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Abstract: The model discussed in this paper provides an efficient mechanism for the selection and
allocation of available limited spectra for transmission of heterogeneous data in a network. The
data packets (customers), belonging to different classes, arrive according to a batch marked the
Markovian arrival process (BMMAP). The inventory considered is of multi-type (different types of
channels becoming available) and are generated according to a marked Markovian arrival process
(MMAP). The number of distinct types of inventory and that of the customers are the same. Arriving
customers are allowed to wait in finite buffers of each category which are reserved for distinct classes
of customers except for the most general class, which is provided with an infinite waiting space. The
number of servers also equals the number of distinct types of inventory. When items of a particular
type arrive in the inventory, the service starts, providing the buffer of customers of the corresponding
class is non-empty. The service can be viewed as a selection process with Coxian distributed service
times. The system is analyzed using the matrix analytic method and performance measures are
obtained. The model is illustrated with suitable numerical examples.

Keywords: queueing inventory; batch marked markovian arrival process; coxian distribution; matrix
analytic method

1. Introduction

In the current paper, we propose a model for a multiclass queueing inventory system
into which customers belonging to different classes and items of different types arrive.
The customers are packets, arriving at nodes in a network, for transmission. We assume
that customers belonging to each class arrive in batches according to a batch marked
the Markovian arrival process (BMMAP). It is a correlated arrival process with distinct
categories of customers arriving in batches and so a very general case is considered. Queues
with correlated arrival flow of customers are adequate mathematical models for various real
systems addressing different needs of various class of customers for various demands [1].
The inventory items of a particular type are channels becoming available (inventory arrivals)
for transmitting a particular class of packets (customers). The availability of channels
is generated according to a marked Markovian arrival process (MMAP). The arriving
customers are provided with finite capacity buffers for waiting, except for a particular class
(most general, could be lowest priority/jobs requiring no specialization), which is given an
infinite capacity waiting space. The service is a selection process, the service time follows
distinct Coxian distribution for different classes.

The area of multi-type queueing inventory seems to have received very little attention
even though many works on multi-type inventories are available. Benny, Chakravarthy,
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and Krishnamoorthy [2] studied a single server queueing-inventory system with two
commodities in which the system has finite storage space for each type. This model is
analyzed using the matrix analytic method. The analysis of a two commodity queueing
inventory with two classes of customers was carried out by Ozkar and Kocer [3]. In [4]
Altiok and Shiue discussed a manufacturing system with multiple products. In this model,
a continuous review inventory control policy was adopted to each type of commodity.
Krishnamoorthy, Iqbal, and Lakshmy B [5] investigated an inventory model with two
types of commodities. Zhao and Lian [6] studied a queueing inventory with two classes of
customers, modeled as level-dependent quasi-birth-death process and an extensive analysis
was carried out. In [7], Krishnamoorthy, Manikandan, and Lakshmy described a queueing
inventory model with distinct control policies for inventories and a set of optimization
problems were analyzed.

In [8] Melikov, Ponomarenko, and Bagirova proposed models of queueing inventory
with finite and infinite buffers for impatient customers. Yadavalli, Adetunji, Sivakumar,
and Arivarignan [9] described a queueing inventory with three different types of customers
with MAP for arrival and two distinct types of inventoried items. Chakravarthy [10]
described queueing inventory models in which the customer demands a random number
of items not exceeding a finite number and customer loss is also considered. Multi-item
Queueing inventories can also be observed in [11]. Liu, Feng, and Wong [12] studied the
Markov inventory system incorporated with flexible service policies and two classes of
customers. A production inventory model with job shop routings and random arrivals was
studied in [13].

