough |λ|, the mean value theorem implies:∣∣∣∣∣∣

c∫
c1

ω(α)λαdα

∣∣∣∣∣∣ = |ω(ξ)|
c∫

c1

|λ|αdα = |ω(ξ)| |λ|
c − |λ|c1

ln |λ| ≥ C1|λ|c−ε1 ,

with some ξ ∈ (c1, c) and C1 = C1(ε1). Therefore, for every ε ∈ (ε1, c− c1) there exists
C = C(ε) > 0 such that for large enough |λ|∣∣∣∣∣∣

c∫
b

ω(α)λαdα

∣∣∣∣∣∣ ≥ C1|λ|c−ε1 − |λ|c1

c1∫
b

|ω(α)|dα ≥ C|λ|c−ε.

Lemma 3. Let −∞ < b ≤ 0 ≤ m − 1 < c ≤ m ∈ N, ω ∈ L1(b, c). Then, for all
k = 0, 1, . . . , m− 1

∃C > 0 ∀λ ∈ Sπ,0 \ {λ ∈ C : |λ| < 1} |W(λ)−Wk(λ)| ≤ C|λ|k;

∀λ ∈ Sπ,0 \ {λ ∈ C : |λ| < 1} |W(λ)| ≤ ‖ω‖L1(b,c)|λ|c.

Proof. We have at |λ| ≥ 1 the evident inequalities |W(λ)| ≤ ‖ω‖L1(b,c)|λ|c and

|W(λ)−Wk(λ)| ≤

∣∣∣∣∣∣
k∫

b

ω(α)λαdα

∣∣∣∣∣∣ ≤
k∫

b

|ω(α)|dα|λ|k = C|λ|k

for all k = 0, 1, . . . , m− 1.

3. Analytic in a Sector Function with a Power Singularity at Zero

Let us introduce the notation Σψ := {t ∈ C : | arg t| < ψ, t 6= 0} for ψ ∈ (0, π/2] and
prove an important for further considerations assertion.

Theorem 1. Let θ0 ∈ (π/2, π], a ∈ R, β ∈ [0, 1), X be a Banach space, a map H : (a, ∞)→ X
be set. The next assertions are equivalent.

(i) There exists an analytic function F : Σθ0−π/2 → X , for every θ ∈ (π/2, θ0) there exists
such C(θ) > 0, that for all t ∈ Σθ−π/2 the inequality ‖F(t)‖X ≤ C(θ)|t|−βeaRe t is satisfied;
F̂(λ) = H(λ) at λ > a.

(ii) The map H is analytically continued on Sθ0,a; for every θ ∈ (π/2, θ0) there exists
K(θ) > 0, such that for all λ ∈ Sθ,a

‖H(λ)‖X ≤
K(θ)

|λ− a|1−β
.

Proof. For β = 0 this statement was proved in ([22], Theorem 0.1, p. 5), ([23], Theorem 2.6.1,
p. 84) directly, using properties of analytic functions and estimates for the Laplace transform
and contour integrals. We will carry out arguments similar to the proof of Theorem 2.6.1
in [23], but in the case β ∈ (0, 1).

Let assertion (i) hold, π/2 < θ < θ0 ≤ π, γδ
± = (0, δ] ∪ {δ + re±i(θ−π/2) : r ∈ (0, ∞)}.

By the Cauchy theorem for all λ > a

F̂(λ) =
∞∫

0

F(t)e−λtdt =
∫

γδ
±

F(τ)e−λτdτ =



Mathematics 2022, 10, 681 5 of 19

=

δ∫
0

F(t)e−λtdt + e±i(θ−π/2)
∞∫

0

F(δ + re±i(θ−π/2))e−λ(δ+re±i(θ−π/2))dr.

If δ→ 0+, then

F̂(λ) = e±i(θ−π/2)
∞∫

0

F(re±i(θ−π/2))e−λre±i(θ−π/2)
dr := H±(λ),

since ‖F(δ + re±i(θ−π/2))e−λ(δ+re±i(θ−π/2))‖X ≤ C(θ)C1r−βe(a−λ)r cos(θ−π/2) for δ ∈ [0, 1],∥∥∥∥∥∥
δ∫

0

F(t)e−λtdt

∥∥∥∥∥∥
X

≤ C1δ1−β → 0 as δ→ 0 + .

Take ε ∈ (0, θ0 − π/2) and λ ∈ C such that arg(λ− a) ∈ (−θ + ε, π − θ − ε); then
arg((λ− a)ei(θ−π/2)) ∈ (−π/2 + ε, π/2− ε), hence, Re((λ− a)ei(θ−π/2)) ≥ |λ− a| sin ε,
‖F(rei(θ−π/2))e−λrei(θ−π/2)‖X ≤ C(θ)r−βe−r|λ−a| sin ε. So, the integral H+(λ) converges ab-
solutely and defines an analytic function in the sector {λ ∈ C : arg(λ− a) ∈ (−θ + ε, π −
θ − ε), λ 6= a}, where

‖H+(λ)‖X ≤ C(θ)
∞∫

0

r−βe−r|λ−a| sin εdr =
C(θ) sinβ−1ε Γ(1− β)

|λ− a|1−β
:=

K(θ)
|λ− a|1−β

.

Analogously it can be shown that H−(λ) defines an analytic function in {λ ∈ C :
arg(λ− a) ∈ (−π + θ + ε, θ − ε), λ 6= a} with the estimate ‖H−(λ)‖X ≤ K(θ)|λ− a|β−1.
Since H+ and H− are extensions of F̂, which is defined on (a,+∞), due to the analytic
continuation theorem they define an analytic function H on Sθ−ε,a, satisfying the inequality
‖H(λ)‖X ≤ K(θ)|λ − a|β−1. Since θ ∈ (π/2, θ0) and ε ∈ (0, θ0 − π/2) are arbitrary,
the assertion (ii) is valid.

Assume that assertion (ii) holds. Take θ ∈ (π/2, θ0), δ > 0 and an oriented contour
Γ = Γ− ∪ Γ0 ∪ Γ+, where Γ± := {a + re±iθ : r ∈ [δ, ∞)}, Γ0 := {a + δeiϕ : ϕ ∈ (−θ, θ)}.
At ε ∈ (0, θ − π/2), t ∈ Σθ−π/2−ε, λ ∈ Γ±

Re(λt) = aRe t + r|t| cos(arg t± θ) ≤ aRe t− r|t| sin ε.

Therefore, ‖H(λ)eλt‖X ≤ K(θ)rβ−1eaRe te−r|t| sin ε and the integral

F(t) :=
1

2πi

∫
Γ

H(λ)eλtdλ

is absolutely convergent, uniformly over compact subsets of Σθ−π/2 and, consequently,
defines an analytic function in the sector Σθ0−π/2.

