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Abstract: Inspired by the concept of BL-algebra as an important part of the ordered algebra, in
this paper we investigate the binary block code generated by an arbitrary BL-algebra and study
related properties. For this goal, we initiate the study of the BL-function on a nonempty set P
based on BL-algebra L, and by using that, l-functions and l-subsets are introduced for the arbitrary
element l of a BL-algebra. In addition, by the mean of the l-functions and l-subsets, an equivalence
relation on the BL-algebra L is introduced, and using that, the structure of the code generated by an
arbitrary BL-algebra is considered. Some related properties (such as the length and the linearity) of
the generated code and examples are provided. Moreover, as the main result, we define a new order
on the generated code C based on the BL-algebra L, and show that the structures of the BL-algebra
with its order and the correspondence generated code with the defined order are the same.

Keywords: BL-function; BL-code; binary linear block codes; coding theory; BL-algebra

1. Introduction

Hajek, in 1998, introduced BL-algebra in order to provide a general framework for
formalizing statements of a fuzzy nature [1]. BL-algebra is the algebraic structure arising
from the continuous triangular norms, and it has certain logical axioms similarly to Boolean
algebras or MV-algebras from classical logic or Lukasiewicz logic, respectively. In addition,
every MV-algebra is a BL-algebra, whereas the converse is not always true. Thus, the class
of MV-algebra is a subset of the class of BL-algebra, and this is the main reason that we
selected BL-algebra to investigate the code generated by it. Moreover, Hajeck showed that
every BL-algebra with an involutory complement is MV-algebra.

In the twentieth century, there is a problem in engineering about the transmutation of
information. Shannon [2] in 1948 and Hamming [3] in 1950 provided some frameworks
to solve the problem. Their idea was developed and, as a consequence, the electronic
information could be transmitted throughout the noisy channel and stored by minimum
errors, and coding theory was born. Because the electronic information is a string of zeros
and ones, it uses a finite field as the alphabet set. Thus, coding theory can use different
areas of mathematics such as linear algebra, finite geometry, lattices, and combinatorics,
especially when the alphabet set is generalized to different types of fields. Coding theory
can be viewed not only as a part of computer science and engineering but also as a part of
pure mathematics, as the mathematicians were interested in the fundamental aspects of
this concept.

Application of coding theory in ordered algebraic structures was initiated by Jun
and Song in 2011 [4]. They introduced the notion of BCK-valued functions and estab-
lished binary block codes by using the notion of BCK-valued functions. After that, in
2014, Borumand et al. [5] and in 2015, Flaut [6] presented some relationships between
BCK-algebras and the related binary block codes. They proved that every BCK-algebra
determines a binary block code. Gilani [7] studied some properties of the codes generated
by BCK-functions in an arbitrary BCK-algebras. Details about the fundamental relations in
an arbitrary BCK-algebra and related generated code, namely BCK-code, was investigated
by Bordbar in [8]. During the last few years, binary block codes generated by different
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types of ordered algebraic structures were studied, for instance, codewords in a binary
block code generated by a UP-valued function investigated by Chinram and Iampan in
2021 [9], and in 2015, Mostafa et al. [10] applied coding theory to KU-algebras and gave
some connection between binary block codes and KU-algebras.

In this paper, we investigate the code generated by a BL-algebra. Our motivation
is to study the properties of a code generated by one ordered algebraic structure. We
begin with a discussion of the ordered algebraic structure known as BL-algebra as it is an
extended algebraic structure and has some other ordered structures as its subsets, such
as MV-algebra. Moreover, by using the order in a BL-algebra, we define a new order in a
generated code and give the code an algebraic ordered structure. The defined order among
the codewords can be useful in decoding and will be our future work. For our goal, in
Section 3 we define a BL-function on an arbitrary nonempty set P based on BL-algebra L
and by using the BL-function, l-functions of it and l-subsets of P for l ∈ L are investigated.
In addition, properties of BL-function and its l-functions and l-subsets of P that we need
for generated code are considered. In Section 4, a binary equivalence relation ≈ defines
on a BL-algebra L, and by using this relation and BL-function, the code C based on L is
generated. Finally, we study an order among the codewords of C that gives the code C an
ordered algebraic structure. In Theorem 3, we show that the BL-algebra L with its order
and the code C based on L with respect to defined order have the same structures.

