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Abstract

:

This article establishes the vibrational behavior of functionally graded plates embedded in a viscoelastic medium. The quasi-3D elasticity equations are used for this purpose. The three-parameter Visco-Winkler-Pasternak model is employed to give the interaction between the viscoelastic foundation and the presented plate. Hamilton’s principle is applied to derive the governing dynamic equations. Many validation examples are presented. Additional benchmark results are tabulated for future comparisons. The effects of various parameters like geometrical, material properties, and viscoelastic foundations on the vibrational frequencies of homogeneous and functionally graded plates are investigated. The frequencies increase as all parameters increase except the functionally graded power-law index for which its increase causes a decrease in the frequency value.
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1. Introduction


Functionally graded materials (FGMs), which were proposed by Koizumi [1,2], are widely used in many real-life engineering applications due to their distinct properties which cannot be achieved using traditional materials such as their capability to resist high temperature, high strength, mechanical, and chemical properties. The FGMs are produced by mixing ceramics and metals in which the ceramics and metals enhance the thermal properties and mechanical properties, respectively. Therefore, FGMs become favorable materials for designers in many applications such as aerospace, nuclear, marine, and lightweight structures.



Several structural applications use plates resting on elastic foundations and a lot of research has been conducted to investigate the vibration behavior of FGMs’ plates supported by elastic foundations. Here, we restrict our attention to the vibration analyses of different structures that rest on elastic foundations. The most famous model of the elastic foundations is known as the Winkler-Pasternak model or, for simplicity, Pasternak’s foundation model. It contains, of course, two parameters, the transverse stiffness coefficient of Winkler and the shear stiffness coefficient of Pasternak. Hosseini-Hashemi et al. [3] presented an analytical solution for the free vibrational analyses of FG rectangular plates resting on Winkler or Pasternak elastic foundations using the first-order shear deformation plate theory (FSDT).



A layerwise finite element formulation was introduced by Pandey and Pradyumna [4] for the free vibration analysis of FG sandwich plates with a nonlinear variation of the temperature through the thickness. Zenkour [5] presented the free vibration of a microbeam resting on Pasternak’s foundation via the Green–Naghdi thermoelasticity theory without energy dissipation. The neutral surface concept using the higher-order shear deformation theory (HSDT) was used by Benferhat et al. [6] to investigate the free vibration response of FGMs plates resting on elastic foundations. Zaoui et al. [7] used the quasi-3D hybrid-type HSDT to study the free vibration of FG plates resting on Pasternak’s foundation. Zenkour and Radwan [8] presented the free vibrational analysis of multilayered composite and softcore sandwich plates resting on Winkler-Pasternak foundations. Wang et al. [9] analyzed the thermal vibration of FG graphene platelets reinforced composite annular plate supported by an elastic foundation. Sobhy and Zenkour [10] discussed the vibration of FG graphene, platelet-reinforced, composite, doubly-curved, shallow shells resting on elastic foundations.



The HSDT and the two parameters, Pasternak and Winkler, as the elastic foundation were used by Kumar et al. [11] to study the free vibration of tapered rectangular FG plates. Liu et al. [12] used the FSDT and the multi-segment partition technique for the dynamic analysis of FG plates reinforced with graphene platelets resting on the two-parameter elastic foundation (Pasternak and Winkler). Arefi et al. [13] presented the size-dependent free vibration of a three-layered exponentially graded (EG) nano-/micro-plate with piezomagnetic face sheets resting on Pasternak’s foundation via MCST. Furthermore, the two-parameter elastic foundation model was utilized by Tran et al. [14] to investigate the vibration response of FG plates resting on an elastic foundation in a thermal environment. Li et al. [15,16] presented a new semi-analytical method to analyze the free vibration of uniform, stepped, and porous FG cylindrical shells under arbitrary boundary conditions. Radaković et al. [17] presented a mathematical model to discuss the thermal buckling and free vibration of a functionally graded plate that includes interaction with an elastic foundation. Li et al. [18] discussed the vibration analysis of rotating, functionally graded, nano-annular plates in a thermal environment. The edge-based smoothed, finite element method and a mixed interpolation of tensorial components were used by Nguyen et al. [19] to study the free vibration of FG porous plates resting on a two-parameter elastic foundation. Tran et al. [20] used a nonlocal theory based upon four unknowns to complete the analysis of FG porous nanoshells resting on an elastic foundation. Recently, Zenkour and El-Shahrany [21] presented the forced vibration of a magnetoelastic, laminated, composite beam resting on Pasternak’s foundation.



If we add the effect of the damping coefficient to the above two-parameter elastic model, we can get the third viscoelastic foundation model. Several publications in the literature are made according to the inclusion of the third parameter to discuss the vibrational problems of structures resting on the viscoelastic foundation [22,23,24,25,26]. The additional elastic foundation model is denoted by Kerr’s foundation model. A lot of articles are concerned with the force or the control of the hygrothermal vibration of sinusoidal FG nanobeams or viscoelastic magnetostrictive sandwich plates resting on a hybrid of Kerr’s foundation [27,28].



This paper, for the first time, uses the Visco-Winkler-Pasternak elastic foundation model in conjunction with a quasi-3D refined theory to study the vibration response of FG plates. The analytical solutions for the natural vibration analysis of FG plates are developed on the assumption that transverse shear displacements vary as a hyperbolic function through the thickness of the plate. In addition, the transverse normal strain is taken into consideration. Based on the present theory, comprehensive results of non-dimensional frequencies of homogeneous and FG plates with and without the inclusion of the three-parameter viscoelastic foundations are tabulated for future comparisons. Then fundamental/natural frequencies are found by solving the eigenvalue problem. To verify the accuracy of the present theory, many numerical examples are solved and compared with other published solutions in the literature. In addition to the two-parameter elastic foundation, the inclusion of a third damping parameter is also investigated.




2. Basic Equations


2.1. An FG Plate Structure


A functionally graded rectangular plate resting on a three-parameter elastic foundation and bounded by the coordinate planes   x = 0  ,  a ,   y = 0  ,  b , and   z = − h / 2  ,   h / 2  , as shown in Figure 1, is considered. The Cartesian coordinates  x ,  y ,  z  are chosen such as  z  is placed on the middle plane of the FG plate. The FG plate is made from metal (Aluminum-Al) and ceramic (Alumina-Al2O3 or Zirconia-ZrO2) with the properties established in Section 3. The bottom surface of the FG plate is metal-rich, and the top surface is ceramic-rich while the middle is a mixture of both, which is varied using the following power-law function:


  P  ( z )  =  (   P c  −  P m   )     (   z h  +  1 2   )   p  +  P m  ,  



(1)




where the subscripts  m  and  c  denote metal and ceramic material properties, respectively, and  p  is the gradient index that controls the smooth distribution of material through the thickness of the FG plate and  z  is the distance from the neutral plane of the FG plate.




2.2. A Quasi 3-D Higher-Order Plate Theory


Let    v x   (  x , y , z ; t  )   ,    v y   (  x , y , z ; t  )   , and    v z   (  x , y , z ; t  )    denote the dynamic displacement components of a material point located at    (  x , y , z  )    and time  t  in the  x ,  y , and  z  directions, respectively. The in-plane displacements and transverse displacement are assumed according to the following refined quasi-3D plate theory:


         v α  =  u α  − z  u  z , α   + f  ( z )   ϕ α  ,        v z  =  u z  + g  ( z )   ϕ z  ,   α = x , y      }   



(2)




where the above displacements contain six unknowns    u α   ,  w , and    ϕ j    as functions on    (  x , y , t  )   . The effects due to transverse shear strain and normal deformations are both included. The function   f  ( z )    should be an odd function of  z  while   g  ( z )    should be an even function. That is


   f  ( z )  = h    sin h   (   z h   )  −   4  z 3    3  h 2       cosh   (   1 2   )    ,   g  ( z )  =  f ′   ( z )    ,      (   )   ′  =   d  (   )    d z   .   



(3)







No transversal shear correction factors are needed for the present model because a correct representation of the transversal shearing strain is given. In the displacement field in Equation (2), the strains are given by


    {       ε α         γ  x y        }  =  {       ε α 0         γ  x y  0       }  + z  {       ε α 1         γ  x y  1       }  + f  ( z )   {       ε α 2         γ  x y  2       }  ,     γ  α z   = g  ( z )   γ  α z  0    ,    ε z  =  g ′   ( z )   ε z 0  ,   



(4)




where


       ε α 0  =   ∂  u α    ∂ α   ,    ε α 1  = −    ∂ 2   u z    ∂  α 2    ,    ε α 2  =   ∂  ϕ α    ∂ α   ,    γ  α z  0  =   ∂  ϕ z    ∂ α   +  ϕ α  ,    ε 3 0  =  ϕ z  ,        γ  x y  0  =   ∂  u y    ∂ x   +   ∂  u x    ∂ y   ,    γ  x y  1  = − 2    ∂ 2   u z    ∂ x ∂ y   ,    γ  x y  2  =   ∂  ϕ y    ∂ x   +   ∂  ϕ x    ∂ y   .      



(5)







In addition, the load-displacement formula between the plate and the supporting foundations is expressed according to the three-parameter Visco-Winkler-Pasternak model by


  R =  (   k w  −  k s   ∇ 2  +  c d   ∂  ∂ t    )   u z  ,  



(6)




where  R  is the foundation reaction per unit area,    k w    and    k s    are Winkler’s and Pasternak’s foundation stiffnesses, respectively, and    ∇ 2    represents Laplace’s operator. In addition,    c d    refers to the damping coefficient. Some special models may be simply obtained from the present models as:



Winkler’s model:    k s  = 0  ,    c d  = 0  .



Pasternak’s model:    k w  = 0  ,    c d  = 0  .



Winkler-Pasternak’s model:    c d  = 0  .



Visco–Winkler’s model:    k s  = 0  .



Visco–Pasternak’s model:    k w  = 0  .




2.3. Constitutive Equations


For transverse shear and normal strain in the FG plate coordinates, the stress-strain relationships can be expressed as


    {       σ x         σ y         σ z         τ  y z          τ  x z          τ  x y         }  =  [       c  11        c  12        c  13       0       0       0              c  22        c  23       0       0       0                  c  33       0       0       0                      c  44      0   0          symm .              c  55      0                           c  66        ]   {       ε x         ε y         ε z         γ  y z          γ  x z          γ  x y        }  ,  



(7)




where    c  i j    ( z )    are given by


       c  11    ( z )  =  c  22    ( z )  =  c  33    ( z )  =    (  1 − ν  )  E  ( z )     (  1 − 2 ν  )   (  1 + ν  )    ,        c  12    ( z )  =  c  13    ( z )  =  c  23    ( z )  =   ν E  ( z )     (  1 − 2 ν  )   (  1 + ν  )    ,        c  44    ( z )  =  c  55    ( z )  =  c  66    ( z )  =   E  ( z )    2  (  1 + ν  )    ,      



(8)




in which   E  ( z )    is Young’s modulus and  ν  is Poisson’s ratio.