Whereas we discuss in this paper a multi-type inventory (different types of jobs being
created in employment scenario) with positive service time, Kalpakam and Arivarignan [14]
consider a coordinated multi-commodity inventory system with negligible service time. In
addition, the latter does not consider a very general model as we have done in the present
paper, namely Batch Marked Markovian arrival of customers and Marked Markovian
arrival process of different types (multi-commodity) of inventory. Meng and Heragu [15]
investigate a batch size modeling of a multi-item, discrete manufacturing system via an
open queuing network. However, these authors also do not consider positive service time
to each customer before the inventory is provided to them. Nevertheless, theirs is modeled
as a problem in an open queueing network. Ours is not as such a network problem. The
service time that we assumed is Coxian of order, specified by the type of customer.

The highlights of the present model are

• The customer (packets for transmission) arrival process is the Batch Marked Markovian
Arrival Process (BMMAP). It is a correlated arrival process with distinct categories of
customers arriving in batches and so a very general case is considered.

• The channel availability is generated according to a Marked Markovian Arrival Process
(MMAP).

• Customers of the least speciality (for example, messages requiring the lowest security
measures) have an infinite capacity waiting room and the remaining ones are restricted
to have finite capacity buffers.

• There are as many servers as the number of distinct types of channels.

Detailed descriptions of the matrix analytic method can be found in [16,17]. For phase-
type distributions and the Markovian arrival process, we refer to [18,19]. Various Models
with MAP arrivals and phase-type service time distributions can be seen in [20,21].

The paper is organized as follows: In Section 2, we describe the mathematical model
of the system and analysis is carried out using the matrix analytic method. The stability
condition is derived in Section 3. In Section 4, the steady state distribution of the system is
given. Performance characteristics of the system are defined in Section 5. A linear profit
function is defined in Section 6. A numerical illustration is provided in Section 7. Section 8
concludes the study.
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2. Mathematical Model

In this system, customers belong to r different classes arrive in batches according
to a batch marked Markovian Arrival Process (BMMAP). The BMMAP is defined by the
sequences of matrices Bni

i where 1 ≤ i ≤ r and 0 ≤ ni ≤ Ni. The customers of class 1 (least
priority) are the most general class and are allowed to wait in an infinite queue when they
arrive. The customers belong to the classes 2, 3, . . . , r are allowed to wait in finite buffers
with capacities N∗2 , N∗3 , . . . , N∗r , respectively. The r different types of items arrive according
to a Marked Markovian arrival process (MMAP). The MMAP is defined by the sequence of
matrices D0, D1, . . . , Dr. The arriving items form the inventory and maximum inventory
level for a type i item is Mi, 1 ≤ i ≤ r. When the inventory of a type i is nonempty, the
service for that class will be started if there is at least one customer of class i is waiting.

The service times for different classes are independent and identically distributed
according to a Coxian random variable. For the class i the service times follow a Coxian
distribution of order m with the phase-type representation (α, Ci), where α = (1, 0, . . . , 0) is
the initial probability distribution and Ci is a matrix giving the transition rates among the
m phases.

Ci =


−ρi(1) q1ρi(1)

−ρi(2) q2ρi(2)
. . . . . .

−ρi(m) qm−1ρi(m)
−ρi(m)

.

where ρi
j, 1 ≤ i ≤ r is the rate of transition from the phase j to j + 1 and the process

moves from the phase j to j + 1 with probability qj or enters the absorption state with the
complimentary probability 1− qj.

The service of a customer may be interpreted as follows: from the first stage of service
a customer either goes to next stage with probability q1 or becomes absorbed with the
complimentary probability 1− q1. This happens at each of the consequent stages and if it
goes to the last stage (last transient phase), then on completion, service is terminated. The
service for each class of customers is provided in batches. The maximum permissible batch
size for service of a class i is Mi. The service is a matching process, which assigns a batch of
items of type i to equal number of customers(or maximum available and matching) of the
corresponding class.

The following are the system descriptors at the time t.

• Ni(t) is the number of customers belonging to class the i, 1 ≤ i ≤ r.
• M(t) = (M1(t), M2(t), . . . , Mr(t)); Mi(t) is the number of inventoried items of the

type i.
• S(t) = (S1(t), S2(t), . . . , Sr(t)); Si(t) is the phase of the Coxian distribution with

representation (α, Ci)
• a(t) is the phase of the batch marked Markovian arrival process.
• b(t) is the phase of the marked Markovian arrival process.