2. Preliminaries

A BL-algebra is a structureL := (L,∧,∨,�,→, 0, 1) such that (L,∧,∨, 0, 1) is a bounded
lattice, (L,�, 1) is an abelian monoid, i.e., � is commutative and associative, and the
following conditions hold for all x, y, z ∈ L:

(BL1) x� 1 = x,
(BL2) x� y ≤ z if and only if x ≤ y→ z,
(BL3) x ∧ y = x� (x → y),
(BL4) (x → y) ∨ (y→ x) = 1.
Every BL-algebra L satisfies the following assertions

x = 1→ x, x → x = 1, x → 1 = 1, (1)

x ≤ y⇔ x → y = 1, (2)

x ≤ y→ x, (3)

x → (y→ z) = y→ (x → z), (4)

x ≤ y ⇒ z→ x ≤ z→ y, y→ z ≤ x → z (5)

for all x, y, z ∈ L.
For more information about BL-algebra, please refer to [1,11].
The alphabets used in coding theory are finite fields with q elements, GF(q). We say

that a code is q− ary if its codewords are defined over the q− ary alphabet GF(q). The
most commonly used alphabets are binary fields, GF(2m). This article focuses on codes
with the familiar alphabet GF(2), which are known as binary codes.

Let c be a codeword. Then the Hamming weight w(c) of a codeword c is the number
of nonzero components in the codeword. The Hamming distance between two codewords
d(c1, c2) is the number of places in which the codewords c1 and c2 differ. In other words,
d(c1, c2) is the Hamming weight of the vector c1 − c2, representing the component-wise
difference of the vectors c1 and c2. The minimum (Hamming) distance of a code C is the
minimum distance between any two codewords in the code C, that is,

d(C) = min{d(x, y) | x 6= y, x, y ∈ C}.

The notation (n, M, d) is used to represent a code with code length n, a total of M
codewords, and minimum distance d. One of the major goals of coding theory is to develop
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codes that strike a balance between having small n (for fast transmission of messages),
large M (to enable transmission of a wide variety of messages), and large d (to detect
many errors).

3. BL-Functions on a Nonempty Set P

In this section, the notions of BL-functions on a nonempty set P based on a BL-algebra
L, l-functions, and l-subsets of P for an arbitrary element l ∈ L, will be introduced. Some
of the properties connected with l-subsets of P and l-functions of a BL-function will be
investigated. Throughout this section, unless stated otherwise, L := (L,∧,∨,�,→, 0, 1)
denotes a BL-algebra. In addition, in this paper, we use the set L for our definitions as a
BL-algebra L = (L,∧,∨,�,→, 0, 1).

Definition 1. Let P be a nonempty set and L be a BL-algebra. A mapping φ : P → L is called a
BL-function on P based on L and denoted by φL. If there is no confusion of L, we use φ instead
of φL. Moreover, for a BL-function φ on P and l ∈ L, define φl : P → {0, 1} for each p ∈ P
as follows:

φl(p) =
{

1, if and only if φ(p)→ l = 1,
0, otherwise.

(6)

The function φl is called a l-function of φ.

Definition 2. Let P be a nonempty set and L be a BL-algebra. For a BL-function φ : P→ L on P
and each l ∈ L, the set Pl defined by

Pl := {p ∈ P | φ(p)→ l = 1}, (7)

is called a l-subset of P.

Example 1. Let L = {0, a, b, 1} be a set with the following Cayley tables:

� 0 a b 1
0 0 0 0 0
a 0 a a a
b 0 a b b
1 0 a b 1

→ 0 a b 1
0 1 1 1 1
a 0 1 1 1
b 0 a 1 1
1 0 a b 1

Then L = (L,∧,∨,�,→, 0, 1) is a BL-algebra (see [12]), where x ∧ y = min{x, y} and
x ∨ y = max{x, y}.

(1) For a set P = {p1, p2, p3}, the function φ : P→ L defined by

φ(p1) = a, φ(p2) = b and φ(p3) = 1,

is a BL-function on P, and the l-subsets of P for each l ∈ L are as follows:

P0 = ∅, Pa = {p1}, Pb = {p1, p2} and P1 = P.