Take θ ∈ (π/2, θ0), t ∈ Σθ−π/2, ε ∈ (0, θ − π/2− | arg t|), δ = |t|−1, then∥∥∥∥∥ 1
2πi

∫
Γ0

H(λ)eλtdλ

∥∥∥∥∥
X

≤ K(θ)|t|−β

2π

θ∫
−θ

eaRetecos(arg t+ϕ)dϕ ≤ K(θ)|t|−βe1+aRet,

∥∥∥∥∥ 1
2πi

∫
Γ±

H(λ)eλtdλ

∥∥∥∥∥
X

≤ K(θ)
2π

∞∫
1/|t|

rβ−1eaRete−r|t| sin εdr ≤ K(θ)Γ(β)eaRet

2π sinβε|t|β
,

so, ‖F(t)‖X ≤ C(θ − ε)|t|−βeaRet for all t ∈ Σθ−ε−π/2.
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By the Fubini theorem and the Cauchy residue theorem we have for λ > a

F̂(λ) =
1

2πi

∫
Γ

H(µ)dµ

λ− µ
= H(λ)− lim

R→∞

 ∫
Γ0

R

H(µ)dµ

λ− µ
−
∫

Γ+
R

H(µ)dµ

λ− µ
−
∫

Γ−R

H(µ)dµ

λ− µ

,

where Γ0
R := {a + Reiϕ : ϕ ∈ (−θ, θ)}, Γ±R := {a + re±iθ : r ∈ [R, ∞)}. Then,∥∥∥∥∥

∫
Γ0

R

H(µ)dµ

λ− µ

∥∥∥∥∥
X

≤
θ∫
−θ

RβK(θ)dϕ

|a + Reiϕ − λ|
→ 0,

∥∥∥∥∥
∫

Γ±R

H(µ)dµ

λ− µ

∥∥∥∥∥
X

≤
∞∫

R

rβ−1K(θ)dr
|a + re±iθ − λ|

≤ C1

∞∫
R

rβ−2dr → 0,

as R→ ∞, since β < 1. Thus, F̂ ≡ H.

4. k-Resolving Families of Operators

A family of operators {Sl(t) ∈ L(Z) : t > 0} is called l-resolving, l ∈ {0, 1, . . . , m− 1},
for Equation (4), if the next conditions are satisfied:

(i) Sl(t) is strongly continuous at t > 0;
(ii) Sl(t)[DA] ⊂ DA, Sl(t)Ax = ASl(t)x for all x ∈ DA, t > 0;
(iii) for every zl ∈ DA Sl(t)zl is a solution of problem (4), (6) with zk = 0, k ∈ {0, . . . ,

m− 1} \ {l}
A k-resolving family of operators at k ∈ {0, 1, . . . , m− 1} is called analytic, if it has

the analytic continuation to a sector Σψ0 at some ψ0 ∈ (0, π/2]. An analytic k-resolving
family of operators {Sk(t) ∈ L(Z) : t > 0} has a type (ψ0, a0, β) at some ψ0 ∈ (0, π/2],
a0 ∈ R, β > 0, if for all ψ ∈ (0, ψ0), a > a0 there exists such C(ψ, a), that for all t ∈ Σψ the
inequality ‖Sk(t)‖L(Z) ≤ C(ψ, a)|t|−βeaRe t is satisfied.

Proposition 1. Let θ0 ∈ (π/2, π], a0 ∈ R, β ∈ [0, 1), there exist an analytic 0-resolving
family {S0(t) ∈ L(Z) : t > 0} of the type (θ0, a0, β) for Equation (4) and k-resolving families
{Sk(t) ∈ L(Z) : t > 0} for Equation (4), k = 1, 2, . . . , m− 1. Then for k = 1, 2, . . . , m− 1
the k-resolving families {Sk(t) ∈ L(Z) : t > 0} are analytic with the type (θ0, a1, 0) at some
a1 > 0, a1 ≥ a0. Moreover, for every k ∈ {0, 1, . . . , m− 1} a k-resolving family is unique and
Sk(t) ≡ Jk

t S0(t), t > 0.

Proof. Take for k ∈ {1, 2, . . . , m− 1} the family {Sk(t) := Jk
t S0(t) ∈ L(Z) : t > 0}. Then

condition (i) in the definition of a k-resolving family is satisfied. For x ∈ DA, t > 0

Jk
t S0(t)Ax =

t∫
0

(t− s)k−1

k!
S0(s)Axds =

t∫
0

(t− s)k−1

k!
AS0(s)xds = AJk

t S0(t)x

due to the closedness of the operator A. So, condition (ii) holds.
Take xk ∈ DA, S0(t)xk is a solution of problem (4), (6) with the initial values z0 = xk,

z1 = z2 = · · · = zm−1 = 0, consequently, due to (5) W(λ)Ŝ0xk − λm−1xk = AŜ0xk. Hence,

W(λ) Ĵk
t S0xk − λm−1−kxk = W(λ)λ−kŜ0xk − λm−1−kxk = Aλ−kŜ0xk = AĴk

t S0xk.

Therefore, if there exists a k-resolving family for k ∈ {1, 2, . . . , m− 1}, then it coincides
with {Jk

t S0(t) : t > 0} due to the uniqueness of the Laplace transform.
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By the conditions of the theorem for every θ ∈ (π/2, θ0), a > a0, for all λ ∈ Sθ,a

‖Ŝ0(λ)‖L(Z) = ‖λm−1(W(λ)I − A)−1‖L(Z) ≤
K(θ, a)
|λ− a|1−β

.

Consequently, for all θ ∈ (π/2, θ0), a > a1, λ ∈ Sθ,a

‖ Ĵk
t S0(λ)‖L(Z) = ‖λ

m−1−k(W(λ)I − A)−1‖L(Z) ≤
K(θ, a)

|λ|k|λ− a|1−β
≤ K(θ, a)(1 + a/|λ|)β

|λ|k−β|λ− a|
≤ K1(θ, a)
|λ− a| ,

if we take a1 > 0, a1 ≥ a0.

Remark 1. Due to Proposition 1 further we will not write about the type of k-resolving families,
k = 1, 2, . . . , m− 1.

Denote by ρ(A) the resolvent set of an operator A. Let an operator A ∈ C l(Z) satisfy
the following conditions:

(1) there exist such θ0 ∈ (π/2, π], a0 ≥ 0, that for λ ∈ Sθ0,a0 we have W(λ) ∈ ρ(A);
(2) there exists ε0 > 0 such that for all ε ∈ (0, ε0) for every θ ∈ (π/2, θ0), a > a0 there

exists such K(θ, a, ε) > 0, that for all λ ∈ Sθ0,a0

‖(W(λ)I − A)−1‖L(Z) ≤
K(θ, a, ε)

|λ|m−1|λ− a|c+1−m−ε
.

Then we will say that the operator A belongs to the class AR
c,ε(θ0, a0). Here, as before,

m− 1 < c ≤ m ∈ N, c is the upper limit of the integration in the definition of W.
If condition 2) is valid for ε = 0, we will denote such class as AR

c (θ0, a0). Obviously,
AR

c (θ0, a0) ⊂ AR
c,ε(θ0, a0).