The process can be represented by a continuous time Markov chain

{X ∗(t), t ≥ 0},

where
X ∗(t) = (N1(t),N2(t), . . . ,Nr(t),M(t),S(t), a(t), b(t))

The state space of X ∗(t) is described as follows.
Where L(i) = L∗(i) ∪ L#(i)

L∗(i) = {(i1, i2, . . . , ir, j1, j2, . . . , jr, s1, s2, . . . , sr, l, u)/0 ≤ i1, 0 ≤ ig ≤ Ng, 2 ≤ g ≤ r,

0 ≤ jn ≤ Mn, 0 ≤ n ≤ r, 0 ≤ si ≤ m, 0 ≤ l ≤ a, 0 ≤ u ≤ b} (1)
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L#(i) = {(i1, i2, . . . , ir, j1, j2, . . . , jr, l, u)/0 ≤ i1, 0 ≤ ig ≤ Ng, 2 ≤ g ≤ r,

0 ≤ l ≤ a, 0 ≤ u ≤ b} (2)

L∗(i) includes the states in which at least one selection process is going on and L#(i)
contains the state(s) with there is no selection process currently going on. The states in
L#(i) are the states with either the waiting line of a particular type or the corresponding
inventory is empty.

The infinitesimal generator Q of X ∗ takes the form

Q =



A00 A01 . . . AN1−1 A0N1

A10 A11 A12
... A1N1

. . .

A20 A21 A22 A23
. . .

...
. . . . . .

AM10 AM0 M0 . . .
AM1+11 . . . AM0+1M0+1 . . . . . . AM1 M1+N1

AM1+22
...

. . . . . .
. . . . . .

. . . . . .



.

The transition rates are listed as follows.
In the following table, we use some abbreviations for certain component vectors

for convenience. S = (s1, s2, . . . , sr), gives the vector of phases of the Coxian clock.
J = (j1, j− 2 . . . , jr) is the numbers of items of various classes.

From To Transition Rate

(i1, . . . , ir, J, S, k, l) (i1, . . . , ir, J, S, h, l) ∑1≤i≤r B0
i (k, h)

(i1, . . . , ir, J, S, l, k) (i1 + n, . . . , ir, J, , S, l′, k) Bn
1 (l, l′)

(i1, . . . , ic, . . . , ir, J, S, l, k) (i1, . . . , ic + n, ir, J, S, l, k) Bn
c (l, k)

(I, j1, . . . , jr, S, l, k) (I, j1, . . . , jr, S, l, k′) D0(k, k′)

(I, j1, . . . , jc, . . . , jr, S, l, k) (I, j1, . . . , jc + m, . . . , jr, S, l, k) Dm(k, k′)

(I, J, s1, s2, . . . , sr, l, k) (I, J, s1, s2, . . . , sr, l, k) ∑ Ci(si, si)

(I, J, s1, . . . , sh, . . . , sr, l, k) (I, J, s1, . . . , sh + 1, . . . , sr, l, k) qρ(h)

(I, J, s1, . . . , sh, . . . , sr, l, k) (I, J, s1, . . . m + 1, . . . , sr, l, k) (1− q)ρ(h)

The blocks of the matrix Q are as follows.

A00 =


Θ1

0 U1
01 . . . U1

0N2

L1 Θ1
1 U1

12
...

...
. . . U1

N2−1N2
L1 . . . L1 Θ1

N2

,

where
U1

0i = Bi
2 ⊗ I, 1 ≤ i ≤ N2.

U1
nm = Bi

2 ⊗ I, 1 ≤ n ≤ N2 − 1, 1 ≤ m ≤ N2 − n.
L1 = diag(0, L∗)



Mathematics 2022, 10, 714 5 of 11

where L∗ = diag((1− q1)ρ
2(1)⊗ I, (1− q2)ρ

2(2)⊗ I, . . . , ρ2(m)⊗ I)

Θk
i =


Θk+1

0 Uk+1
01 . . . Uk+1

0Nk+1

Lk Θk+1
1 Uk+1

12
...