In addition, for each l ∈ L, the l-functions of φ are as shown in the following table:

φl p1 p2 p3
φ0 0 0 0
φa 1 0 0
φb 1 1 0
φ1 1 1 1

(2) Let Q = {q1, q2, q3, q4} and define the function ψ : Q→ L by

ψ(q1) = a, ψ(q2) = b, ψ(q3) = 1 and ψ(q4) = 0.
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Then ψ is a BL-function on Q. For each l ∈ L, the l-subsets of Q are as follows:

Q0 = {q4}, Qa = {q1, q4}, Qb = {q1, q2, q4} and Q1 = Q.

In addition, the l-functions of ψ for each l ∈ L are as shown in the following table:

ψl q1 q2 q3 q4
ψ0 0 0 0 1
ψa 1 0 0 1
ψb 1 1 0 1
ψ1 1 1 1 1

The following proposition shows the relationship between BL-function φL on P and
its l-functions and l-subsets of P for l ∈ L.

Proposition 1. Let φ : P → L be a BL-function on a nonempty set P based on L, where L is a
BL-algebra. Then the function φ can be described by its l-functions and l-subsets of P, for l ∈ L, as
the infimum of the following sets:

(∀p ∈ P)(φ(p) = inf{l ∈ L | p ∈ Pl}), (8)

in other words,
(∀p ∈ P)(φ(p) = inf{l ∈ L | φl(p) = 1}). (9)

Proof. Let p ∈ P be an arbitrary element and φ(p) = l. Then using (1),

φ(p)→ l = l → l = 1.

Thus φl(p) = 1, which means that p ∈ Pl . Assume that p ∈ Pl′ , for l′ ∈ L. Then
1 = φ(p)→ l′ = l → l′. By using (2), we conclude that l ≤ l′. Because l′ ∈ {l ∈ L | p ∈ Pl},
it follows that

φ(p) = inf{l ∈ L | p ∈ Pl}.

The equality (9) is a direct conclusion of (6) and (7).

Corollary 1. For a BL-algebra L, if φ : P→ L is a BL-function on P based on L, then for p ∈ P,

φ(p) = inf{φl(p) ↪→ l | l ∈ L},

where

φl(p) ↪→ l =
{

l if p ∈ Pl ,
1 otherwise.

Proposition 2. Let L be a BL-algebra and φ : P→ L be a BL-function on a nonempty set P based
on L. Then for elements l1, l2 ∈ L we have the following assertion,

l1 ≤ l2 ⇒ Pl1 ⊆ Pl2 (10)

Proof. Assume that l1, l2 ∈ L are arbitrary elements such that l1 ≤ l2. Hence l1 → l2 = 1.
Moreover let x ∈ Pl1 . Then φ(x) → l1 = 1, which means that φ(x) ≤ l1. By using (5)
we have

l1 → l2 ≤ φ(x)→ l2.

Thus using (1), we conclude that

(l1 → l2)→ (φ(x)→ l2) = 1→ (φ(x)→ l2) = φ(x)→ l2 = 1.

Therefore, x ∈ Pl2 , that is Pl1 ⊆ Pl2 .
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Theorem 1. Let φ : P→ L be a BL-function on P. Then

(i) (∀p1, p2 ∈ P)
(

φ(p1) 6= φ(p2) ⇔ Pφ(p1)
6= Pφ(p2)

)
.

(ii) (∀l ∈ L)(∀p ∈ P)
(

p ∈ Pl ⇔ Pφ(p) ⊆ Pl

)
.

Proof. For BL-function φ : P → L, let p1, p2 ∈ P be such that Pφ(p1)
6= Pφ(p2)

. Moreover,
suppose that φ(p1) = φ(p2). If x ∈ Pφ(p1)

, then

φ(x)→ φ(p1) = φ(x)→ φ(p2) = 1,

which means that x ∈ Pφ(p2)
. Thus Pφ(p1)

⊆ Pφ(p2)
. Similarly, Pφ(p2)

⊆ Pφ(p1)
, and this is

a contradiction. Therefore, for all p1, p2 ∈ P, if Pφ(p1)
6= Pφ(p2)

, then φ(p1) 6= φ(p2). This
proves the (⇐).

In order to prove (⇒), suppose that p1, p2 ∈ P such that φ(p1) 6= φ(p2). Then clearly
φ(p1)→ φ(p2) 6= 1 or φ(p2)→ φ(p1) 6= 1. Hence,

Pφ(p1)
= {x ∈ P | φ(x)→ φ(p1) = 1}
6= {x ∈ P | φ(x)→ φ(p2) = 1}
= Pφ(p2)

.