2.4. Stress Resultants


For transverse shear and normal strain in the FG plate coordinates, the stress-strain relationships can be expressed as


       {   (   N α  ,  M α  ,  S α   )  ,  (   N  x y   ,  M  x y   ,  S  x y    )   }  =   ∫   − h / 2   h / 2    (  1 , z , f  ( z )   )   {   σ α  ,  τ  x y    }  d z ,        S z  =   ∫   − h / 2   h / 2    g ′   ( z )   σ z  d z ,        {   Q x  ,  Q y   }  =   ∫   − h / 2   h / 2   g  ( z )   {   τ  x z   ,  τ  y z    }  d z .      



(9)







Using expressions (3)–(7) in Equation (8), expressions for stress resultants    (   N x  ,  N y  ,  N  x y    )   , moments    (   M x  ,  M y  ,  M  x y    )   , shape moments    (   S x  ,  S y  ,  S  x y    )   , and shear forces    (   Q x  ,  Q y   )    can be obtained. These expressions are given by:


    {     N     ℳ     S       S z       }  =  [     ℬ    ℬ ¯      ℬ =       ℋ         D     D ¯        ℋ ¯       symm .          D =        ℋ =                    A  33        ]   {       ε    0          ε    1          ε    2          ε z 0       }    ,    {       Q y         Q x       }  =  [       A  44      0     0     A  55        ]   {       γ  y z  0         γ  x z  0       }  ,     



(10)




where


  N =  {       N x         N y         N  x y        }  ,   ℳ =  {       M x         M y         M  x y        }  ,   S =  {       N x         N y         S  x y        }  ,    ε    0   =  {       ε x 0         ε y 0         γ  x y  0       }  ,    ε    1   =  {       ε x 1         ε y 1         γ  x y  1       }  ,    ε    2   =  {       ε x 2         ε y 2         γ  x y  2       }  ,    



(11)






   ℬ =  [       B  11        B  12      0       B  12        B  22      0     0   0     B  66        ]  ,    ℬ ¯  =  [        B ¯   11         B ¯   12      0        B ¯   12         B ¯   22      0     0   0      B ¯   66        ]  ,    ℬ =  =  [         B =    11          B =    12      0         B =    12          B =    22      0     0   0       B =    66        ]    ,   



(12)






   D =  [       D  11        D  12      0       D  12        D  22      0     0   0     D  66        ]  ,    D ¯  =  [        D ¯   11         D ¯   12      0        D ¯   12         D ¯   22      0     0   0      D ¯   66        ]  ,    D =  =  [         D =    11          D =    12      0         D =    12          D =    22      0     0   0       D =    66        ]    ,   



(13)






   ℋ =  [       H  13          H  23        0     ]  ,    ℋ ¯  =  [        H ¯   13           H ¯   23        0     ]  ,    ℋ =  =  [         H =    13            H =    23        0     ]    ,   



(14)




in which    B  i j    ,     B ¯   i j    , … etc., are the plate stiffness, defined by


          {   B  i j   ,   B ¯   i j   ,    B =    i j    }  =   ∫   − h / 2   h / 2    c  i j    ( z )   {  1 , z , f  ( z )   }  d z        {   D  i j   ,   D ¯   i j   ,    D =    i j    }  =   ∫   − h / 2   h / 2    c  i j    ( z )   {   z 2  , z f  ( z )  ,    [  f  ( z )   ]   2   }  d z      }  i , j = 1 , 2 , 6 ,     {   H  α 3   ,   H ¯   α 3   ,    H =    α 3    }  =   ∫   − h / 2   h / 2    c  α 3    ( z )   g ′   ( z )   {  1 , z , f  ( z )   }  d z ,   α = 1 , 2 ,     {   A  33   ,  A  r r    }  =   ∫   − h / 2   h / 2    {   c  33    ( z )     [   g ′   ( z )   ]   2  ,  c  r r    ( z )     [  g  ( z )   ]   2   }  d z ,   r = 4 , 5 .   



(15)







Hamilton’s principle can be written as


  δ   ∫    t 1     t 2       (  T − U  )  d t = 0 ,  



(16)




where the first variation of the kinetic energy  T  is represented as


  δ T = −   ∬  Ω    ∫   − h / 2   h / 2   ρ    v ¨   i  δ  v i  d z  d Ω  ,  



(17)




and  U  is the total potential energy represented as


  δ U =   ∬  Ω    [    ∫   −  h 2     h 2     (   σ i  δ  ε i  +  τ  i j   δ  γ  i j    )  d z + R δ  v z   ]   d Ω  .  



(18)







Using Equations (2), (4), (7), (17), and (18) in Equation (16) and carrying out the first variation allows us to get the following governing equations associated with the present quasi-3D plate theory:


  δ  u x  :    N  x , x   +  N  x y , y   =  I 0     u ¨   x  −  I 1     u ¨    z , x   +  I 3     ϕ ¨   x  ,  



(19)






   δ  u y  :    N  x y , x   +  N  y , y   =  I 0     u ¨   y  −  I 1     u ¨    z , y   +  I 3     ϕ ¨   y    ,   



(20)






   δ  u z  :    M  x , x x   + 2  M  x y , x y   +  M  y , y y   − R =  I 0     u ¨   z  +  I 1   (     u ¨    x , x   +    u ¨    y , y    )     −  I 2   ∇ 2     u ¨   z  +  I 4   (     ϕ ¨    x , x   +    ϕ ¨    y , y    )  +  I 6     ϕ ¨   z  ,   



(21)






   δ  ϕ x  :    S  x , x   +  S  x y , y   −  Q x  =  I 3     u ¨   x  −  I 4     u ¨    z , x   +  I 5     ϕ ¨   x    ,   



(22)






   δ  ϕ y  :    S  x y , x   +  S  y , y   −  Q y  =  I 3     u ¨   y  −  I 4     u ¨    z , y   +  I 5     ϕ ¨   y    ,   



(23)






    u z  :    Q  x , x   +  Q  y , y   −  S z  =  I 6     u ¨   z  +  I 7     ϕ ¨   z    ,   



(24)




where


   {   I 0  ,  I 1  ,  I 2  ,  I 3  ,  I 4  ,  I 5  ,  I 6  ,  I 7   }  =   ∫   − h / 2   h / 2   ρ  ( z )   {  1 , z ,  z 2  , f , z f ,  f 2  , g ,  g 2   }  d z .  



(25)







The following closed-form solution is appropriate for such simply-supported plates and is seen to satisfy all governing equations:


   {       (   u x  ,  ϕ x   )         (   u y  ,  ϕ y   )         (   u z  ,  ϕ z   )       }  =   ∑   l = 1  ∞    ∑   m = 1  ∞   {       (   U  i j   ,  X  i j    )  cos  (  λ x  )  sin  (  μ y  )         (   V  i j   ,  Y  i j    )  sin  (  λ x  )  cos  (  μ y  )         (   W  i j   ,  Z  i j    )  sin  (  λ x  )  sin  (  μ y  )       }   e  − i ω t   ,  



(26)




where   λ = i π / a   and   μ = j π / b  . In addition,  i  and  j  represent the mode shapes of vibration and they indicate the number of half-waves in  x - and  y -directions, respectively. The stress and moment resultants in Equations (11)–(14) may be represented as


       N x  =  B  11     ∂  u x    ∂ x   +  B  12     ∂  u y    ∂ y   −   B ¯   11      ∂ 2   w b    ∂  x 2    −   B ¯   12      ∂ 2   w b    ∂  y 2    −    B =    11      ∂ 2   w s    ∂  x 2    −    B =    12      ∂ 2   w s    ∂  y 2    +  H  13    u z  ,        N y  =  B  12     ∂  u x    ∂ x   +  B  22     ∂  u y    ∂ y   −   B ¯   12      ∂ 2   w b    ∂  x 2    −   B ¯   22      ∂ 2   w b    ∂  y 2    −    B =    12      ∂ 2   w s    ∂  x 2    −    B =    22      ∂ 2   w s    ∂  y 2    +  H  23    u z  ,        N  x y   =  B  66    (    ∂  u y    ∂ x   +   ∂  u x    ∂ y    )  − 2   B ¯   66      ∂ 2   w b    ∂ x ∂ y   − 2    B =    66      ∂ 2   w s    ∂ x ∂ y   ,        M x  =   B ¯   11     ∂  u x    ∂ x   +   B ¯   12     ∂  u y    ∂ y   −  D  11      ∂ 2   w b    ∂  x 2    −  D  12      ∂ 2   w b    ∂  y 2    −   D ¯   11      ∂ 2   w s    ∂  x 2    −   D ¯   12      ∂ 2   w s    ∂  y 2    +   H ¯   13    u z  ,        M y  =   B ¯   12     ∂  u x    ∂ x   +   B ¯   22     ∂  u y    ∂ y   −  D  12      ∂ 2   w b    ∂  x 2    −  D  22      ∂ 2   w b    ∂  y 2    −   D ¯   12      ∂ 2   w s    ∂  x 2    −   D ¯   22      ∂ 2   w s    ∂  y 2    +   H ¯   23    u z  ,        M  x y   =   B ¯   66    (    ∂  u y    ∂ x   +   ∂  u x    ∂ y    )  − 2  D  66      ∂ 2   w b    ∂ x ∂ y   − 2   D ¯   66      ∂ 2   w s    ∂ x ∂ y   ,        S x  =    B =    11     ∂  u x    ∂ x   +    B =    12     ∂  u y    ∂ y   −   D ¯   11      ∂ 2   w b    ∂  x 2    −   D ¯   12      ∂ 2   w b    ∂  y 2    −    D =    11      ∂ 2   w s    ∂  x 2    −    D =    12      ∂ 2   w s    ∂  y 2    +    H =    13    u z  ,        S y  =    B =    12     ∂  u x    ∂ x   +    B =    22     ∂  u y    ∂ y   −   D ¯   12      ∂ 2   w b    ∂  x 2    −   D ¯   22      ∂ 2   w b    ∂  y 2    −    D =    12      ∂ 2   w s    ∂  x 2    −    D =    22      ∂ 2   w s    ∂  y 2    +    H =    23    u z  ,        S  x y   =    B =    66    (    ∂  u y    ∂ x   +   ∂  u x    ∂ y    )  − 2   D ¯   66      ∂ 2   w b    ∂ x ∂ y   − 2    D =    66      ∂ 2   w s    ∂ x ∂ y   ,        Q x  =  A  55     ∂  (   w s  +  u z   )    ∂ x     ,    Q y  =  A  44     ∂  (   w s  +  u z   )    ∂ y   .      