...
. . . Uk+1

Nk+1−1Nk+1

Lk . . . Lk Θk+1
Nk+1

, 0 ≤ i ≤ Nk, 2 ≤ k ≤ r− 1.

Uk+1
ii+1 = Bi

k+2 ⊗ I, 1 ≤ k ≤ r− 1, 0 ≤ i ≤ Nk+1.
L1 = diag(0, L∗),

where L∗ = diag((1− q)ρk+1(1)⊗ I, (1− q)ρk+1(2)⊗ I, . . . , ρk+1(m)⊗ I).

Θk
i =


Θk+1

0 Uk+1
01 . . . Uk+1

0N2

0 Θk+1
1 Uk+1

12
...

...
. . . Uk+1

Mk−r Mk+1−r

0 . . . 0 Θk+1
Mk+1−r

, r ≤ k ≤ 2r− 1, 0 ≤ i ≤ Mk+1−r.

Uk+1
ii+1 = Di ⊗ I, r < k ≤ 2r− 1, 0 ≤ i ≤ Mr−k.

Lk = diag(0, L∗), where L∗ = diag((1− q)ρk
1 ⊗ I, (1− q)ρk

2 ⊗ I, . . . , ρk
m ⊗ I).

Θ2r
Mk−r

= diag(Θ0, Θ1), Θ0 = I ⊗ ((∑r
i=1 B0

i )⊕ D0),

Θ1 =


M11 M12 . . . M1N

0 M22 . . . M1
...
0 . . . 0 MNN


Let s be the state (I, J, s1, . . . , sh + 1, . . . , sr, l, k) and s∗ be (I, J, s1, . . . , sh + 1, . . . , sr, l, k)

with h where i 6= j.

Mij(m, n) =
{

qhρ(h), If s→ s∗, 1 ≤ h ≤ m− 1
0, Otherwise

Mii = I ⊗ ((∑r
i=1 B0

i )⊕ D0)−M∗,
M∗ = diag(M1

∗, M2
∗, . . . , Mr

∗), Mi
∗ = diag(−ρ(1),−ρ(2), . . . ,−ρ(r))⊗ I.

Ai0 = diag(0, diag(qρ1
1, qρ2

1, . . . , qρ1
m−1, ρ1

m)⊗ I), 1 ≤ i ≤ M1

Aii+k = Bk
1 ⊗ I, i ≥ 0, 0 ≤ k ≤ N1,

Aij = C1 ⊗ I, i ≥ 1, 1 ≤ j < i,
Let K∗ = maximum(M1, N1), the levels are redefined so that the levels K∗l to

(K∗ + 1)l − 1, l = 0, 1, 2 . . . are merged together.
After merging of cells the modified form of Q take the structure

Q’ =


B00 B01
B2 B1 B0

B2 B1 B0
. . . . . . . . .

.

3. Stability Condition

Theorem 1. Let ψ = (ψ1, ψ2, . . . , ψK∗) be the steady state probability vector of the infinitesimal
generator B = B0 + B1 + B2. The system is stable if and only if ψB2e < ψB0e.
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Proof. The proof directly follows from [17]. The condition reduces to

ψ((
K∗

∑
i=1

Vi)e) < ψ((
K∗

∑
i=1

V∗i )e)

where
Vi =

(
Vi0 Vi2 . . . ViK∗−1

)T .

where Vij = ∑
j−1
k=0 Av+k,u+k−1, u = lK∗ + N1, v = lK∗, l = 1, 2, ... and

V∗i =
(

V∗i0 V∗i2 . . . V∗iK∗−2 0
)T .

where V∗ij = ∑
j−1
k=0 Av+k,u+k+1.