Therefore, Pφ(p1)
6= Pφ(p2)

.
(ii) Let l ∈ L and p ∈ P be such that p ∈ Pl. Then φ(p)→ l = 1, and using Proposition 2,

Pφ(p) ⊆ Pl .

Conversely, suppose that Pφ(p) ⊆ Pl for l ∈ L and p ∈ P. Because φ(p) → φ(p) = 1,
we conclude that p ∈ Pφ(p). Therefore, p ∈ Pl and the proof is complete.

Theorem 1 part (ii) shows that the converse of Proposition 2 is true. Thus, we have the
following corollary.

Corollary 2. Let φ : P → L be a BL-function on a nonempty set P based on L, where L is a
BL-algebra. Then

(∀p1, p2 ∈ A)
(

φ(p1)→ φ(p2) = 1 ⇔ Pφ(p1)
⊆ Pφ(p2)

)
. (11)

Proposition 3. Let φ : P→ L be a BL-function on a nonempty set P and M ⊆ L. Put

α = inf{m | m ∈ M}.

Then
Pα = ∩{Pm | m ∈ M} (12)

Proof. Note that there exists the infimum of M in L for any M ⊆ L. Thus, for the infimum
element α of M we have

x ∈ Pα ⇔ φ(x)→ α = 1

⇔ (∀m ∈ M)(φ(x)→ m = 1)

⇔ (∀m ∈ M)(x ∈ Pm)

⇔ x ∈ ∩{Pm | m ∈ M}.

For a BL-algebra L and a BL-function φ : P→ L on a nonempty set P, define the sets
PL and φL as follows:

PL := {Pl | l ∈ L}, φL := {φl | l ∈ L}.
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Then we have the following corollary.

Corollary 3. If φ : P→ L is a BL-function on a nonempty set P, then

(i) Pinf{l|l∈L} = ∩{Pl | l ∈ L},
(ii) for l1, l2 ∈ L, we have Pl1 ∩ Pl2 ∈ PL.

Proposition 4. Let φ : P → L be a BL-function on a nonempty set P. Then P is represented by
the union of Pl for l ∈ L, that is,

P = ∪{Pl | l ∈ L}. (13)

Proof. Obviously, ∪{Pl | l ∈ L} ⊆ P. Let p ∈ P and l ∈ L be such that φ(p) = l. Then by
using the definition of l-subset of P, we have p ∈ Pl . Thus,

p ∈ ∪{Pl | l ∈ L},

which means that P ⊆ ∪{Pl | l ∈ L}. Therefore, P = ∪{Pl | l ∈ L}.

Proposition 5. Let φ : P→ L be a BL-function on a nonempty set P and p ∈ P. Then

∩ {Pl | p ∈ Pl} ∈ PL. (14)

Proof. Remember that by using (6) and (7), we conclude that for any p ∈ P,

p ∈ Pl ⇔ φl(p) = 1.

It follows from Proposition 3 that

∩{Pl | p ∈ Pl} = ∩{Pl | φl(p) = 1} = Pinf{l|p∈Pl} ∈ Pl .

Let φ : P→ L be a BL-function on a nonempty set P and ≈ be a binary relation on L
defined by

(∀l1, l2 ∈ L)
(
l1 ≈ l2 ⇔ Pl1 = Pl2

)
. (15)

The binary relation ≈ is an equivalence relation on L. Moreover, for an arbitrary
element l ∈ L, define the sets φ(P) and {l}≤ as follows:

φ(P) := {l ∈ L | φ(p) = l for some p ∈ P}

{l}≤ := {x ∈ L | x ≤ l} = {x ∈ L | x → l = 1}.

The relationships between an equivalence relation ≈ and the sets φ(P) and {l}≤ are
described in the following theorem.

Theorem 2. For a BL-function φ : P → L on a nonempty set P and the elements l1, l2 ∈ L, we
have the following assertion:

l1 ≈ l2 ⇔ φ(P) ∩ {l1}≤ = φ(P) ∩ {l2}≤. (16)

Proof. Suppose that l1, l2 ∈ L. Then

l1 ≈ l2 ⇔ Pl1 = Pl2
⇔ (∀p ∈ P) (φ(p)→ l1 = 1 ⇔ φ(p)→ l2 = 1)
⇔ {p ∈ P | φ(p) ∈ {l1}≤} = {p ∈ P | φ(p) ∈ {l2}≤}
⇔ φ(P) ∩ {l1}≤ = φ(P) ∩ {l2}≤.
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4. Code Generated by a BL-Algebra

The relation ≈ on L that is defined in (15) is an equivalence relation on L. Thus, it
provides the partition of L. For any l ∈ L, let [l] denotes an equivalence class containing l,
which means that

[l] := {k ∈ L | l ≈ k}.