(27)







The governing Equations (19)–(24) after using Equations (26) and (27) are reduced to


  (  [ K ]  − i ω  [ R ]  −  ω 2   [ P ]  )  { ∆ }  =  { 0 }  ,  



(28)




where    { ∆ }  =    {   u x  ,  u y  ,  u z  ,  ϕ x  ,  ϕ y  ,  ϕ z   }   T    and the non-zero elements    K  k l     of the symmetric matrix    [ K ]    and    P  k l     of the symmetric matrix    [ P ]    are defined for FG plates by


       K  11   =  B  11    λ 2  +  B  66    μ 2    ,    K  12   =  (   B  12   +  B  66    )  λ μ   .   ,    K  13   = − λ  [    B ¯   11    λ 2  +  (    B ¯   12   + 2   B ¯   66    )   μ 2   ]  ,        K  14   =    B =    11    λ 2  +    B =    66    μ 2    ,    K  15   =  (     B =    12   +    B =    66    )  λ μ   ,    K  16   = −  H  13   λ   ,    K  22   =  B  66    λ 2  +  B  22    μ 2  ,        K  23   = − μ  [   (    B ¯   12   + 2   B ¯   66    )   λ 2  +   B ¯   22    μ 2   ]    ,    K  24   =  K  15     ,    K  25   =    B =    66    λ 2  +    B =    22    μ 2  ,        K  26   = −  H  23   μ   ,    K  33   =  D  11    λ 4  + 2  (   D  12   + 2  D  66    )   λ 2   μ 2  +  D  22    μ 4  +  k s   (   λ 2  +  μ 2   )  +  k w  ,        K  34   = − λ  [    D ¯   11    λ 2  +  (    D ¯   12   + 2   D ¯   66    )   μ 2   ]    ,    K  35   = − μ  [   (    D ¯   12   + 2   D ¯   66    )   λ 2  +   D ¯   22    μ 2   ]  ,        K  36   =   H ¯   13    λ 2  +   H ¯   23    μ 2    ,    K  44   =    D =    11    λ 2  +    D =    66    μ 2  +  A  55   ,    K  45   =  (     D =    12   +    D =    66    )  λ μ ,        K  46   =  (   A  55   −    H =    13    )  λ   ,    K  55   =    D =    66    λ 2  +    D =    22    μ 2  +  A  44     ,    K  56   =  (   A  44   −    H =    23    )  μ ,        K  66   =  A  55    λ 2  +  A  44    μ 2  +  A  33     ,    P  11   =  P  22   =  I 0    ,    P  13   = −  I 1  λ   ,    P  14   =  P  25   =  I 3  ,          P  23   = −  I 1  μ   ,    P  33   =  I 0  +  I 2   (   λ 2  +  μ 2   )    ,    P  34   = −  I 4  λ   ,    P  35   = −  I 4  μ   ,    P  36   =  I 6  ,        P  44   =  P  55   =  I 5    ,    P  66   =  I 7    ,    R  33   =  c d  .      



(29)









3. Numerical Results and Discussion


This section presents some numerical examples for vibration frequencies of isotropic and FG rectangular plates. The accuracy and efficiency of the present quasi-3D refined theory in predicting fundamental and natural frequencies of simply-supported plates are discussed. The results due to the present theory are compared with those found in the literature using various theories. Different material properties are assumed as follows:



3.1. Isotropic Plate



   ν = 0.3 .   



(30)






3.2. Functionally Graded Plates



   Aluminum   ( Al ) :    E m  = 70   GPa ,   ν = 0.3 ,    ρ m  = 2703   kg /  m 3  ,   



(31)






   Alumina   (  Al 2   O 3  ) :    E c  = 380   GPa ,   ν = 0.3 ,    ρ c  = 3800   kg /  m 3  ,   



(32)






   Zirconia   (  ZrO 2  ) :    E c  = 200   GPa ,   ν = 0.3 ,    ρ c  = 5700   kg /  m 3  .   



(33)





Numerical results concern values of dimensionless fundamental and natural frequencies are displayed in Table 1, Table 2, Table 3, Table 4, Table 5, Table 6, Table 7, Table 8, Table 9, Table 10, Table 11, Table 12, Table 13, Table 14, Table 15, Table 16, Table 17 and Table 18. Different forms for dimensionless frequencies and foundation parameters are considered.




3.3. Analysis of Isotropic Plates


In this section, the special case of homogeneous isotropic plates is analyzed. Table 1, Table 2, Table 3 and Table 4 present the results of the non-dimensional natural frequency obtained by the present quasi-3D theory for square plates. In Table 1, Table 2, Table 3 and Table 4, the non-dimensional natural frequencies and nondimensional coefficients of foundations are utilized as


    ω ¯  = ω  a 2       ρ 0  h    D 0        ,    D 0  =    E 0   h 3    12  (  1 −  ν 2   )    ,   



(34)




in which    E 0   ,  ν ,    ρ 0    denote Young’s modulus, Poisson’s ratio, and density of the isotropic material.



Table 1 presents the natural frequencies of isotropic square plates due to the first eight modes. These frequencies are compared with the solutions of different authors: the 3D exact solutions by Leissa [29], Zhou et al. [30], Nagino et al. [31]; the FSDT using differential quadrature element method (DQM) by Liu and Liew [32]; and HDTs by Hosseini-Hashemi et al. [33], Shufrin et al. [34], Akavci [35], and a quasi-3D hybrid type HSDT by Mantari et al. [36].
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Table 1. Non-dimensional natural frequencies    ω ¯  = ω  a 2    ρ h /  D 0      for isotropic square plates.






Table 1. Non-dimensional natural frequencies    ω ¯  = ω  a 2    ρ h /  D 0      for isotropic square plates.





	
   a / h   

	
Theory

	
Mode




	
(1,1)

	
(1,2)

	
(2,1)

	
(2,2)

	
(1,3)

	
(3,1)

	
(2,3)

	
(3,2)






	
1000

	
Leissa [29]

	
19.7392

	
49.3480

	
49.3480

	
78.9568

	
98.6960

	
98.6960

	
128.3021

	
128.3021




	
Zhou et al. [30]

	
19.7115

	
49.3470

	
49.3470

	
78.9528

	
98.6911

	
98.6911

	
128.3048

	
128.3048




	
Akavci [35]

	
19.7391

	
49.3476

	
49.3476

	
78.9557

	
98.6943

	
98.6943

	
128.3020

	
128.3020




	
Mantari et al. [36]

	
19.7396

	
49.3482

	
49.3482

	
78.9568

	
98.6956

	
98.6956

	
128.3036

	
128.3036




	
Present

	
19.73914

	
49.34760

	
49.34760

	
78.95574

	
98.69434

	
98.69434

	
128.30197

	
128.30197




	
100

	
Leissa [29]

	
19.7319

	
49.3027

	
49.3027

	
78.8410

	
98.5150

	
98.5150

	
127.9993

	
127.9993




	
Nagino et al. [31]

	
19.7320

	
49.3050

	
49.3050

	
78.8460

	
98.5250

	
98.5250

	
128.0100

	
128.0100




	
Akavci [35]

	
19.7322

	
49.3045

	
49.3045

	
78.8456

	
98.5223

	
98.5223

	
128.0120

	
128.0120




	
Mantari et al. [36]

	
19.7326

	
49.3055

	
49.3055

	
78.8475

	
98.5250

	
98.5250

	
128.0156

	
128.0156




	
Present

	
19.73231

	
49.30491

	
49.30491

	
78.84657

	
98.52386

	
98.52386

	
128.01415

	
128.01415




	
10

	
Liu et al. [32]

	
19.0584

	
45.4478

	
45.4478

	
69.7167

	
84.9264

	
84.9264

	
106.5154

	
106.5154




	
Hosseini et al. [33]

	
19.0653

	
45.4869

	
45.4869

	
69.8093

	
85.0646

	
85.0646

	
106.7350

	
106.7350




	
Akavci [35]

	
19.0850

	
45.5957

	
45.5957

	
70.0595

	
85.4315

	
85.4315

	
107.3040

	
107.3040




	
Mantari et al. [36]

	
19.0901

	
45.6200

	
45.6200

	
70.1083

	
85.4964

	
85.4964

	
107.3896

	
107.3896




	
Present

	
19.09028

	
45.62185

	
45.62185

	
70.11284

	
85.50305

	
85.50305

	
107.39973

	
107.39973




	
5

	
Shufrin et al. [34]

	
17.4524

	
38.1884

	
38.1884

	
55.2539

	
65.3130

	
65.3130

	
78.9864

	
78.9864




	
Hosseini et al. [33]

	
17.4523

	
38.1883

	
38.1883

	
55.2543

	
65.3135

	
65.3135

	
78.9865

	
78.9865




	
Akavci [35]

	
17.5149

	
38.4722

	
38.4722

	
55.8358

	
66.1207

	
66.1207

	
80.1637

	
80.1637




	
Mantari et al. [36]

	
17.5271

	
38.4991

	
38.4991

	
55.8410

	
66.0874

	
66.0874

	
80.0364

	
80.0364




	
Present

	
17.52821

	
38.50383

	
38.50383

	
55.84950

	
66.09809

	
66.09809

	
80.04976

	
80.04976











It is clear from Table 1 that for the value of the side-to-thickness ratio (  a / h = 1000  ), the first mode of the present frequency is identical to those given by Leissa [29] and Akavci [35] and has proximity with the one obtained by Mantari et al. [36]. Additionally, the high modes of the present natural frequencies are identical to those given by Akavci [35] and are very close to the ones obtained by Zhou et al. [30], Leissa [29], and Mantari et al. [36] For the side-to-thickness ratio (  a / h = 100  ), it is noted that the results are slightly less than those predicted by Mantari et al. [36] and slightly greater than those predicted by Leissa [29], Nagino et al. [31], and Akavci [35]. For moderately thick plates (  a / h = 10  ), the present natural frequencies are very close to those obtained by Mantari et al. [36] and slightly greater than those predicted by Liu et al. [32], Hosseini et al. [33], and Akavci [35]. For thin plates (  a / h = 5  ), the present natural frequencies are close to those obtained by Akavci [35] and Mantari et al. [36]



In Table 2, Table 3 and Table 4, the outcomes of the non-dimensional natural frequency   ω ¯   represented in Equation (34) for isotropic square plates resting on visco–Pasternak foundations are reported. The nondimensional coefficients of the three-parameter foundations are utilized as


     k ¯  w  =    a 4     D 0     k w    ,     k ¯  s  =    a 2     D 0     k s    ,     c ¯  d  =  c d  h    h   ρ 0   D 0      .   