If A ∈ AR
c,ε(θ0, a0), the operators,

Zk(t) :=
1

2πi

∫
Γ

λm−1−k(W(λ)I − A)−1eλtdλ, k = 0, 1, . . . , m− 1,

are defined at t > 0. Here Γ := Γ+ ∪ Γ− ∪ Γ0, Γ± := {λ ∈ C : λ = a + re±iθ , r ∈ (δ, ∞)},
Γ0 := {λ ∈ C : λ = a + δeiϕ, ϕ ∈ (−θ, θ)} for some δ > 0, a > a0, θ ∈ (π/2, θ0).

Theorem 2. Let −∞ < b ≤ 0 ≤ m− 1 < c ≤ m ∈ N, θ0 ∈ (π/2, π], a0 ≥ 0, ω ∈ L1(b, c).
(i) If there exists an analytic 0-resolving family of operators of the type (θ0 − π/2, a0,

m + ε− c) for every ε ∈ (0, ε0) for Equation (4), then A ∈ AR
c,ε(θ0, a0).

(ii) If A ∈ AR
c,ε(θ0, a0), then there exist an analytic 0-resolving family of operators {S0(t) ∈

L(Z) : t > 0} of the type (θ0 − π/2, a0, m + ε− c) at every ε ∈ (0, ε0) and analytic k-resolving
families of operators {Sk(t) ∈ L(Z) : t > 0}, k = 1, 2, . . . , m− 1, for Equation (4). In this case,
for every k = 0, 1, . . . , m− 1 a k-resolving family of operators is unique, Sk(t) ≡ Zk(t) ≡ Jk

t Z0(t),
t > 0, and at any z0, z1, . . . , zm−1 ∈ DA the function:

z(t) =
m−1

∑
k=0

Zk(t)zk

is a unique solution of problem (4), (6) in the space Ẑ .

Proof. Let A ∈ AR
c,ε(θ0, a0), R > δ,

ΓR :=
4⋃

k=1

Γk,R, Γ1,R := Γ0, Γ2,R := {λ ∈ C : λ = a + Reiϕ, ϕ ∈ (−θ, θ)},
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Γ3,R := {λ ∈ C : λ = a + reiθ , r ∈ [δ, R]}, Γ4,R := {λ ∈ C : λ = a + re−iθ , r ∈ [δ, R]},

ΓR is the positively oriented closed loop,

Γ5,R := {λ ∈ C : λ = a + reiθ , r ∈ [R, ∞)}, Γ6,R := {λ ∈ C : λ = a + re−iθ , r ∈ [R, ∞)},

then Γ = Γ5,R ∪ Γ6,R ∪ ΓR \ Γ2,R.
For A ∈ AR

c,ε(θ0, a0) by Theorem 1 with X = L(Z) the operator family {Z0(t) ∈ L(Z) :
t > 0} is analytic of the type (θ0 − π/2, a0, m + ε− c) at every ε ∈ (0, ε0), ‖Z0(t)‖L(Z) ≤
C(θ, a, ε)|t|c−m−εeaRet for all θ ∈ (π/2, θ0), a > a0, ε ∈ (0, ε0). Then for k = 0, 1, . . . , m− 1
there exist the Laplace transforms atReλ > a0 Ẑk(λ) = λm−1−k(W(λ)I− A)−1, Lap[Jm−α

t Zk](λ)

= λα−1−k(W(λ)I− A)−1, α < m, therefore, Zk(t) = Jk
t Z0(t).

For t ∈ [0, 1], λ ∈ Γ, α ∈ (b, c),∥∥∥eλtλα−1−k(W(λ)I − A)−1
∥∥∥
L(Z)

≤ ea+δK(θ, a)
|λ|m−α+k|λ− a|c+1−m−ε

≤ C1

|λ|1+c−α+k−ε
≤ C1

|λ|1+k−ε
.

Hence, at k = 1, 2, . . . , m− 1 the integral Zk(t) converges uniformly on t ∈ [0, 1] and

Jm−α
t Zk(0)zk =

1
2πi

∫
Γ

λα−1−k(W(λ)I − A)−1zkdλ =

= lim
R→∞

1
2πi

 ∫
ΓR

−
∫

Γ2,R

+
∫

Γ5,R

+
∫

Γ6,R

λα−1−k(W(λ)I − A)−1zkdλ = 0,

since by the Cauchy theorem∫
ΓR

λα−1−k(W(λ)I − A)−1zkdλ = 0,

for t ∈ [0, 1], λ ∈ Γs,R∥∥∥∥∥∥∥
∫

Γs,R

λα−1−k(W(λ)I − A)−1zkdλ

∥∥∥∥∥∥∥
Z

≤ C2

R1−ε
, s = 2, 5, 6.

At the same time,

c∫
m−1

ω(α)Jm−α
t Z0(t)z0dα =

1
2πi

∫
Γ

c∫
m−1

ω(α)λα−1dα(W(λ)I − A)−1z0eλtdλ =

=
1

2πi

∫
Γ

Wm−1(α)−W(λ)

λ
(W(λ)I − A)−1z0eλtdλ +

1
2πi

∫
Γ

eλt

λ
z0dλ+

+
1

2πi

∫
Γ

1
λ
(W(λ)I − A)−1 Az0eλtdλ→ z0,

as t→ 0+, since∥∥∥∥Wm−1(α)−W(λ)

λ
(W(λ)I − A)−1

∥∥∥∥
L(Z)

≤ C1

|λ|2+c−m−ε
, 2 + c−m− ε > 1,

∥∥∥∥ 1
λ
(W(λ)I − A)−1 Az0

∥∥∥∥
Z
≤ C2

|λ|1+c−ε
, 1 + c− ε > 1.
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We have at c > 1, α ∈ (m− 1, c), λ ∈ Γ, z0 ∈ DA

Lap[Dα−m+1
t Z0(t)z0](λ) = λα(W(λ)I − A)−1z0 − Jm−α

t Z0(0)z0,
c∫

m−2

ω(α)Dα−m+1
t Z0(t)z0dα =

1
2πi

∫
Γ

c∫
m−2

ω(α)λαdα(W(λ)I − A)−1eλtz0dλ−

− 1
2πi

∫
Γ

c∫
m−1

ω(α)Jm−α
t Z0(0)z0dαeλtdλ =

1
2πi

∫
Γ

(Wm−2(λ)−W(λ))(W(λ)I − A)−1eλtz0dλ+

+
1

2πi

∫
Γ

eλtz0dλ +
1

2πi

∫
Γ

(W(λ)I − A)−1eλt Az0dλ− 1
2πi

∫
Γ

eλtz0dλ,

∥∥∥(Wm−2(λ)−W(λ))(W(λ)I − A)−1
∥∥∥
L(Z)

≤ C1

|λ|2+c−m−ε
,
∥∥∥(W(λ)I − A)−1 Az0

∥∥∥
Z
≤ C2

|λ|c−ε
,

hence,

lim
t→0+

c∫
m−2

ω(α)Dα−m+1
t Z0(t)z0dα = 0.