In what follows, a binary block code of length n will be made from an arbitrary finite
BL-algebra. In this method n is a natural number; this helps us to generate a binary block
code of the desired length n.

For n ∈ N, let P = {p1, p2, . . . , pn} and L be a finite BL-algebra. Every BL-function
φ : P→ L on P determines a binary block code C of length n in the following way:

Let l ∈ L. Then for [l] the correspondence codeword is cl = c1c2 · · · cn such that for
1 ≤ i ≤ n

ci = φl(pi) (17)

where pi ∈ P. We called C a BL-code based on L and denoted by CL. If there is no confusion
of L, we use C instead of CL.

During our study of block code generated by an arbitrary BL-algebra, three parameters
are important. The first parameter is the code length n. In the BL-code based on L, we
can make a code of the desired length n. This can be helpful as we can choose the length
in different situations. The second parameter that we consider is the total number of
codewords. In this kind of code, the total number of codewords is equal to the total number
of distinct equivalence classes of ≈ relation. The third parameter is the distance between
pairs of codewords in a code. In the following examples, these notations will be explained
much more.

Example 2. Let L = {0, a, b, 1} be a set with Cayley tables as follows:

� 0 a b 1
0 0 0 0 0
a 0 0 a a
b 0 a b b
1 0 a b 1

→ 0 a b 1
0 1 1 1 1
a a 1 1 1
b 0 a 1 1
1 0 a b 1

Then L := (L,∧,∨,�,→, 0, 1) is a BL-algebra. For a set P = {p1, p2, p3, p4}, let φ : P→
L be a BL-function on P given by

φ(p1) = a, φ(p2) = 0, φ(p3) = 1 and φ(p4) = b

Then the l-subsets of P are

P0 = {p2}, Pa = {p1, p2}, Pb = {p1, p2, p4} and P1 = P.

In addition, the l-functions of φ are

φp p1 p2 p3 p4
φ0 0 1 0 0
φa 1 1 0 0
φb 1 1 0 1
φ1 1 1 1 1

Clearly, we have four different equivalence classes, which are [0], [a], [b], and [1]. Thus the
total number of codewords is 4 (M = 4). By using (17), we conclude that

c0 = 0100, ca = 1100, cb = 1101, c1 = 1111.
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Thus the binary block code C of length n = 4 and 4 codewords is C = {0100, 1100, 1101, 1111}.
Besides, the minimum distance of C is 1 (d(C) = 1). It is clear that the code C is not a linear code
because 0000 /∈ C.

Let cl = l1l2 · · · ln and ck = k1k2 · · · kn be two codewords belonging to a binary block-
code C of length n. Define an order relationship � on the set of codewords belonging to a
binary block-code C of length n as follows:

cl � ck ⇔ li ≤ ki for i = 1, 2, · · · , n. (18)

By using (2) for the BL-algebra L and (18) for the BL-code C based on L, we conclude
that the graphs of L concerning the order ≤ and the code C with respect to the order �
have the same structures. For instance, in Example 2, we have

r

r
r

r

0

a

b

1

r

r
r

r

0100

1100

1101

1111

(L,≤) (C,�)

Therefore, we can have the following theorem.

Theorem 3. Let L := (L,∧,∨,�,→, 0, 1) be a finite BL-algebra and |L| = n, where n ∈ N.
Then L determines a block-code C of length n (namely BL-code) such that the graph of L with respect
to its order ≤ and the graph of BL-code C with respect to the order � have the same structure.

Proof. Let L := (L,∧,∨,�,→, 0, 1) be a finite BL-algebra and L = {l1, l2, · · · , ln}. More-
over, suppose that P = L. Then P is a nonempty set and φ : L → L defined by φ(li) = li,
for 1 ≤ i ≤ n is a BL-function on L based on L. Suppose that L

≈ be a set of all equivalence
classes of the elements of L regarding the equivalence relation ≈ defined in (15). That is,

L
≈ = {[l] | l ∈ L}.