(35)







The most important case is considered for isotropic square plates resting on the two-parameter Pasternak foundation. However, additional results for plates resting on three-parameter visco–Pasternak foundations are also included for future comparisons. Different values for the three-parameter coefficients     k ¯  w   ,     k ¯  s   , and     c ¯  d    are discussed.
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Table 2. Non-dimensional fundamental frequencies    ω ¯  = ω  a 2    ρ h /  D 0      for isotropic square plates resting on Visco-Winkler-Pasternak foundations (  a / h = 5  ,   i = j = 1  ).






Table 2. Non-dimensional fundamental frequencies    ω ¯  = ω  a 2    ρ h /  D 0      for isotropic square plates resting on Visco-Winkler-Pasternak foundations (  a / h = 5  ,   i = j = 1  ).





	
     k ¯  w    

	
     k ¯  s    

	
Matsunaga [37]

	
Thai and Choi [38]

	
Mantari et al. [36]

	
Present




	
     c ¯  d    =   0   

	
     c ¯  d    =   0.5   

	
     c ¯  d    =   1   

	
     c ¯  d    =   1.5   






	
0

	
0

	
17.5260

	
17.4523

	
17.5271

	
17.52821

	
---

	
---

	
---




	
10

	
17.7847

	
17.7248

	
17.7858

	
17.78691

	
17.80266

	
17.85029

	
17.93085




	
102

	
19.9528

	
20.0076

	
19.9613

	
19.96234

	
19.98001

	
20.03340

	
20.12372




	
103

	
34.3395

	
35.5039

	
34.7796

	
34.78009

	
34.81060

	
34.90277

	
35.05861




	
104

	
45.5260

	
45.5255

	
45.5260

	
45.52600

	
45.52600

	
45.52600

	
45.52600




	
105

	
45.5260

	
45.5255

	
45.5260

	
45.52600

	
45.52600

	
45.52600

	
45.52600




	
0

	
10

	
22.0429

	
22.2145

	
22.0707

	
22.07157

	
22.09109

	
22.15007

	
22.24983




	
10

	
22.2453

	
22.4286

	
22.2757

	
22.27657

	
22.29627

	
22.35578

	
22.45646




	
102

	
23.9830

	
24.2723

	
24.0401

	
24.04090

	
24.06214

	
24.12631

	
24.23485




	
103

	
36.6276

	
38.0650

	
37.2169

	
37.21732

	
37.24990

	
37.34833

	
37.51475




	
104

	
45.5260

	
45.5255

	
45.5260

	
45.52600

	
45.52600

	
45.52600

	
45.52600




	
105

	
45.5260

	
45.5255

	
45.5260

	
45.52600

	
45.52600

	
45.52600

	
45.52600
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Table 3. Non-dimensional natural frequencies    ω ¯  = ω  a 2    ρ h /  D 0      for isotropic square plates resting on Visco-Winkler-Pasternak foundations (  a / h = 5  ,   i = 1  ,   j = 2  ).






Table 3. Non-dimensional natural frequencies    ω ¯  = ω  a 2    ρ h /  D 0      for isotropic square plates resting on Visco-Winkler-Pasternak foundations (  a / h = 5  ,   i = 1  ,   j = 2  ).





	
     k ¯  w    

	
     k ¯  s    

	
Matsunaga [37]

	
Thai and Choi [38]

	
Mantari et al. [36]

	
Present




	
     c ¯  d    =   0   

	
     c ¯  d    =   1   

	
     c ¯  d    =   2   

	
     c ¯  d    =   3   






	
0

	
0

	
38.4827

	
38.1883

	
38.4991

	
38.50383

	
---

	
---

	
---




	
10

	
38.5929

	
38.3098

	
38.6093

	
38.61403

	
38.75920

	
39.21005

	
40.01800




	
102

	
39.5669

	
39.3895

	
39.5860

	
39.59068

	
39.73930

	
40.20086

	
41.02792




	
103

	
47.8667

	
48.8772

	
48.1688

	
48.17300

	
48.35118

	
48.90436

	
49.89463




	
104

	
71.9829

	
71.9829

	
71.9829

	
71.98293

	
71.98293

	
71.98293

	
71.98293




	
105

	
71.9829

	
71.9829

	
71.9829

	
71.98293

	
71.98293

	
71.98293

	
71.98293




	
0

	
10

	
43.4816

	
43.7943

	
43.5741

	
43.57850

	
43.74104

	
44.24576

	
45.14976




	
10

	
43.5747

	
43.9009

	
43.6701

	
43.67455

	
43.83742

	
44.34317

	
45.24900




	
102

	
44.3994

	
44.8445

	
44.5241

	
44.52853

	
44.69434

	
45.20920

	
46.13126




	
103

	
51.6029

	
53.3580

	
52.2029

	
52.20676

	
52.39828

	
52.99275

	
54.05639




	
104

	
71.9829

	
71.9829

	
71.9829

	
71.98293

	
71.98293

	
71.98293

	
71.98293




	
105

	
71.9829

	
71.9829

	
71.9829

	
71.98293

	
71.98293

	
71.98293

	
71.98293











The first three non-dimensional natural frequencies of a thicker square plate (  a / h = 5  ) resting on the elastic foundation are presented in Table 2, Table 3 and Table 4. The first mode (  i = j = 1  ) fundamental frequencies     ω ¯   11     are represented in Table 2 while natural frequencies     ω ¯   12     and     ω ¯   13     are presented in Table 3 and Table 4, respectively. In such tables, the frequencies are compared with the refined shear deformation theory given by Thai and Choi [38], the HSDT proposed by Matsunaga [37], and a quasi-3D hybrid type HSDT by Mantari et al. [36]
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Table 4. Non-dimensional natural frequencies    ω ¯  = ω  a 2    ρ h /  D 0      for isotropic square plates resting on Visco-Winkler-Pasternak foundations (  a / h = 5  ,   i = 1  ,   j = 3  ).






Table 4. Non-dimensional natural frequencies    ω ¯  = ω  a 2    ρ h /  D 0      for isotropic square plates resting on Visco-Winkler-Pasternak foundations (  a / h = 5  ,   i = 1  ,   j = 3  ).





	
     k ¯  w      

	
     k ¯  s    

	
Matsunaga [37]

	
Thai and Choi [38]

	
Mantari et al. [36]

	
Present




	
     c ¯  d    =   0   

	
     c ¯  d    =   1   

	
     c ¯  d    =   2   

	
     c ¯  d    =   3   






	
0

	
0

	
65.9961

	
65.3135

	
66.0874

	
66.09809

	
---

	
---

	
---




	
10

	
66.0569

	
65.3841

	
66.1481

	
66.15875

	
66.40586

	
67.17631

	
68.56834




	
102

	
66.5995

	
66.0138

	
66.6907

	
66.70143

	
66.95005

	
67.72517

	
69.12547




	
103

	
71.5577

	
72.0036

	
71.8192

	
71.83050

	
72.09271

	
72.90970

	
74.38380




	
104

	
97.4964

	
101.7990

	
101.7992

	
101.79924

	
101.79924

	
101.79924

	
101.79924




	
105

	
101.7992

	
101.7990

	
101.7992

	
101.79924

	
101.79924

	
101.79924

	
101.79924




	
0

	
10

	
71.4914

	
71.9198

	
71.7485

	
71.75974

	
72.02177

	
72.83822

	
74.31135




	
10

	
71.5423

	
71.9839

	
71.8028

	
71.81402

	
72.07618

	
72.89304

	
74.36692




	
102

	
71.9964

	
72.5554

	
72.2886

	
72.29990

	
72.56328

	
73.38389

	
74.86433




	
103

	
76.1848

	
78.0290

	
76.9124

	
76.92383

	
77.19813

	
78.05223

	
79.59112




	
104

	
99.0187

	
101.7990

	
101.7992

	
101.79924

	
101.79924

	
101.79924

	
101.79924




	
105

	
101.7992

	
101.7990

	
101.7992

	
101.79924

	
101.79924

	
101.79924

	
101.79924











The fundamental frequencies in Table 2 are close to those obtained by Matsunaga [37] and Mantari et al. [36] and slightly greater than those of Thai and Choi [38]. It is clear that the frequencies increase as the two-parameter coefficients increase. For higher values of the first parameter coefficient     k ¯  w   , the frequencies still have the same values. The inclusion of the third-parameter coefficient     c ¯  d    is also discussed here. It is interesting to see that the frequencies increase with the increase in the value of     c ¯  d   .



The natural frequencies in Table 3 and Table 4 are also closer to those obtained by Matsunaga [37] and Mantari et al. [36] and slightly greater than those of Thai and Choi [38]. Once again, the frequencies increase as the three-parameter coefficients increase. For higher values of the first parameter coefficient     k ¯  w    the frequencies still have the same values. It is to be noted that in Table 2, Table 3 and Table 4, as the mode  m  increases, the frequency increases irrespective of the values of the three-parameter coefficients.




3.4. Analysis of FG Plates


Here, the non-dimensional fundamental frequencies of FG square plates are discussed in Table 5 and Table 6. The FG plates are fabricated of different materials. The mechanical properties of such materials are given in Equations (31)–(33). The non-dimensional frequency is utilized as


   ω ^  = ω h      ρ m     E m      .  



(36)







The non-dimensional fundamental frequencies     ω ^   11     for thicker (  a / h = 5  ) Aluminum-Zirconia (Al/ZrO2) FG square plates without elastic foundations are compared with the corresponding results in Table 5. Additional results for plates resting on Visco-Winkler-Pasternak foundations are also presented. The nondimensional coefficients of the three-parameter foundations are utilized as


     k ¯  w  =    a 4     D m     k w    ,     k ¯  s  =    a 2     D m     k s    ,     c ¯  d  =  c d  h    h   ρ m   D m        ,    D m  =    E m   h 3    12  (  1 −  ν 2   )    .   



(37)







In Table 5, the fundamental frequencies for three values of the FG power-law index  p  are computed and compared with the 3D exact solution by Vel et al. [39], quasi-3D sinusoidal and hyperbolic HSDTs by Neves et al. [40,41], a quasi-3D hybrid type HSDT by Mantari et al. [36], and HSDTs by Akavci [35], Hosseini-Hashemi et al. [32], and Matsunaga [42]. The frequencies increase with the increase in the FG power-law index  p . Neglecting the three-parameter foundation coefficients shows that the present frequencies are identical to those of Mantari et al. [36]. In addition, the present frequencies agree well with the HSDTs’ frequencies. For the sake of future comparison, dome frequencies for plates on the Visco-Winkler-Pasternak foundation are also included in the same table. Once again, the frequencies increase with the increase in the three-parameter foundation coefficients.
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Table 5. Non-dimensional fundamental frequencies    ω ^  = ω h    ρ m  /  E m      for Al/ZrO2 FG square plates resting on Visco-Winkler-Pasternak foundations (  a / h = 5  ).






Table 5. Non-dimensional fundamental frequencies    ω ^  = ω h    ρ m  /  E m      for Al/ZrO2 FG square plates resting on Visco-Winkler-Pasternak foundations (  a / h = 5  ).