At z1 ∈ DA, α ∈ (m− 1, c), λ ∈ Γ

Lap[Dα−m+1
t Z1](λ) = λα−1(W(λ)I − A)−1,

c∫
m−2

ω(α)Dα−m+1
t Z1(t)z1dα =

1
2πi

∫
Γ

c∫
m−2

ω(α)λα−1dα(W(λ)I − A)−1z1eλtdλ =

=
1

2πi

∫
Γ

Wm−2(λ)−W(λ)

λ
(W(λ)I − A)−1z1eλtdλ +

1
2πi

∫
Γ

eλtdλ

λ
z1+

+
1

2πi

∫
Γ

1
λ
(W(λ)I − A)−1 Az1eλtdλ→ z1

as t→ 0+, since∥∥∥∥Wm−2(λ)−W(λ)

λ
(W(λ)I − A)−1z1

∥∥∥∥
Z
≤ C1

|λ|3+c−m−ε
,
∥∥∥∥ 1

λ
(W(λ)I − A)−1 Az1

∥∥∥∥
Z
≤ C1

|λ|1+c−ε
.

For k = 2, 3, . . . , m− 1, α ∈ (m− 1, c), λ ∈ Γ

Lap[Dα−m+1
t Zk](λ) = λα−k(W(λ)I − A)−1,

∥∥∥λα−k(W(λ)I − A)−1
∥∥∥
L(Z)

≤ C1

|λ|k−ε
,

hence, Dα−m+1
t Zk(0) = 0.

Arguing as before, we obtain the equalities:

c∫
m−l−2

ω(α)Dα−m+l−1
t Zk(0)zkdα = 0, k ∈ {0, 1, . . . , m− 1} \ {l − 1},

c∫
m−l−2

ω(α)Dα−m+l−1
t Zl−1(0)zl−1dα = zl−1.

Hence, for c > l ∈ {2, 3, . . . , m− 1}, k ∈ {0, 1, . . . , l− 1}, α ∈ (m− l, c), λ ∈ Γ, zk ∈ DA

Lap[Dα−m+l
t Zk(t)zk](λ) = λα+l−k−1(W(λ)I − A)−1zk − λl−1Dα−m

t Zk(0)zk−
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−λl−2Dα−m+1
t Zk(0)zk − · · · − Dα−m+l−1

t Zk(0)zk,
c∫

m−l−1

ω(α)Dα−m+l
t Zk(t)zkdα =

1
2πi

∫
Γ

c∫
m−l−1

ω(α)λα+l−k−1dα(W(λ)I − A)−1zkeλtdλ−

− 1
2πi

∫
Γ

c∫
m−1

ω(α)λl−1Dα−m
t Zk(0)zkdαeλtdλ− 1

2πi

∫
Γ

c∫
m−2

ω(α)λl−2Dα−m+1
t Zk(0)zkdαeλtdλ−

− · · · − 1
2πi

∫
Γ

c∫
m−l

ω(α)Dα−m+l−1
t Zk(0)zkdαeλtdλ =

=
1

2πi

∫
Γ

λl−k−1(Wm−l−1(λ)−W(λ))(W(λ)I − A)−1zkeλtdλ+

+
1

2πi

∫
Γ

λl−k−1zkeλtdλ +
1

2πi

∫
Γ

λl−k−1(W(λ)I − A)−1 Azkeλtdλ− 1
2πi

∫
Γ

λl−k−1zkeλtdλ→ 0

as t→ 0+, since∥∥∥λl−k−1(Wm−l−1(λ)−W(λ))(W(λ)I − A)−1
∥∥∥
L(Z)

≤ C1

|λ|2+c−m−ε
,

∥∥∥λl−k−1(W(λ)I − A)−1 Az0

∥∥∥
Z
≤ C2

|λ|2+c−m−ε
.

If in these arguments k = l, α ∈ (m− k, c), λ ∈ Γ, zk ∈ DA, then,

Lap[Dα−m+k
t Zk(t)zk](λ) = λα−1(W(λ)I − A)−1zk − λk−1Dα−m

t Zk(0)zk−

−λk−2Dα−m+1
t Zk(0)zk − · · · − Dα−m+k−1

t Zk(0)zk,
c∫

m−k−1

ω(α)Dα−m+k
t Zk(t)zkdα =

1
2πi

∫
Γ

c∫
m−k−1

ω(α)λα−1dα(W(λ)I − A)−1zkeλtdλ−

− 1
2πi

∫
Γ

c∫
m−1

ω(α)λk−1Dα−m
t Zk(0)zkdαeλtdλ− 1

2πi

∫
Γ

c∫
m−2

ω(α)λk−2Dα−m+1
t Zk(0)zkdαeλtdλ−

− · · · − 1
2πi

∫
Γ

c∫
m−k

ω(α)Dα−m+k−1
t Zk(0)zkdαeλtdλ =

=
1

2πi

∫
Γ

Wm−k−1(λ)−W(λ)

λ
(W(λ)I − A)−1zkeλtdλ +

1
2πi

∫
Γ

eλtdλ

λ
zk+

+
1

2πi

∫
Γ

eλt

λ
(W(λ)I − A)−1 Azkdλ→ zk

as t→ 0+. For k ∈ {l + 1, l + 2, . . . , m− 1}, α ∈ (m− l, c), λ ∈ Γ, zk ∈ DA

Lap[Dα−m+l
t Zk(t)zk](λ) = λα+l−k−1(W(λ)I − A)−1zk − λl−1Dα−m

t Zk(0)zk−

−λl−2Dα−m+1
t Zk(0)zk − · · · − Dα−m+l−1

t Zk(0)zk,
c∫

m−l−1

ω(α)Dα−m+l
t Zk(0)zkdα =

1
2πi

∫
Γ

c∫
m−l−1

ω(α)λα+l−k−1dα(W(λ)I − A)−1zkdλ =
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=
1

2πi

∫
Γ

Wm−l−1(λ)−W(λ)

λk+1−l (W(λ)I − A)−1zkdλ+

+
1

2πi

∫
Γ

dλ

λk+1−l zk +
1

2πi

∫
Γ

1
λk+1−l (W(λ)I − A)−1 Azkdλ = 0.

Consequently, the function z(t) :=
m−1
∑

k=0
Zk(t)zk satisfies initial conditions (6). Since the

operator A is closed and commutes with the operators (W(λ)I − A)−1 on DA, at zk ∈ DA,
k = 0, 1, . . . , m− 1 the inclusions AZk(·)zk = Zk(·)Azk ∈ C(R+;Z) are fulfilled also, i. e.

z(·) :=
m−1
∑

k=0
Zk(·)zk ∈ C(R+; DA).

Using Formula (3) for the Laplace transform, we obtain for Reλ > a0

Lap

 c∫
b

ω(α)Dα
t Zk(t)zkdα

(λ) = λm−1−kW(λ)(W(λ)I − A)−1zk − λm−k−1zk =

= λm−1−k(W(λ)I − A)−1 Azk = Lap[AZk(t)zk](λ).

We apply the inverse Laplace transform to both sides of the obtained equality and
get equality (4) at all continuity points of the function AZk(·)zk, that is, for all t > 0.
Hence, {Z0(t) ∈ L(Z) : t > 0} is an analytic 0-resolving family of operators of the type
(θ0 − π/2, a0, m− c− ε) at every ε ∈ (0, ε0) for Equation (4) and {Zk(t) ∈ L(Z) : t > 0}
are analytic k-resolving families of operators for Equation (4), k = 1, 2, . . . , m− 1.