Define the mapping ψ : L
≈ −→ C by

ψ([li]) = cli , (19)

whereby using (17), we have

cli = φli (l1)φli (l2) . . . φli (ln),

for 1 ≤ i ≤ n.
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Moreover, let [li] = [lj], for i, j ∈ {1, 2, . . . , n}, and i 6= j. Then using (7) and (15), we
conclude that

[li] = [lj] ⇔ Lli = Llj

⇔ {l ∈ L | φ(l)→ li = 1} = {l ∈ L | φ(l)→ lj = 1}
⇔ {l ∈ L | φli (l) = 1} = {l ∈ L | φlj

(l) = 1}
⇔ (∀l ∈ L)

(
φli (l) = 1 ⇔ φlj

(l) = 1
)

⇔ (∀l ∈ L)
(

φli (l) = 0 ⇔ φlj
(l) = 0

)
⇔ cli = clj

.

This means that the function ψ in (19) is well defined and the inverse implications
show that the function ψ is one-to-one.

Now suppose that li, lj ∈ L are such that li ≤ lj, for 1 ≤ i, j ≤ n. Then Proposition 2
shows that Lli ⊆ Llj

. If l ∈ L and l ∈ Lli , then φli (l) = 1. Because Lli ⊆ Llj
, l ∈ Llj

and
φlj

(l) = 1, therefore φli (l) ≤ φlj
(l). Thus, in this case cli ≤ clj

.
If l ∈ L and l /∈ Lli , then φli (l) = 0 and we have two opportunities. The first one

is l ∈ Llj
, which means that φlj

(l) = 1, and the second one is l /∈ Llj
, which means that

φlj
(l) = 0. In both case, we have φli (l) ≤ φlj

(l). Hence, cli ≤ clj
. Therefore, if li ≤ lj, then

ψ(li) � ψ(lj), that is, ψ preserves the order. Therefore, the figures of (L,≤) and (C,�) have
the same structures.

Example 3. Let L = {0, a, b, c, d, 1} be a set with the following Cayley tables.

� 1 a b c d 0
1 1 a b c d 0
a a b b d 0 0
b b b b 0 0 0
c c d 0 c d 0
d d 0 0 d 0 0
0 0 0 0 0 0 0

→ 1 a b c d 0
1 1 a b c d 0
a 1 1 a c c d
b 1 1 1 c c c
c 1 a b 1 a b
d 1 1 a 1 1 a
0 1 1 1 1 1 1

Then L = (L,∧,∨,�,→, 0, 1) is a BL-algebra. For a set P = {pi | i = 1, 2, · · · , 6}, let
φ : P→ L be a BL-function on a set P given by

φ(p1) = 0, φ(p2) = a, φ(p3) = b, φ(p4) = c, φ(p5) = d, and φ(p6) = 1.

Then
φp p1 p2 p3 p4 p5 p6
φ0 1 0 0 0 0 0
φa 1 1 1 0 1 0
φb 1 0 1 0 0 0
φc 1 0 0 1 1 0
φd 1 0 0 0 1 0
φ1 1 1 1 1 1 1

Thus, using the (17) we have

c0 = 100000, ca = 111010, cb = 101000, cc = 100110, cd = 100010, c1 = 111111.

Finally, the generated binary block code C based on L is:

C = {100000, 111010, 101000, 100110, 100010, 111111}.

Moreover, the graph of C using the order (18) is as follows:
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which is the same with the graph of L and the order (2), that is,
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5. Conclusions

In this paper, we have studied the code generated by a BL-algebra as one of the
important classes of ordered algebra. For this goal, the notion of BL-function on a nonempty
set P based on BL-algebra L was introduced, and for l ∈ L, l-fuctions of a BL-fuction and
l-subsets of P were studied. After investigating some results concerning the BL-functions,
our study has focused on a binary equivalence relation ≈ on L, and using this relation we
define the code C based on L. Finally, we have defined an order between the codewords of
C, which gives the code C the ordered structure. Moreover, the graph of C with its order
and the graph of L have the same structures.

The results related to BL-code C show that, in general, this code is not linear. For our
future work, we will concentrate on some conditions that make this binary block code
a linear code. Moreover, using the notations and ideas of this article, the order that we
defined between the codewords of the code C based on BL-algebra L can help us to find a
new algorithm for decoding the ciphertext. In our future research, we focus on this part of
the decoding algorithm.
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