4. Stationary Distribution

The stationary distribution of the system process is obtained as follows.
Under the assumption of the stability condition, the steady state probability distribu-

tion exists. Let y = (y0, y1, y2, ...) be the steady state probability vector of the Markov Chain
X ∗, where yi = (yi0, yi1, ..., yiK∗).
where yij = y(i,j,j1,j2,...,jr−1)

.
Then y is the unique solution to the system of equations yQ = 0 and ye = 1.
From yQ′ = 0 and ye = 1, we have the system of equations

y0B00 + y1B10 = 0
y0B01 + y1B11 + y2B20 = 0

y1B0 + y3B1 + y4B2 = 0
...

Now, from the matrix analytic method, y1+i = y1Ri, i = 0, 1, 2 . . ., where R is the
minimal non-negative solution, the matrix quadratic equation R2 A2 + RA1 + A0 = 0. R is
computed algorithmically, using the logarithmic reduction algorithm [16].

5. Performance Measures

• Expected number of customers of class i, 2 ≤ i ≤ r

Eci =
∞

∑
k=o

N1

∑
l1=o

...
Ni

∑
li=0

liy(k,li ,...,li)e.

• Expected number of inventoried items of type i, 1 ≤ i ≤ r

EIci =
∞

∑
k=o

N1

∑
l2=o

...
Nr

∑
lr=0

M1

∑
j1=o

...
Mi

∑
ji=0

jiy(k,li ,...,li ,j1,...,ji)e.

• Probability that upon arrival a customer of class i finds inventoried items of type i

Pci =
∞

∑
l1=o

N2

∑
l2=o

...
Ni

∑
li=1

...
Nr

∑
lr=0

(
M1

∑
j1=o

...
Mi

∑
ji=1

...
Mr

∑
jr=0

)y(l1,...,lr ,j1,...,jire.

• Probability that type i items are unavailable in the inventory

P′ci =
∞

∑
l1=o

N2

∑
l2=o

...
Nr

∑
lr=0

(
M1

∑
j1=o

...
Mi−1

∑
ji−1=1

Mi+1

∑
ji+1=1

...
Mr

∑
jr=0

)y(l1,...,lr ,j1,...,ji−1,ji+1,...,jr)e
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• Probability that buffer for class i is empty and type i items are unavailable in the
inventory

P∗ci =
∞

∑
l1=o

N2

∑
l2=o

...
Ni−1

∑
li−1=1

Ni+1

∑
li+1=1

...
Nr

∑
lr=0

(
M1

∑
j1=o

...
Mi−1

∑
ji−1=1

Mi+1

∑
ji+1=1

...
Mr

∑
jr=0

)y(l1,..0..,lr ,j1,...,0,...,jr)e

• Probability that buffer for class i is empty when type i items are available in the
inventory

P∗ci =
∞

∑
l1=o

N2

∑
l2=o

...
Ni−1

∑
li−1=1

Ni+1

∑
li+1=1

...
Nr

∑
lr=0

(
M1

∑
j1=o

...
Mi

∑
ji=1

...
Mr

∑
jr=0

)y(l1,..0..,lr ,j1,...,jr)e

6. Profit Function

We constructed a profit function for optimally determining the buffer capacities and
maximum inventory levels for each class of customers and corresponding inventory. In the
following linear function Fc , Ci is the revenue per unit time for a customer of class i and
C∗i is the revenue per unit time for an inventoried item of type i. Optimal values of various
parameters may be numerically obtained using the Cost function.

Fc =
r

∑
i=2

Ci(Eci) +
r

∑
i=1

C∗i (EIci)

7. Numerical Illustration

We consider a system with two class of arrivals of customers with two type of inventory.
Here we assume items of type i arrive according to a Poisson process with parameter
λi, i = 1, 2. Service times for type i are exponentially distributed with parameter µi, i = 1, 2.
Customers of class i arrive in a batch of size j according to a Poisson process with parameter,
γ

j
i , where 1 ≤ i, j ≤ 2. the inventory levels of both types are fixed as 3.