Let θ0 ∈ (π/2, π], a0 ≥ 0, β ∈ [0, 1), there exists an analytic k-resolving family of
operators {Sk(t) ∈ L(Z) : t > 0}, k ∈ {0, 1, . . . , m− 1}, of the type (θ0−π/2, a0, m− c− ε)
at every ε ∈ (0, ε0) at k = 0 and of the type (θ0 − π/2, a0, 0) at k = 1, 2, . . . , m − 1 for
Equation (4). From Equation (4) due to condition (ii) of the k-resolving family definition we
obtain at zk ∈ DA equalities

b∫
0

ω(α)Dα
t Sk(t)zkdα = ASk(t)zk = Sk(t)Azk,

hence, due to the closedness of the operator A at λ > a0 Ŝk(λ)[DA] ⊂ DA,

Lap

 b∫
0

ω(α)Dα
t Sk(t)zkdα

(λ) = W(λ)Ŝk(λ)zk − λm−1−kzk = AŜk(λ)zk = Ŝk(λ)Azk.

Therefore, the operator W(λ)I−A : DA → Z is bijective and Ŝk(λ) = λm−1−k(W(λ)I−
A)−1, λ > a0. For k = 0 from Theorem 1 it follows that A ∈ AR

c,ε(θ0, a0); for all k ∈
{0, 1, . . . , m − 1} we obtain Sk(t) ≡ Zk(t) ≡ Jk

t Z0(t) by virtue of the uniqueness of the
inverse Laplace transform.

If there exist two solutions y1, y2 of problem (4), (6) from the class Ẑ , then their
difference y = y1− y2 ∈ Ẑ is a solution of Equation (4) and satisfies the initial conditions (6)
with zk = 0, k = 0, 1, . . . , m − 1. Performing the Laplace transform on both parts of
Equation (4) and due to the initial conditions, we get the equality W(λ)ŷ(λ) = Aŷ(λ).
Since A ∈ AR

c,ε(θ0, a0), at λ ∈ Sθ0,a0 we obtain the identity ŷ(λ) ≡ 0. It means that y ≡ 0.
Therefore, there exists a unique solution of problem (4), (6) in the space Ẑ .

Corollary 1. Let −∞ < b ≤ 0 ≤ m− 1 < c ≤ m ∈ N, θ0 ∈ (π/2, π], a0 ≥ 0, ω ∈ L1(b, c).
If there exists an analytic 0-resolving family of operators of the type (θ0 − π/2, a0, m + ε− c) at
every ε ∈ (0, ε0) for Equation (4), there exist analytic k-resolving families of operators {Sk(t) ∈
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L(Z) : t > 0}, k = 1, 2, . . . , m− 1, for Equation (4). In this case, for every k = 0, 1, . . . , m− 1
Sk(t) ≡ Jk

t Z0(t), t > 0.

Remark 2. If we consider problem (4), (6) on a segment [0, T], then we can continue the function
y = y1 − y2 on [T, ∞) by a continuous bounded way. Reasoning in the same way, we get the
uniqueness of a solution on a segment not only in the space Ẑ .

Remark 3. In [18] it is shown that there exists a 0-resolving family of Equation (4) with the
distributed Gerasimov–Caputo derivative, if and only if an operator A ∈ C l(Z) satisfy the next
conditions:

(1) there exist such θ0 ∈ (π/2, π], a0 ≥ 0, that for λ ∈ Sθ0,a0 we have W(λ) ∈ ρ(A);
(2) for every θ ∈ (π/2, θ0), a > a0 there exists such K(θ, a) > 0, that for all λ ∈ Sθ0,a0

‖(W(λ)I − A)−1‖L(Z) ≤
|λ|K(θ, a)
|W(λ)||λ− a| .

The corresponding class of operators is denoted by AW(θ0, a0). It is easy to show that,
if ω ∈ L1(b, c) and is continuous from the left at the point c, lim

α→c−
ω(α) 6= 0, then due to

Lemmas 2 and 3 AR
c (θ0, a0) ⊂ AW(θ0, a0) ⊂ AR

c,ε(θ0, a0).

Theorem 3. Let −∞ < b ≤ 0 ≤ m− 1 < c ≤ m ∈ N, θ0 ∈ (π/2, π], a0 ≥ 0, ω ∈ L1(b, c), W
satisfies (7), A ∈ AR

c,ε(θ0, a0). There exists a limit,

lim
t→0+

c∫
m−1−k

ω(α)Dα−m+k
t Zk(t)dα = I, (8)

in the norm of L(Z) at some k ∈ {0, 1, . . . , m− 1}, if and only if A ∈ L(Z).

Proof. Due to the proof of Theorem 2, if there exists limit in (8), then it equals the identical
operator, since it is so on DA. Let the function

η(t) =

∥∥∥∥∥∥
c∫

m−1−k

ω(α)Dα−m+k
t Zk(t)dα− I

∥∥∥∥∥∥
L(Z)

is continuous on the segment [0, 1] and η(0) = 0. Therefore, the function η is bounded on
[0, 1]. Due to the proof of Theorem 2 and Lemma 3 for all t > 1

η(t) =

∥∥∥∥∥∥
c∫

m−1−k

ω(α)
1

2πi

∫
Γ

λα−1(W(λ)I − A)−1eλtdλdα− I

∥∥∥∥∥∥
L(Z)

=

=

∥∥∥∥∥∥ 1
2πi

∫
Γ

Wm−1−k(λ)

λ
(W(λ)I − A)−1eλtdλ− I

∥∥∥∥∥∥
L(Z)

≤

≤ C1eat
∞∫

δ

rε−1etr cos θdr + C2eat
θ∫
−θ

etδ cos ϕdϕ + 1 ≤ C3eatt−ε + C4e(a+δ)t + 1 ≤ C5e(a+δ)t.

Take Reλ > a + δ > a0. Then we obtain, as in the proof of Theorem 2,

∞∫
0

e−λt

 c∫
m−1−k

ω(α)Dα−m+k
t Zk(t)dα− I

dt =
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=

c∫
m−1−k

ω(α)λα−1(W(λ)I − A)−1dα− I
λ
=

Wm−1−k(λ)

λ
(W(λ)I − A)−1 − I

λ
=

=
Wm−1−k(λ)−W(λ)

λ
(W(λ)I − A)−1 +

W(λ)

λ
(W(λ)I − A)−1 − I

λ
. (9)

For any χ ∈ (0, 1) take ρ > 0 such that η(t) ≤ χ for all t ∈ [0, ρ]. Then due to Lemma 3
and equality (9)

∥∥∥∥W(λ)

λ
(W(λ)I − A)−1 − I

λ

∥∥∥∥
L(Z)

≤
ρ∫

0

e−λtη(t)dt +
∞∫

ρ

e−λtη(t)dt+

+

∥∥∥∥Wm−1−k(λ)−W(λ)

λ
(W(λ)I − A)−1

∥∥∥∥
L(Z)

≤ χ

λ
+ o
(

1
λ

)
as Reλ→ +∞. Consequently, for large enough Reλ∥∥∥∥W(λ)

λ
(W(λ)I − A)−1 − I

λ

∥∥∥∥
L(Z)

< 1;

hence, the operator λ−1W(λ)(W(λ)I − A)−1 is continuously invertible,

[λ−1W(λ)(W(λ)I − A)−1]−1 = λW(λ)−1(W(λ)I − A) ∈ L(Z).