	
Theory

	
  p  




	
2

	
3

	
5






	
Vel and Batra [39]

	
0.2197

	
0.2211

	
0.2225




	
Neves et al. (   ε z  = 0  ) [40]

	
0.2189

	
0.2202

	
0.2215




	
Neves et al. (   ε z  ≠ 0  ) [40]

	
0.2198

	
0.2212

	
0.2225




	
Neves et al. (   ε z  = 0  ) [41]

	
0.2191

	
0.2205

	
0.2220




	
Neves et al. (   ε z  ≠ 0  ) [41]

	
0.2201

	
0.2216

	
0.2230




	
Hosseini-Hashemi et al. [33]

	
0.2264

	
0.2276

	
0.2291




	
Akavci [35]

	
0.2263

	
0.2268

	
0.2277




	
Matsunaga [42]

	
0.2264

	
0.2270

	
0.2280




	
Mantari et al. [36]

	
0.2285

	
0.2290

	
0.2295




	
Present

	
    k ¯  w  =   k ¯  s  =   c ¯  d  = 0  

	
0.22848

	
0.22901

	
0.22952




	
    k ¯  w  = 10  ,     k ¯  s  = 0  ,     c ¯  d  = 0  

	
0.23062

	
0.23130

	
0.23199




	
    k ¯  w  = 10  ,     k ¯  s  = 10  ,     c ¯  d  = 0  

	
0.26937

	
0.27256

	
0.27610




	
    k ¯  w  = 10  ,     k ¯  s  = 10  ,     c ¯  d  = 1  

	
0.26976

	
0.27301

	
0.27664




	
    k ¯  w  = 10  ,     k ¯  s  = 10  ,     c ¯  d  = 2  

	
0.27095

	
0.27438

	
0.27825




	
    k ¯  w  =   10  2   ,     k ¯  s  = 10  ,     c ¯  d  = 2  

	
0.28694

	
0.29132

	
0.29627











The non-dimensional fundamental frequencies     ω ^   11   = ω h    ρ m  /  E m      for Aluminum-Alumina (Al/Al2O3) FG rectangular plates are presented in Table 6. The frequencies are computed for four different values of the FG power-law index  p  and compared with a quasi-3D hybrid type HSDT by Mantari et al. [36] and a 3D exact solution proposed by Jin et al. [43]. Generally, the frequencies decrease with the increase in the FG power-law index  p . Additionally, the frequencies increase as both   a / h   and   b / a   decrease. Neglecting the three-parameter foundation coefficients shows that the present frequencies give good accuracy with those in [36] and [43] for square plates (  b / a = 1  ). However, for rectangular plates (  b / a = 2  ), the present frequencies are very close to those of Mantari et al. [36] and slightly greater than those of Jin et al. [43] For the sake of future comparison, some frequencies for plates on the Visco-Winkler-Pasternak foundation are also included in Table 6. The non-dimensional coefficients of the three-parameter foundations are given in Equation (37). For all cases studied, the frequencies increase with the increase in the three-parameter foundation coefficients.
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Table 6. Non-dimensional fundamental frequencies    ω ^  = ω h    ρ m  /  E m      for Al/Al2O3 FG rectangular plates on Visco-Winkler-Pasternak foundations.






Table 6. Non-dimensional fundamental frequencies    ω ^  = ω h    ρ m  /  E m      for Al/Al2O3 FG rectangular plates on Visco-Winkler-Pasternak foundations.





	
   b / a   

	
   a / h   

	
Theory

	
  p  




	
0

	
1

	
2

	
5






	
1

	
10

	
Jin et al. [43]

	
0.1135

	
0.0870

	
0.0789

	
0.0741




	
Mantari et al. [36]

	
0.1135

	
0.0882

	
0.0806

	
0.0755




	
Present

	
    k ¯  w  =   k ¯  s  =   c ¯  d  = 0  

	
0.11350

	
0.08818

	
0.08057

	
0.07553




	
    k ¯  w  = 100  ,     k ¯  s  = 0  ,     c ¯  d  = 0.5  

	
0.11627

	
0.09230

	
0.08533

	
0.08090




	
    k ¯  w  = 0  ,     k ¯  s  = 10  ,     c ¯  d  = 0.5  

	
0.11889

	
0.09613

	
0.08969

	
0.08578




	
    k ¯  w  = 100  ,     k ¯  s  = 10  ,     c ¯  d  = 0.5  

	
0.12152

	
0.09991

	
0.09397

	
0.09051




	
5

	
Jin et al. [43]

	
0.4169

	
0.3222

	
0.2905

	
0.2676




	
Mantari et al. [36]

	
0.4168

	
0.3260

	
0.2961

	
0.2722




	
Present

	
    k ¯  w  =   k ¯  s  =   c ¯  d  = 0  

	
0.41685

	
0.32605

	
0.29613

	
0.27221




	
    k ¯  w  = 100  ,     k ¯  s  = 0  ,     c ¯  d  = 0.5  

	
0.42816

	
0.34278

	
0.31556

	
0.29463




	
    k ¯  w  = 0  ,     k ¯  s  = 10  ,     c ¯  d  = 0.5  

	
0.43885

	
0.35824

	
0.33329

	
0.31481




	
    k ¯  w  = 100  ,     k ¯  s  = 10  ,     c ¯  d  = 0.5  

	
0.44956

	
0.37344

	
0.35056

	
0.33425




	
2

	
Jin et al. [43]

	
1.8470

	
1.4687

	
1.3095

	
1.1450




	
Mantari et al. [36]

	
1.8505

	
1.4774

	
1.3219

	
1.1551




	
Present

	
    k ¯  w  =   k ¯  s  =   c ¯  d  = 0  

	
1.85081

	
1.47762

	
1.32213

	
1.15544




	
    k ¯  w  = 100  ,     k ¯  s  = 0  ,     c ¯  d  = 0.5  

	
1.93506

	
1.59673

	
1.46375

	
1.33166




	
    k ¯  w  = 0  ,     k ¯  s  = 10  ,     c ¯  d  = 0.5  

	
2.01192

	
1.70066

	
1.58405

	
1.47548




	
    k ¯  w  = 100  ,     k ¯  s  = 10  ,     c ¯  d  = 0.5  

	
2.08633

	
1.79759

	
1.69386

	
1.60293




	
2

	
10

	
Jin et al. [43]

	
0.0719

	
0.0550

	
0.0499

	
0.0471




	
Mantari et al. [36]

	
0.0718

	
0.0557

	
0.0510

	
0.0479




	
Present

	
    k ¯  w  =   k ¯  s  =   c ¯  d  = 0  

	
0.07181

	
0.05573

	
0.05097

	
0.04794




	
    k ¯  w  = 100  ,     k ¯  s  = 0  ,     c ¯  d  = 0.5  

	
0.07614

	
0.06209

	
0.05824

	
0.05605




	
    k ¯  w  = 0  ,     k ¯  s  = 10  ,     c ¯  d  = 0.5  

	
0.07711

	
0.06348

	
0.05981

	
0.05778




	
    k ¯  w  = 100  ,     k ¯  s  = 10  ,     c ¯  d  = 0.5  

	
0.08115

	
0.06912

	
0.06611

	
0.06466




	
5

	
Jin et al. [43]

	
0.2713

	
0.2088

	
0.1888

	
0.1754




	
Mantari et al. [36]

	
0.2712

	
0.2115

	
0.1926

	
0.1786




	
Present

	
    k ¯  w  =   k ¯  s  =   c ¯  d  = 0  

	
0.27124

	
0.21151

	
0.19262

	
0.17861




	
    k ¯  w  = 100  ,     k ¯  s  = 0  ,     c ¯  d  = 0.5  

	
0.28875

	
0.23709

	
0.22197

	
0.21183




	
    k ¯  w  = 0  ,     k ¯  s  = 10  ,     c ¯  d  = 0.5  

	
0.29268

	
0.24266

	
0.22828

	
0.21885




	
    k ¯  w  = 100  ,     k ¯  s  = 10  ,     c ¯  d  = 0.5  

	
0.30894

	
0.26520

	
0.25347

	
0.24662




	
2

	
Jin et al. [43]

	
0.9570

	
0.7937

	
0.7149

	
0.6168




	
Mantari et al. [36]

	
1.3040

	
1.0346

	
0.9293

	
0.8236




	
Present

	
    k ¯  w  =   k ¯  s  =   c ¯  d  = 0  

	
1.30422

	
1.03469

	
0.92945

	
0.82385




	
    k ¯  w  = 100  ,     k ¯  s  = 0  ,     c ¯  d  = 0.5  

	
1.42513

	
1.20475

	
1.12760

	
1.06040




	
    k ¯  w  = 0  ,     k ¯  s  = 10  ,     c ¯  d  = 0.5  

	
1.45155

	
1.24029

	
1.16792

	
1.10679




	
    k ¯  w  = 100  ,     k ¯  s  = 10  ,     c ¯  d  = 0.5  

	
1.55824

	
1.37906

	
1.32259

	
1.28071











The non-dimensional fundamental frequencies      ω ˇ    11   =  (  ω  a 2  / h  )     ρ m  /  E m      for Aluminum-Zirconia (Al/ZrO2) FG square plates resting on Visco-Winkler-Pasternak foundations are reported in Table 7. When   p = 0  , the frequency parameter tends to      ω ˘    11   =  (  ω  a 2  / h  )     ρ c  /  E c     . The frequencies, without the three-parameter foundation coefficients, are compared with the 3D exact solutions proposed by Vel and Batra [39], HSDTs proposed by Akavci [35], a quasi-3D hybrid type HSDT by Mantari et al. [36], and Matsunaga [42]. In general, the frequencies increase as both  p  and   a / h   increase. The present frequencies are compared well with those reported in [36]. Additionally, the frequencies approach to the corresponding solutions obtained in [35,39,42]. If the Visco-Winkler-Pasternak foundations are taken into account, the frequencies increase. Once again, the non-dimensional coefficients of the three-parameter foundations are given in Equation (37).
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Table 7. Non-dimensional fundamental frequencies    ω ˇ  =  (  ω  a 2  / h  )     ρ m  /  E m      for Al/ZrO2 FG square plates on Visco-Winkler-Pasternak foundations.