For the evaluation of performance measures listed in Table 1 we fix µ2 = 16,
γ1

1 = 1, γ2
1 = 2, γ1

2 = 2, γ2
2 = 2, λ1 = 2, and λ2 = 3.

Table 1. Performance measures with increase in service rate µ1.

µ1 Ec2 Ec1 EIc1 EIc2 Pc1 Pc2

2 0.7009 19.0340 0.4854 0.4784 0.3013 0.1722

4 0.6992 13.7241 0.4226 0.4773 0.2491 0.1424

6 0.6946 12.5994 0.3991 0.4803 0.2237 0.1301

8 0.6908 12.1417 0.3879 0.4830 0.2096 0.1241

10 0.6877 11.8836 0.3820 0.4852 0.2010 0.1208

12 0.6853 11.7084 0.3785 0.4870 0.1953 0.1190

14 0.6833 11.5764 0.3765 0.4885 0.1914 0.1179

16 0.6817 11.4705 0.3753 0.4897 0.1886 0.1173

Table 1 describes the variation in various performance measures of the system with
the increase in the rate of service corresponding to class 1 customers. Clearly, customer
accumulation in the infinite queue goes down and the type 1 inventory level decreases
with an increase in µ1. Both these system behaviors are intuitively acceptable. Pictorial rep-
resentation of this phenomenon is shown in Figure 1. The probability that type 1 inventory
become available in the presence of the corresponding class of customers decreases with
the increase in service rate. While increasing µ1, the measures corresponding to type 2 cus-
tomers do not show any considerable change. In Table 2, changes in performance measures
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with the increase in the service rate for type 2 customers are shown. The accumulation of
customers of type 2 and corresponding inventory level decreases with increase in the rate
of the matching process. Probability of availability of type 2 items is inversely proportional
to the service rate. Figure 2 shows the decreasing pattern of customer accumulation in the
infinite queue with µ1 for different values of γ1

1.

Figure 1. Ec1 with µ1.

Figure 2. Pc1 with λ1 and γ1
1.
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Table 2. Performance measures with increase in service rate.

µ2 Ec2 Ec1 EIc1 EIc2 Pc1 Pc2

2 0.6506 22.9403 0.4567 0.4491 0.2868 0.1576

4 0.6117 26.5408 0.4348 0.4265 0.2756 0.1467

6 0.5807 29.8378 0.4177 0.4087 0.2667 0.1383

7 0.5556 32.8475 0.4039 0.3942 0.2595 0.1316

8 0.5348 35.5922 0.3925 0.3822 0.2534 0.1261

9 0.5348 35.5922 0.3925 0.3822 0.2534 0.1261

10 0.5024 40.3824 0.3748 0.3637 0.2440 0.1178

In Figure 2, the congestion of general class with increase in service rate is plotted
for distinct values of λ1. The variation in probability is such that a customer belongs to
class 1, and finds type 1 inventory upon arrival with respect to arrival rates of customers
and inventory. The elevation in this probability is obvious in the surface shown in Figure 2.
The variation Pc1 with respect to arrival rate and service rate is shown in Figure 3. Figure 4
shows the profit variation with λ1 and λ2, the rate of arrival of inventory items.

Figure 3. Pc1 with µ1 and λ1
1.
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Figure 4. Fc with λ1 and λ2.

8. Conclusions

The model discussed in this paper provides an efficient mechanism for the selection
and allocation of available limited spectra for transmission of heterogeneous data in a
network. The influence of various parameters in system performance characteristics are
evaluated. In networking, one of the main advantages of this model is to maximize
bandwidth use and minimize channel loss. This model can have further applications
in many physical systems as well. For example, the model may be translated to that
of employment providing platform as a queueing inventory system. The job aspirants
(customers) belonging to different class arrive in the system and the multi type inventory
considered is of different types of job vacancies generated. The number of distinct types of
jobs and that of customers are the same. The service can be viewed as a selection process
(exams, interviews, fitness test) which is started when job vacancies of a particular type
arrive in the inventory, and the buffer of customers of the corresponding class is non-empty.
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