Thus, A ∈ L(Z).
Now let A ∈ L(Z), then for t > 0

c∫
m−1−k

ω(α)Dα−m+k
t Zk(t)dα =

1
2πi

∫
Γ

Wm−1−k(λ)

λ
(W(λ)I − A)−1eλtdλ =

=
1

2πi

∫
Γ

Wm−1−k(λ)−W(λ)

λ
(W(λ)I − A)−1eλtdλ + I +

1
2πi

∫
Γ

∞

∑
n=1

Aneλtdλ

λW(λ)n ,

∥∥∥∥Wm−1−k(λ)−W(λ)

λ
(W(λ)I − A)−1

∥∥∥∥
L(Z)

≤ C1

|λ|2+c−m−ε+k ,

∥∥∥∥∥ ∞

∑
n=1

An

λW(λ)n

∥∥∥∥∥
L(Z)

≤
∞

∑
n=1

C‖A‖n
L(Z)

|λ|(c−ε)n+1
≤

C‖A‖L(Z)

|λ|c−ε+1
(

1− ‖A‖L(Z)
|λ|c−ε

) ≤ 2C‖A‖L(Z)
|λ|c−ε+1

for small enough ε > 0 and |λ| > (2‖A‖L(Z))
1

c−ε . Take small t > 0 and R = 1/t >

(2‖A‖L(Z))
1

c−ε , then∥∥∥∥∥∥
∫
Γ

Wm−1−k(λ)−W(λ)

λ
(W(λ)I − A)−1eλtdλ

∥∥∥∥∥∥
L(Z)

=

=

∥∥∥∥∥∥∥
∫

ΓR

−
∫

Γ2,R

+
∫

Γ5,R

+
∫

Γ6,R

Wm−1−k(λ)−W(λ)

λ
(W(λ)I − A)−1eλtdλ

∥∥∥∥∥∥∥
L(Z)

≤

≤ ∑
s=2,5,6

∥∥∥∥∥∥∥
∫

Γs,R

Wm−1−k(λ)−W(λ)

λ
(W(λ)I − A)−1eλtdλ

∥∥∥∥∥∥∥
L(Z)

≤ C2

R1+c−m−ε
= C2t1+c−m−ε.
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Analogously, we obtain:∥∥∥∥∥∥
∫
Γ

∞

∑
n=1

Aneλtdλ

λW(λ)n

∥∥∥∥∥∥
L(Z)

≤ C3

Rc−ε
= C3tc−ε,

∥∥∥∥∥∥
c∫

m−1−k

ω(α)Dα−m+k
t Zk(t)dα− I

∥∥∥∥∥∥
L(Z)

≤ C4tc−ε → 0

as t→ 0+.

Remark 4. Reasoning as in the proof of the previous theorem we can show that if at some k, l ∈
{0, . . . , m− 1} the family {Dm−α+l

t Sk(t) ∈ L(Z) : t > 0} is continuous at t = 0 in the norm of
L(Z), then A ∈ L(Z).

Remark 5. For A ∈ L(Z) the k-resolving operators of Equation (4) have the form:

Zk(t) =
1

2πi

∫
Γ

λm−k−1
∞

∑
n=0

Aneλt

W(λ)n+1 dλ =
∞

∑
n=0

an(t)An, an(t) =
1

2πi

∫
γ

λm−k−1eλtdλ

W(λ)n+1 , n ∈ N0,

γ = {Reiϕ : ϕ ∈ (−π, π)} ∪ {xeiπ , x ∈ (−R,−∞)} ∪ {xe−iπ , x ∈ (−∞,−R)} at R > 0
large enough. For equation Dα

t z(t) = Az(t) we have W(λ) = λα, and we obtain using the Hankel
representation for the Euler gamma function that, for every n ∈ N0,

an(t) =
1

2πi

∫
γ

eλtdλ

λαn+α−m+k+1 =
tαn+α−m+k

2πi

∫
tγ

eµdµ

µαn+α−m+k+1 =
tαn+α−m+k

Γ(αn + α−m + k + 1)
.

Thus,

Zk(t) =
∞

∑
n=0

tαn+α−m+k An

Γ(αn + α−m + k + 1)
= tα−m+kEα,α−m+k+1(tα A),

where Eβ,γ is the Mittag-Leffler function.

5. Inhomogeneous Equation

A solution of initial problem,

c∫
m−1−k

ω(α)Dα−m+k
t z(0)dα = zk, k = 0, 1, . . . , m− 1, (10)

for the inhomogeneous equation

c∫
b

ω(α)Dα
t z(t)dα = Az(t) + g(t), t ∈ (0, T), (11)

where −∞ < b ≤ 0 ≤ m − 1 < c ≤ m ∈ N, ω : (b, c) → C, T > 0, g ∈ C([0, T];Z),

is a function z ∈ C((0, T); DA), such that there exist
b∫
a

ω(α)Dα
t z(t)dα ∈ C((0, T);Z),

lim
t→0+

c∫
m−1−k

ω(α)Dα−m+k
t z(t)dα and equalities (10) and (11) are fulfilled.

Lemma 4. Let −∞ < b ≤ 0 ≤ m− 1 < c ≤ m ∈ N, ω ∈ L1(b, c), θ0 ∈ (π/2, π], a0 ≥ 0,
A ∈ AR

c,ε(θ0, a0), g ∈ C([0, T]; DA). Then the function:

zg(t) =
t∫

0

Zm−1(t− s)g(s)ds
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is a unique solution of problem (10), (11) with zk = 0, k = 0, 1, . . . , m− 1.

Proof. Due to Theorem 2 and Proposition 1, Zm−1(t) has an analytic extension to Σθ0−π/2
and for every θ ∈ (π/2, θ0), a > a0 there exists C(θ, a) such that ‖Zm−1(t)‖L(Z) ≤
C(θ, a)eat. Define g(t) = 0 at t ≥ T; then zg = Zm−1 ∗ g is the convolution, ẑg(λ) =

Ẑm−1(λ)ĝ(λ). In the proof of Theorem 2 it was shown that Ẑm−1(λ) = (W(λ)I − A)−1,
Lap[Dα−m+k

t Zm−1](λ) = λα−m+k(W(λ)I − A)−1, at α ∈ (m− 1− k, c), t ∈ (0, 1]

‖Dα−m+k
t Zm−1(t)‖L(Z) ≤ C1

∫
Γ

ds
|λ|m−k−ε

, k = 0, 1, . . . , m− 2,

hence, Dα−m+k
t Zm−1(0) = 0. Therefore, ẑg(λ) = (W(λ)I − A)−1 ĝ(λ), Lap[Jm−α

t zg](λ) =

λα−m(W(λ)I − A)−1 ĝ(λ) at α < c, by the mean value theorem:

‖Jm−α
t zg(t)‖Z ≤

t∫
0

‖Jm−α
t Zm−1(t− s)‖L(Z)‖g(s)‖Zds = ‖Jm−α

t Zm−1(t− ξ)‖L(Z)
t∫

0

‖g(s)‖Zds→ 0

as t→ 0+, since ξ ∈ (0, t), t− ξ → 0.
Further on, we have: Lap[Dα−m+1

t zg](λ) = λα−m+1(W(λ)I − A)−1 ĝ(λ) at α > m− 1,

‖Dα−m+1
t zg(t)‖Z ≤ ‖Dα−m+1

t Zm−1(t− ξ)‖L(Z)
t∫

0

‖g(s)‖Zds→ 0

as t → 0+. Reasoning in the same way we obtain Dα−m+k
t zg(0) = 0 for α > m − k,

k = 2, 3, . . . , m− 2.
Finally,
Lap[Dα−1

t zg](λ) = λα−1(W(λ)I − A)−1 ĝ(λ) at α > 1,

Dα−1
t zg(t) =

t∫
0

Dα−1
t Zm−1(t− s)g(s)ds,

c∫
0

ω(α)Dα−1
t zg(t)dα =

1
2πi

c∫
0

ω(α)
∫
Γ

λα−1(W(λ)I − A)−1 ĝ(λ)eλtdλdα =

=
1

2πi

∫
Γ

W0(λ)−W(λ)

λ
(W(λ)I − A)−1 ĝ(λ)eλtdλ +

1
2πi

∫
Γ

W(λ)

λ
(W(λ)I − A)−1 ĝ(λ)eλtdλ→ 0

as t→ 0+, since

‖ĝ(λ)‖Z ≤ max
t∈[0,T]

‖g(t)‖Z
T∫

0

e−λtdt ≤ C1

|λ| ,∥∥∥∥W0(λ)−W(λ)

λ
(W(λ)I − A)−1

∥∥∥∥
L(Z)

≤ C2

|λ|1+c−ε
,
∥∥∥∥W(λ)

λ
(W(λ)I − A)−1 ĝ(λ)

∥∥∥∥
L(Z)

≤ C3

|λ|2−ε
.

Thus, the function zg satisfies initial conditions (10).
We have:

Lap

 c∫
b

ω(α)Dα
t zgdα

(µ) = W(µ)(W(µ)I − A)−1 ĝ(µ) = ĝ(µ) + A(W(µ)I − A)−1 ĝ(µ).



Mathematics 2022, 10, 681 16 of 19

Applying the inverse Laplace transform on the both sides of this equality, we get

c∫
b

ω(α)Dα
t zg(t)dα = g(t) + A(Zm−1 ∗ g)(t) = g(t) + Azg(t),

since g ∈ C((0, T]; DA) and due to the closedness of A the values A(Zm−1 ∗ g)(t) =
Zm−1 ∗ Ag(t), t ∈ (0, T], are defined.

The proof of the uniqueness of the problem solution can be found in Remark 2.

From Theorem 2 and Lemma 4, we get the following result.

Theorem 4. Let −∞ < b ≤ 0 ≤ m− 1 < c ≤ m ∈ N, ω ∈ L1(b, c), θ0 ∈ (π/2, π], a0 ≥ 0,
A ∈ AR

c,ε(θ0, a0), g ∈ C([0, T]; DA), zk ∈ DA, k = 0, 1, . . . , m− 1. Then the function

z(t) =
m−1

∑
k=0

Zk(t)zk +

t∫
0

Zm−1(t− s)g(s)ds

is a unique solution of problem (10), (11).

6. Application to a Class of Initial-Boundary Value Problems

Consider polynomials Pn(λ) =
n
∑

j=0
cjλ

j 6≡ 0, Qn(λ) =
n
∑

j=0
djλ

j, where cj, dj ∈ R,

j = 0, 1, . . . , n, dn 6= 0. Let Ω ⊂ Rd are a bounded region with a smooth boundary ∂Ω,
an operator pencil Λ, B1, B2, . . . , Bp be regularly elliptic [24], where

(Λu)(s) = ∑
|q|≤2p

aq(s)
∂|q|u(s)

∂sq1
1 ∂sq2

2 . . . ∂sqd
d

, aq ∈ C∞(Ω),

(Blu)(s) = ∑
|q|≤pl

blq(s)
∂|q|u(s)

∂sq1
1 ∂sq2

2 . . . ∂sqd
d

, blq ∈ C∞(∂Ω), l = 1, 2, . . . , p,

q = (q1, q2, . . . , qd) ∈ Nd
0, |q| = q1 + · · ·+ qd. Define an operator Λ1 ∈ C l(L2(Ω)) with a

domain DΛ1 = H2p
{Bl}

(Ω) [24] by the equality Λ1u = Λu. Let the operator Λ1 is self-adjoint,
then the spectrum σ(Λ1) of the operator Λ1 is real and discrete [24]. Suppose, moreover,
σ(Λ1) is bounded from the right and does not contain the origin, {ϕk : k ∈ N} is an
orthonormal in L2(Ω) system of eigenfunctions of the operator Λ1, numbered according
to the non-increase of the corresponding eigenvalues {λk : k ∈ N}, taking into account
their multiplicities.

Consider the initial-boundary value problem:

c∫
1

ω(α)Dα−2
t u(s, t)dα = u0(s),

c∫
0

ω(α)Dα−1
t u(s, t)dα = u1(s), s ∈ Ω, (12)

BlΛ
ku(s, t) = 0, k = 0, 1, . . . , n− 1, l = 1, 2, . . . , p, (s, t) ∈ ∂Ω× (0, T), (13)

c∫
0

ω(α)Dα
t Pn(Λ)u(s, t)dα = Qn(Λ)u(s, t) + f (s, t), (s, t) ∈ Ω× (0, T), (14)

where 1 < c < 2, ω : [0, c]→ R. Denote n0 := max{j ∈ {0, 1, . . . , n} : cj 6= 0},

X = {v ∈ H2rn0(Ω) : BlΛ
kv(s) = 0, k = 0, 1, . . . , n0 − 1, l = 1, 2, . . . , p, x ∈ ∂Ω}, (15)

Y = L2(Ω), L = Pn(Λ), M = Qn(Λ), (16)
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DM = {v ∈ H2rn(Ω) : BlΛ
kv(s) = 0, k = 0, 1, . . . , n− 1, l = 1, 2, . . . , p, x ∈ ∂Ω}. (17)

Then L ∈ L(X ;Y), M ∈ C l(X ;Y) (if n0 = n, that is, cn 6= 0, then M ∈ L(X ;Y)).
Let Pn(λk) 6= 0 for all k ∈ N, then there exists an inverse operator L−1 ∈ L(Y ;X ) and
problem (12)–(14) can be represented as problem (10), (11), where Z = X , A = L−1M ∈
C l(Z), DA = DM, z0 = u0(·), z1 = u1(·), g(t) = f (·, t).