Table 7. Non-dimensional fundamental frequencies    ω ˇ  =  (  ω  a 2  / h  )     ρ m  /  E m      for Al/ZrO2 FG square plates on Visco-Winkler-Pasternak foundations.





	
  p  

	
   a / h   

	
Vel and Batra [39]

	
Akavci [35]

	
Matsunaga [42]

	
Mantari et al. [36]

	
   Present   (   k ¯  w  ,   k ¯  s  ,   c ¯  d  )   




	
(0,0,0)

	
(10,0,0.1)

	
(0,10,0.1)

	
(10,10,0.1)






	
0 *

	
    10    

	
4.6582

	
4.6569

	
4.6582

	
4.6601

	
4.66072

	
4.68987

	
5.20264

	
5.22844




	
10

	
5.7769

	
5.7754

	
5.7769

	
5.7769

	
5.77698

	
5.80392

	
6.28692

	
6.31166




	
1

	
5

	
5.4806

	
5.7110

	
5.7123

	
5.7501

	
5.75043

	
5.79726

	
6.61170

	
6.65231




	
10

	
5.9609

	
6.1924

	
6.1932

	
6.2365

	
6.23656

	
6.28244

	
7.08625

	
7.12659




	
20

	
6.1076

	
6.3388

	
6.3390

	
6.3842

	
6.38419

	
6.42989

	
7.23208

	
7.27240




	
2

	
5

	
5.4923

	
5.6593

	
5.6599

	
5.7115

	
5.71197

	
5.76558

	
6.68866

	
6.73430




	
3

	
5

	
5.5285

	
5.6718

	
5.6757

	
5.7246

	
5.72519

	
5.78258

	
6.76582

	
6.81423




	
5

	
5

	
5.5632

	
5.6941

	
5.7020

	
5.7376

	
5.73811

	
5.79984

	
6.85123

	
6.90276








*    ω ˘  =  (  ω  a 2  / h  )     ρ c  /  E c     .













In Table 8, Table 9 and Table 10, the non-dimensional natural frequencies    ω ˘    for Aluminum-Alumina (Al/Al2O3) FG rectangular plates (  b / a = 2  ) resting on Visco-Winkler-Pasternak foundations are reported. Three values of the side-to-thickness ratio   a / h = 5  ,   10  ,   20   are considered. The non-dimensional frequency and the non-dimensional coefficients of the three-parameter foundations are utilized as


    ω ˘  =   ω  a 2   h       ρ c     E c        ,     c ¯  d  =  c d  h    h   ρ c   D c      ,      k ¯  w  =    a 4     D c     k w    ,     k ¯  s  =    a 2     D c     k s     D c  =    E c   h 3    12  (  1 −  ν 2   )    .   



(38)







Table 8, Table 9 and Table 10 present the first four non-dimensional natural frequencies      ω ˘    11    ,      ω ˘    12    ,      ω ˘    13     and      ω ˘    21     of FG plates for various values of the FG power-law index  p . Firstly, the frequencies increase as both the mode number and side-to-thickness ratio   a / h   increase and as the FG power-law index  p  decreases. For     k ¯  w  =   k ¯  s  =   c ¯  d  = 0  , the present frequencies are compared with the corresponding ones due to the HSDTs proposed by Akavci [35], Thai et al. [44], a quasi-3D hybrid type HSDT by Mantari et al. [36], and the FSDT utilized by Hosseini-Hashemi et al. [3] The present frequencies are very close to those in [35,36] and slightly greater than those in [3,44]. Furthermore, it is shown that for different values of   a / h   the present frequencies get good agreements with the other theories. The frequencies, with the inclusion of the three-parameter foundation coefficients, are presented for future comparisons. The results represent benchmarks to help other investigators to assure their results for plates resting on three-parameter viscoelastic foundations. It is obvious that the frequency slightly increases when adding the three parameters of viscoelastic foundations one by one. The maximum frequencies occurred when all foundation coefficients are included.
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Table 8. Non-dimensional natural frequencies    ω ˘  =  (  ω  a 2  / h  )     ρ c  /  E c      for Al/Al2O3 FG rectangular plates on Visco-Winkler-Pasternak foundations (  b / a = 2  ,   a / h = 5  ).






Table 8. Non-dimensional natural frequencies    ω ˘  =  (  ω  a 2  / h  )     ρ c  /  E c      for Al/Al2O3 FG rectangular plates on Visco-Winkler-Pasternak foundations (  b / a = 2  ,   a / h = 5  ).





	
Mode

	
Theory

	
  p  




	
0

	
1

	
2

	
5

	
8

	
10






	
(1,1)

	
Akavci [35]

	
3.4495

	
2.6529

	
2.3989

	
2.2275

	
2.1724

	
2.1455




	
Thai et al. [44]

	
3.4412

	
2.6475

	
2.3949

	
2.2272

	
2.1697

	
2.1407




	
Hosseini et al. [3]

	
3.4409

	
2.6473

	
2.4017

	
2.2528

	
2.1985

	
2.1677




	
Mantari et al. [36]

	
3.4513

	
2.6913

	
2.4508

	
2.2725

	
2.2032

	
2.1689




	
Present

	
    k ¯  w  =   k ¯  s  =   c ¯  d  = 0  

	
3.45145

	
2.69138

	
2.45102

	
2.27273

	
2.20328

	
2.16887




	
    k ¯  w  = 10  ,     k ¯  s  = 0  ,     c ¯  d  = 0.1  

	
3.57401

	
2.87249

	
2.66011

	
2.51080

	
2.45332

	
2.42438




	
    k ¯  w  = 0  ,     k ¯  s  = 10  ,     c ¯  d  = 0.1  

	
4.74470

	
4.43132

	
4.37556

	
4.37628

	
4.37573

	
4.37110




	
    k ¯  w  = 10  ,     k ¯  s  = 10  ,     c ¯  d  = 0.1  

	
4.83425

	
4.54296

	
4.49522

	
4.50341

	
4.50555

	
4.50200




	
(1,2)

	
Akavci [35]

	
5.3003

	
4.0906

	
3.6900

	
3.3952

	
3.3031

	
3.2626




	
Thai et al. [44]

	
5.2813

	
4.0781

	
3.6805

	
3.3938

	
3.2964

	
3.2514




	
Hosseini et al. [3]

	
5.2802

	
4.0773

	
3.6953

	
3.4492

	
3.3587

	
3.3094




	
Mantari et al. [36]

	
5.3039

	
4.1487

	
3.7677

	
3.4633

	
3.3484

	
3.2955




	
Present

	
    k ¯  w  =   k ¯  s  =   c ¯  d  = 0  

	
5.30428

	
4.14891

	
3.76818

	
3.46376

	
3.34863

	
3.29565




	
    k ¯  w  = 10  ,     k ¯  s  = 0  ,     c ¯  d  = 0.1  

	
5.38275

	
4.26554

	
3.90401

	
3.62103

	
3.51478

	
3.46565




	
    k ¯  w  = 0  ,     k ¯  s  = 10  ,     c ¯  d  = 0.1  

	
6.67940

	
6.03846

	
5.88419

	
5.81358

	
5.78825

	
5.77233




	
    k ¯  w  = 10  ,     k ¯  s  = 10  ,     c ¯  d  = 0.1  

	
6.74143

	
6.11832

	
5.97100

	
5.90714

	
5.88422

	
5.86923




	
(1,3)

	
Akavci [35]

	
8.1179

	
6.2950

	
5.6614

	
5.1479

	
4.9921

	
4.9313




	
Thai et al. [44]

	
8.0749

	
6.2663

	
5.6390

	
5.1425

	
4.9758

	
4.9055




	
Hosseini et al. [3]

	
8.0710

	
6.2636

	
5.6695

	
5.2579

	
5.1045

	
5.0253




	
Mantari et al. [36]

	
8.1244

	
6.3814

	
5.7751

	
5.2484

	
5.0560

	
4.9747




	
Present

	
    k ¯  w  =   k ¯  s  =   c ¯  d  = 0  

	
8.12516

	
6.38194

	
5.77596

	
5.24934

	
5.05661

	
4.97515




	
    k ¯  w  = 10  ,     k ¯  s  = 0  ,     c ¯  d  = 0.1  

	
8.17497

	
6.45589

	
5.86279

	
5.35193

	
5.16569

	
5.08687




	
    k ¯  w  = 0  ,     k ¯  s  = 10  ,     c ¯  d  = 0.1  

	
9.58143

	
8.41316

	
8.08122

	
7.86334

	
7.78824

	
7.75204




	
    k ¯  w  = 10  ,     k ¯  s  = 10  ,     c ¯  d  = 0.1  

	
9.62310

	
8.46823

	
8.14203

	
7.93018

	
7.85721

	
7.82177




	
(2,1)

	
Akavci [35]

	
10.1828

	
7.9209

	
7.1105

	
6.4181

	
6.2111

	
6.1355




	
Thai et al. [44]

	
10.1164

	
7.8762

	
7.0751

	
6.4074

	
6.1846

	
6.0954




	
Hosseini et al. [3]

	
9.7416

	
7.8711

	
7.1189

	
6.5749

	
5.9062

	
5.7518




	
Mantari et al. [36]

	
10.1907

	
8.0264

	
7.2479

	
6.5397

	
6.2856

	
6.1833




	
Present

	
    k ¯  w  =   k ¯  s  =   c ¯  d  = 0  

	
10.19182

	
8.02721

	
7.24906

	
6.54102

	
6.28651

	
6.18403




	
    k ¯  w  = 10  ,     k ¯  s  = 0  ,     c ¯  d  = 0.1  

	
10.23084

	
8.08500

	
7.31724

	
6.62262

	
6.37363

	
6.27329




	
    k ¯  w  = 0  ,     k ¯  s  = 10  ,     c ¯  d  = 0.1  

	
11.69616

	
10.13547

	
9.65993

	
9.31233

	
9.19418

	
9.14170




	
    k ¯  w  = 10  ,     k ¯  s  = 10  ,     c ¯  d  = 0.1  

	
11.72947

	
10.17994

	
9.70947

	
9.36749

	
9.25130

	
9.19949
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Table 9. Non-dimensional natural frequencies    ω ˘  =  (  ω  a 2  / h  )     ρ c  /  E c      for Al/Al2O3 FG rectangular plates on Visco-Winkler-Pasternak foundations (  b / a = 2  ,   a / h = 10  ).






Table 9. Non-dimensional natural frequencies    ω ˘  =  (  ω  a 2  / h  )     ρ c  /  E c      for Al/Al2O3 FG rectangular plates on Visco-Winkler-Pasternak foundations (  b / a = 2  ,   a / h = 10  ).