Lemma 5. Let c ∈ (0, 2), ω ∈ C([0, c];R), ω(α) ≥ 0 for α ∈ [0, c], ω(c) > 0, the spectrum
σ(Λ1) do not contain the origin and zeros of the polynomial Pn(λ), and designations (15)–(17) be
valid. Then L−1M ∈ AR

c,ε(θ0, a0).

Proof. Denote µk = Qn(λk)/Pn(λk) for k ∈ N. Since (−1)n−n0 dn/cn0 < 0, then lim
k→∞

µk =

−∞ and there exists max
k∈N

µk. Due to Lemma 1 the function W(λ) :=
c∫

0
ω(α)λαdα is analytic

on Sπ,0. At c ∈ (1, 2) take some θ0 ∈ (π/2, π/c), then for some large enough a0 > 0
and every λ ∈ Sθ0,a0 we have |W(λ)| ≥ C(ε)|λ|c−ε ≥ max

k∈N
µk and W(λ) ∈ Scθ0,a0 , since

ω(α) ≥ 0 on [0, c].
For any θ ∈ (π/2, θ0), a > a0, λ ∈ Sθ,a, v ∈ X

‖(W(λ)I − A)−1v‖2
X = ‖(W(λ)I − Pn(Λ)−1Qn(Λ))−1‖2

X =
∞

∑
k=1

(1 + λ2n0
k )|〈v, ϕk〉|2

|W(λ)− Qn(λk)
Pn(λk)

|2
≤

≤ C1

∞

∑
k=1

(1 + λ2n0
k )|〈v, ϕk〉|2

|W(λ)|2 sin2(cθ)
≤

C(ε)‖v‖2
X

|λ|2(c−ε)

for every small enough ε > 0 by Lemma 2. Therefore, L−1M ∈ AR
c,ε(θ0, a0).

Finally, when c ∈ (0, 1], a similar arguments may be used to get the written conclusion.

Lemma 5 and Theorem 4 implies the next unique solvability theorem.

Theorem 5. Let c ∈ (1, 2), ω ∈ C([0, c];R), ω(α) ≥ 0 for α ∈ [0, c], ω(c) > 0, the
spectrum σ(Λ1) do not contain the origin and zeros of the polynomial Pn(λ), u0, u1 ∈ DM,
f ∈ C([0, T]; DM). Then there exists a unique solution of problem (12)–(14).

Remark 6. For c ∈ (0, 1] instead of (12) the initial condition has the form

c∫
0

ω(α)Dα−1
t u(s, t)dα = u0(s), s ∈ Ω.

Example 1. Take P1(λ) ≡ 1, Q1(λ) = λ, Au = ∆u, p = 1, B1 = I. Then, (12)–(14) is the
initial-boundary value problem for the modified equation of the ultraslow diffusion [14]

c∫
0

ω(α)Dα
t u(s, t)dα = ∆u(s, t), (s, t) ∈ Ω× (0, T),

u(s, t) = 0, (s, t) ∈ ∂Ω× (0, T),
c∫

1

ω(α)Dα−2
t u(s, t)dα = u0(s),

c∫
0

ω(α)Dα−1
t u(s, t)dα = u1(s), s ∈ Ω.

7. Conclusions

Linear differential equations in a Banach space with a distributed Riemann–Liouville
derivative and with a closed operator in the right-hand side are studied. It is shown that a
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natural initial value problem for this equation is a problem with given values of special form
distributed derivatives of a solution at initial time. A theorem on the generation of analytics
in a sector resolving families of operators for such equations is proved. It gives necessary
and sufficient conditions on the closed operator in the equation for the existence of the
resolving family. This result allows us to study the unique solvability of the mentioned
initial problem to the corresponding inhomogeneous equation. The abstract results of
the work are applied to the research of the unique solvability for initial boundary value
problems for a class of partial differential equations with a distributed Riemann–Liouville
derivative in time.

Author Contributions: Conceptualization, V.E.F.; methodology, W.-S.D.; software, A.A.A.; validation,
M.K.; formal analysis, M.K.; investigation, V.E.F. and A.A.A.; resources, W.-S.D.; data curation,
M.K.; writing—original draft preparation, V.E.F. and A.A.A.; writing—review and editing, W.-S.D.;
visualization, A.A.A.; supervision, M.K.; project administration, W.-S.D.; funding acquisition, V.E.F.
All authors have read and agreed to the published version of the manuscript.

Funding: The first author is partially supported by the Russian Foundation for Basic Research
and the Vietnam Academy of Science and Technology, Grant No. 21-51-54003, and by the grant
of the President of the Russian Federation to support leading scientific schools, Project No. NSh-
2708.2022.1.1. The second author is partially supported by Grant No. MOST 110-2115-M-017-001
of the Ministry of Science and Technology of the Republic of China. The third author is partially
supported by grant 451-03-68/2020/14/200156 of Ministry of Science and Technological Development,
Republic of Serbia

Acknowledgments: The authors wish to express their hearty thanks to the anonymous referees for
their valuable suggestions and comments.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript,
or in the decision to publish the results.

References
1. Nakhushev, A.M. On continual differential equations and their difference analogues. Sov. Math. Dokl. 1988, 37, 729–732.
2. Nakhushev, A.M. Positiveness of the operators of continual and discrete differentiation and integration, which are quite important

in the fractional calculus and in the theory of mixed-type equations. Differ. Equ. 1998, 34, 103–112.
3. Sokolov, I.M.; Chechkin, A.V.; Klafter, J. Distributed-order fractional kinetics. Acta Phys. Pol. B 2004, 35, 1323–1341.
4. Lorenzo, C.F.; Hartley, T.T. Variable order and distributed order fractional operators. Nonlinear Dyn. 2002, 29, 57–98. [CrossRef]
5. Caputo, M. Mean fractional order derivatives differential equations and filters. Ann. Univ. Ferrara 1995, XLI, 73–84. [CrossRef]
6. Bagley, R.L.; Torvik, P.J. On the existence of the order domain and the solution of distributed order equations. Part 1. Int. J. Appl.

Math. 2000, 2, 865–882.
7. Jiao, Z.; Chen, Y.; Podlubny, I. Distributed-Order Dynamic System. Stability, Simulations, Applications and Perspectives; Springer:

London, UK, 2012.
8. Diethelm, K.; Ford, N.J. Numerical solution methods for distributed order time fractional diffusion equation. Fract. Calc. Appl.

Anal. 2001, 4, 531–542.
9. Diethelm, K.; Ford, N.; Freed, A.D.; Luchko, Y. Algorithms for the fractional calculus: A selection of numerical methods. Comput.

Methods Appl. Mech. Eng. 2003, 194, 743–773. [CrossRef]
10. Pskhu, A.V. On the theory of the continual and integro-differentiation operator. Differ. Equ. 2004, 40, 128–136. [CrossRef]
11. Pskhu, A.V. Partial Differential Equations of Fractional Order; Nauka Publ.: Moscow, Russia, 2005. (In Russian)
12. Umarov, S.; Gorenflo, R. Cauchy and nonlocal multi-point problems for distributed order pseudo-differential equations. Z. Für

Anal. Und Ihre Anwendungen 2005, 24, 449–466.
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