	
Mode

	
Theory

	
  p  




	
0

	
1

	
2

	
5

	
8

	
10






	
(1,1)

	
Akavci [35]

	
3.6542

	
2.7952

	
2.5376

	
2.3915

	
2.3418

	
2.3124




	
Thai et al. [44]

	
3.6518

	
2.7937

	
2.5364

	
2.3916

	
2.3411

	
2.3110




	
Hosseini et al. [3]

	
3.6518

	
2.7937

	
2.5386

	
2.3998

	
2.3504

	
2.3197




	
Mantari et al. [36]

	
3.6549

	
2.8365

	
2.5943

	
2.4398

	
2.3761

	
2.3398




	
Present

	
    k ¯  w  =   k ¯  s  =   c ¯  d  = 0  

	
3.65486

	
2.83651

	
2.59442

	
2.43983

	
2.37599

	
2.33961




	
    k ¯  w  = 10  ,     k ¯  s  = 0  ,     c ¯  d  = 0.1  

	
3.77600

	
3.01640

	
2.80120

	
2.67192

	
2.61867

	
2.58757




	
    k ¯  w  = 0  ,     k ¯  s  = 10  ,     c ¯  d  = 0.1  

	
4.94508

	
4.58507

	
4.52571

	
4.53573

	
4.53665

	
4.53077




	
    k ¯  w  = 10  ,     k ¯  s  = 10  ,     c ¯  d  = 0.1  

	
5.03519

	
4.69835

	
4.64720

	
4.66450

	
4.66813

	
4.66344




	
(1,2)

	
Akavci [35]

	
5.7754

	
4.4231

	
4.0118

	
3.7682

	
3.6864

	
3.6403




	
Thai et al. [44]

	
5.7694

	
4.4192

	
4.0090

	
3.7682

	
3.6846

	
3.6368




	
Hosseini et al. [3]

	
5.7693

	
4.4192

	
4.0142

	
3.7881

	
3.7072

	
3.6580




	
Mantari et al. [36]

	
5.7769

	
4.4881

	
4.1008

	
3.8443

	
3.7401

	
3.6827




	
Present

	
    k ¯  w  =   k ¯  s  =   c ¯  d  = 0  

	
5.77698

	
4.48818

	
4.10112

	
3.84448

	
3.74004

	
3.68252




	
    k ¯  w  = 10  ,     k ¯  s  = 0  ,     c ¯  d  = 0.1  

	
5.85372

	
4.60305

	
4.23389

	
3.99463

	
3.89754

	
3.84363




	
    k ¯  w  = 0  ,     k ¯  s  = 10  ,     c ¯  d  = 0.1  

	
7.13799

	
6.38008

	
6.21360

	
6.16032

	
6.13672

	
6.11716




	
    k ¯  w  = 10  ,     k ¯  s  = 10  ,     c ¯  d  = 0.1  

	
7.20008

	
6.46117

	
6.30177

	
6.25482

	
6.23361

	
6.21512




	
(1,3)

	
Akavci [35]

	
9.2029

	
7.0612

	
6.3959

	
5.9766

	
5.8388

	
5.7662




	
Thai et al. [44]

	
9.1880

	
7.0515

	
6.3886

	
5.9765

	
5.8341

	
5.7575




	
Hosseini et al. [3]

	
9.1876

	
7.0512

	
6.4015

	
6.0247

	
5.8887

	
5.8086




	
Mantari et al. [36]

	
9.2066

	
7.1643

	
6.5363

	
6.0976

	
5.9231

	
5.8315




	
Present

	
    k ¯  w  =   k ¯  s  =   c ¯  d  = 0  

	
9.20678

	
7.16448

	
6.53682

	
6.09800

	
5.92308

	
5.83137




	
    k ¯  w  = 10  ,     k ¯  s  = 0  ,     c ¯  d  = 0.1  

	
9.25458

	
7.23620

	
6.62003

	
6.19285

	
6.02286

	
5.93351




	
    k ¯  w  = 0  ,     k ¯  s  = 10  ,     c ¯  d  = 0.1  

	
10.62513

	
9.17828

	
8.80991

	
8.61977

	
8.54454

	
8.49887




	
    k ¯  w  = 10  ,     k ¯  s  = 10  ,     c ¯  d  = 0.1  

	
10.66630

	
9.23397

	
8.87138

	
8.68657

	
8.61339

	
8.56863




	
(2,1)

	
Akavci [35]

	
11.8560

	
9.1093

	
8.2428

	
7.6738

	
7.4892

	
7.3965




	
Thai et al. [44]

	
11.8315

	
9.0933

	
8.2309

	
7.6731

	
7.4813

	
7.3821




	
Hosseini et al. [3]

	
11.8310

	
9.0928

	
8.2515

	
7.7505

	
7.5688

	
7.4639




	
Mantari et al. [36]

	
11.8616

	
9.2416

	
8.4222

	
7.8291

	
7.5963

	
7.4783




	
Present

	
    k ¯  w  =   k ¯  s  =   c ¯  d  = 0  

	
11.86203

	
9.24189

	
8.42299

	
7.82973

	
7.59651

	
7.47829




	
    k ¯  w  = 10  ,     k ¯  s  = 0  ,     c ¯  d  = 0.1  

	
11.89892

	
9.29724

	
8.48733

	
7.90347

	
7.67423

	
7.55787




	
    k ¯  w  = 0  ,     k ¯  s  = 10  ,     c ¯  d  = 0.1  

	
13.30715

	
11.31242

	
10.77355

	
10.45683

	
10.33484

	
10.26714




	
    k ¯  w  = 10  ,     k ¯  s  = 10  ,     c ¯  d  = 0.1  

	
13.33967

	
11.35714

	
10.82331

	
10.51139

	
10.39125

	
10.32437
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Table 10. Non-dimensional natural frequencies    ω ˘  =  (  ω  a 2  / h  )     ρ c  /  E c      for Al/Al2O3 FG rectangular plates resting on Visco-Winkler-Pasternak foundations (  b / a = 2  ,   a / h = 20  ).






Table 10. Non-dimensional natural frequencies    ω ˘  =  (  ω  a 2  / h  )     ρ c  /  E c      for Al/Al2O3 FG rectangular plates resting on Visco-Winkler-Pasternak foundations (  b / a = 2  ,   a / h = 20  ).





	
Mode

	
Theory

	
  p  




	
0

	
1

	
2

	
5

	
8

	
10






	
(1,1)

	
Akavci [35]

	
3.7129

	
2.8357

	
2.5774

	
2.4402

	
2.3924

	
2.3623




	
Thai et al. [44]

	
3.7123

	
2.8352

	
2.5771

	
2.4403

	
2.3923

	
2.3619




	
Hosseini et al. [3]

	
3.7123

	
2.8352

	
2.5777

	
2.4425

	
2.3948

	
2.3642




	
Mantari et al. [36]

	
3.7132

	
2.8777

	
2.6354

	
2.4892

	
2.4277

	
2.3908




	
Present

	
    k ¯  w  =   k ¯  s  =   c ¯  d  = 0  

	
3.71313

	
2.87770

	
2.63557

	
2.48923

	
2.42750

	
2.39055




	
    k ¯  w  = 10  ,     k ¯  s  = 0  ,     c ¯  d  = 0.05  

	
3.83394

	
3.05727

	
2.84172

	
2.71973

	
2.66821

	
2.63648




	
    k ¯  w  = 0  ,     k ¯  s  = 10  ,     c ¯  d  = 0.05  

	
5.00322

	
4.62897

	
4.56905

	
4.58347

	
4.58523

	
4.57888




	
    k ¯  w  = 10  ,     k ¯  s  = 10  ,     c ¯  d  = 0.05  

	
5.09349

	
4.74266

	
4.69098

	
4.71261

	
4.71708

	
4.71193




	
(1,2)

	
Akavci [35]

	
5.9215

	
4.5238

	
4.1108

	
3.8883

	
3.8112

	
3.7632




	
Thai et al. [44]

	
5.9199

	
4.5228

	
4.1100

	
3.8884

	
3.8107

	
3.7622




	
Hosseini et al. [3]

	
5.9198

	
4.5228

	
4.1115

	
3.8939

	
3.8170

	
3.7681




	
Mantari et al. [36]

	
5.9220

	
4.5909

	
4.2032

	
3.9665

	
3.8672

	
3.8084




	
Present

	
    k ¯  w  =   k ¯  s  =   c ¯  d  = 0  

	
5.92192

	
4.59085

	
4.20342

	
3.96649

	
3.86700

	
3.80806




	
    k ¯  w  = 10  ,     k ¯  s  = 0  ,     c ¯  d  = 0.05  

	
5.99822

	
4.70524

	
4.33538

	
4.11474

	
4.02212

	
3.96672




	
    k ¯  w  = 0  ,     k ¯  s  = 10  ,     c ¯  d  = 0.05  

	
7.28089

	
6.48489

	
6.31643

	
6.27436

	
6.25285

	
6.23193




	
    k ¯  w  = 10  ,     k ¯  s  = 10  ,     c ¯  d  = 0.05  

	
7.34305

	
6.56631

	
6.40495

	
6.36905

	
6.34989

	
6.33007




	
(1,3)

	
Akavci [35]

	
9.5711

	
7.3159

	
6.6453

	
6.2759

	
6.1488

	
6.0715




	
Thai et al. [44]

	
9.5669

	
7.3132

	
6.6433

	
6.2760

	
6.1476

	
6.0690




	
Hosseini et al. [3]

	
9.5668

	
7.3132

	
6.6471

	
6.2903

	
6.1639

	
6.0843




	
Mantari et al. [36]

	
9.5723

	
7.4242

	
6.7942

	
6.4023

	
6.2391

	
6.1440




	
Present

	
    k ¯  w  =   k ¯  s  =   c ¯  d  = 0  

	
9.57223

	
7.42418

	
6.79463

	
6.40232

	
6.23878

	
6.14351




	
    k ¯  w  = 10  ,     k ¯  s  = 0  ,     c ¯  d  = 0.05  

	
9.61945

	
7.49521

	
6.87676

	
6.49490

	
6.33580

	
6.24279




	
    k ¯  w  = 0  ,     k ¯  s  = 10  ,     c ¯  d  = 0.05  

	
10.98422

	
9.43713

	
9.06263

	
8.90094

	
8.83088

	
8.78146




	
    k ¯  w  = 10  ,     k ¯  s  = 10  ,     c ¯  d  = 0.05  

	
11.02533

	
9.49302

	
9.124280

	
8.96765

	
8.89955

	
8.85106




	
(2,1)

	
Akavci [35]

	
12.4633

	
9.5307

	
8.6542

	
8.1634

	
7.9954

	
7.8950




	
Thai et al. [44]

	
12.4562

	
9.5261

	
8.6509

	
8.1636

	
7.9934

	
7.8909




	
Hosseini et al. [3]

	
12.4560

	
9.5261

	
8.6572

	
8.1875

	
8.0207

	
7.9166




	
Mantari et al. [36]

	
12.4652

	
9.6715

	
8.8478

	
8.3279

	
8.1127

	
7.9888




	
Present

	
    k ¯  w  =   k ¯  s  =   c ¯  d  = 0  

	
12.46522

	
9.67154

	
8.84835

	
8.32803

	
8.11232

	
7.98825




	
    k ¯  w  = 10  ,     k ¯  s  = 0  ,     c ¯  d  = 0.05  

	
12.50143

	
9.72605

	
8.91143

	
8.39926

	
8.18701

	
8.06469




	
    k ¯  w  = 0  ,     k ¯  s  = 10  ,     c ¯  d  = 0.05  

	
13.89984

	
11.73763

	
11.18768

	
10.91733

	
10.80357

	
10.72952




	
    k ¯  w  = 10  ,     k ¯  s  = 10  ,     c ¯  d  = 0.05  

	
13.93224

	
11.78246

	
11.23750

	
10.97160

	
10.85959

	
10.78637











Table 11, Table 12, Table 13 and Table 14 present the non-dimensional fundamental frequencies for Aluminum-Alumina (Al/Al2O3) FG rectangular plates resting on visco–Pasternak foundations (    k ¯  w  = 0  ,     k ¯  s  = 100  ). Several values of the FG power-law index  p , aspect ratio   a / b  , and side-to-thickness ratio   a / h   are considered. In fact, there is no foundation in Table 11, and the inclusion of one-by-one elastic foundation is made in Table 12, Table 13 and Table 14. In such tables, the inclusion of the third-parameter coefficient     c ¯  d    is also discussed. The non-dimensional frequency and the non-dimensional third coefficient of the viscoelastic foundations are utilized as


    ω ˇ  =   ω  a 2   h       ρ m     E m        ,     c ¯  d  =  c d  h    h   ρ m   D m      ,   



(39)




and the other non-dimensional coefficients of the two-parameter foundations are given in Equation (37). In the absence of the third coefficient of the viscoelastic foundations     c ¯  d   , the present frequencies are compared with the HSDTs proposed by Thai and Choi [38], Akavci [35], and a quasi-3D hybrid type HSDT by Mantari et al. [36]
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Table 11. Non-dimensional fundamental frequencies    ω ˇ  =  (  ω  a 2  / h  )     ρ m  /  E m      for Al/Al2O3 FG rectangular plates (    k ¯  w  =   k ¯  s  =   c ¯  d  = 0  ).






Table 11. Non-dimensional fundamental frequencies    ω ˇ  =  (  ω  a 2  / h  )     ρ m  /  E m      for Al/Al2O3 FG rectangular plates (    k ¯  w  =   k ¯  s  =   c ¯  d  = 0  ).





	
   a / b   

	
   a / h   

	
  p  

	
Akavci [35]

	
Thai and Choi [38]

	
Mantari et al. [36]

	
Present






	
0.5

	
5

	
1

	
5.2122

	
5.2016

	
5.2875

	
5.28772




	
5

	
4.3763

	
4.3757

	
4.4648

	
4.46520




	
10

	
4.2153

	
4.2058

	
4.2611

	
4.26116




	
10

	
1

	
5.4918

	
5.4887

	
5.5728

	
5.57286




	
5

	
4.6986

	
4.6987

	
4.7934

	
4.79350




	
10

	
4.5432

	
4.5404

	
4.5969

	
4.59661




	
20

	
1

	
5.5712

	
5.5704

	
5.6538

	
5.65379




	
5

	
4.7943

	
4.7943

	
4.8906

	
4.89057




	
10

	
4.6411

	
4.6404

	
4.6971

	
4.69669




	
1

	
5

	
1

	
8.0368

	
8.0122

	
8.1509

	
8.15131




	
5

	
6.6705

	
6.6678

	
6.8043

	
6.80521




	
10

	
6.4099

	
6.3879

	
6.4746

	
6.47492




	
10

	
1

	
8.6899

	
8.6824

	
8.8178

	
8.81788




	
5

	
7.4033

	
7.4034

	
7.5529

	
7.55319




	
10

	
7.1521

	
7.1453

	
7.2353

	
7.23501




	
20

	
1

	
8.8879

	
8.8859

	
9.0196

	
9.01959




	
5

	
7.6393

	
7.6394

	
7.7929

	
7.79291




	
10

	
7.3934

	
7.3916

	
7.4823

	
7.48166




	
2

	
5

	
1

	
17.8289

	
17.7148

	
18.0607

	
18.06273




	
5

	
14.3625

	
14.3312

	
14.6274

	
14.63068




	
10

	
13.7120

	
13.6095

	
13.8083

	
13.81014




	
10

	
1

	
20.8487

	
20.8063

	
21.1501

	
21.15090




	
5

	
17.5051

	
17.5028

	
17.8593

	
17.86082




	
10

	
16.8613

	
16.8232

	
17.0445

	
17.04463




	
20

	
1

	
21.9670

	
21.9548

	
22.2914

	
22.29144




	
5

	
18.7946

	
18.7950

	
19.1737

	
19.17401




	
10

	
18.1727

	
18.1616

	
18.3877

	
18.38645
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Table 12. Non-dimensional fundamental frequencies    ω ˇ  =  (  ω  a 2  / h  )     ρ m  /  E m      for Al/Al2O3 FG rectangular plates resting on visco-Winkler foundations (    k ¯  w  = 100  ,     k ¯  s  = 0  ).






Table 12. Non-dimensional fundamental frequencies    ω ˇ  =  (  ω  a 2  / h  )     ρ m  /  E m      for Al/Al2O3 FG rectangular plates resting on visco-Winkler foundations (    k ¯  w  = 100  ,     k ¯  s  = 0  ).





	
   a / b   

	
   a / h   

	
  p  

	
Akavci [35]

	
Thai and Choi [38]

	
Mantari et al. [36]

	
Present




	
     c ¯  d    =   0   

	
     c ¯  d    =   0.25   






	
0.5

	
5

	
1

	
5.8746

	
5.8654

	
5.9257

	
5.92588

	
5.92620




	
5

	
5.2360

	
5.2355

	
5.2934

	
5.29366

	
5.29417




	
10

	
5.1288

	
5.1212

	
5.1467

	
5.14660

	
5.14722




	
10

	
1

	
6.1393

	
6.1366

	
6.2077

	
6.20770

	
6.20801




	
5

	
5.5276

	
5.5277

	
5.6038

	
5.60384

	
5.60430




	
10

	
5.4199

	
5.4176

	
5.4596

	
5.45931

	
5.45987




	
20

	
1

	
6.2152

	
6.2144

	
6.2883

	
6.28824

	
6.28829




	
5

	
5.6156

	
5.6157

	
5.6969

	
5.69685

	
5.69692




	
10

	
5.5087

	
5.5080

	
5.5545

	
5.55415

	
5.55422




	
1

	
5

	
1

	
8.4748

	
8.4517

	
8.5671

	
8.56752

	
8.56801




	
5

	
7.2560

	
7.2534

	
7.3618

	
7.36260

	
7.36336




	
10

	
7.0373

	
7.0175

	
7.0758

	
7.07594

	
7.07683




	
10

	
1

	
9.1107

	
9.1035

	
9.2282

	
9.22829

	
9.22876




	
5

	
7.9520

	
7.9521

	
8.0866

	
8.08681

	
8.08751




	
10

	
7.7356

	
7.7293

	
7.8067

	
7.80636

	
7.80720




	
20

	
1

	
9.3044

	
9.3025

	
9.4292

	
9.42918

	
9.42925




	
5

	
8.1789

	
8.1790

	
8.3212

	
8.32122

	
8.32132




	
10

	
7.9658

	
7.9640

	
8.0468

	
8.04617

	
8.04629




	
2

	
5

	
1

	
18.0231

	
17.9108

	
18.2385

	
18.24050

	
18.24161




	
5

	
14.6363

	
14.6057

	
14.8810

	
14.88418

	
14.88578




	
10

	
14.0098

	
13.9101

	
14.0861

	
14.08780

	
14.08965




	
10

	
1

	
21.0241

	
20.9821

	
21.3187

	
21.31945

	
21.32062




	
5

	
17.7396

	
17.7373

	
18.0843

	
18.08585

	
18.08761




	
10

	
17.1126

	
17.0751

	
17.2873

	
17.28741

	
17.28949




	
20

	
1

	
22.1378

	
22.1257

	
22.4585

	
22.45857

	
22.45967




	
5

	
19.0187

	
19.0192

	
19.3921

	
19.39248

	
19.39408




	
10

	
18.4115

	
18.4005

	
18.6222

	
18.62087

	
18.62278











It can be seen from Table 11, Table 12, Table 13 and Table 14 that the present frequencies are in excellent agreement with the corresponding results of Mantari et al. [36] and slightly more than those of Thai and Choi [38] and Akavci [35]. The frequencies increase as both   a / h   and   a / b   increase and as  p  decreases in case of neglecting the foundation medium. The frequency when   a / b = 2   is more than twice of this when   a / b = 1  .
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Table 13. Non-dimensional fundamental frequencies    ω ˇ  =  (  ω  a 2  / h  )     ρ m  /  E m      for Al/Al2O3 FG rectangular plates resting on visco–Pasternak foundations (    k ¯  w  = 0  ,     k ¯  s  = 100  ).






Table 13. Non-dimensional fundamental frequencies    ω ˇ  =  (  ω  a 2  / h  )     ρ m  /  E m      for Al/Al2O3 FG rectangular plates resting on visco–Pasternak foundations (    k ¯  w  = 0  ,     k ¯  s  = 100  ).





	
   a / b   

	
   a / h   

	
  p  

	
Akavci [35]

	
Thai and Choi [38]

	
Mantari et al. [36]

	
Present




	
     c ¯  d    =   0   

	
     c ¯  d    =   0.25   






	
0.5

	
5

	
1

	
10.8489

	
10.8450

	
10.7649

	
10.76493

	
10.76552




	
5

	
10.9925

	
10.9919

	
10.9106

	
10.91023

	
10.91134




	
10

	
11.0818

	
11.0793

	
10.9611

	
10.96027

	
10.96164




	
10

	
1

	
11.0940

	
11.0926

	
11.1042

	
11.10417

	
11.10472




	
5

	
11.2538

	
11.2538

	
11.2645

	
11.26443

	
11.26537




	
10

	
11.3313

	
11.3302

	
11.3190

	
11.31873

	
11.31989




	
20

	
1

	
11.1660

	
11.1656

	
11.1999

	
11.19984

	
11.20017




	
5

	
11.3343

	
11.3343

	
11.3680

	
11.36794

	
11.36849




	
10

	
11.4093

	
11.4090

	
11.4236

	
11.42342

	
11.42390




	
1

	
5

	
1

	
14.3923

	
14.3818

	
14.2406

	
14.24088

	
14.24170




	
5

	
14.3071

	
14.3052

	
14.1562

	
14.15569

	
14.15721




	
10

	
14.3829

	
14.3759

	
14.1600

	
14.15860

	
14.16046




	
10

	
1

	
14.9443

	
14.9401

	
14.9631

	
14.96319

	
14.96395




	
5

	
14.8693

	
14.8692

	
14.8895

	
14.88945

	
14.89075




	
10

	
14.9193

	
14.9162

	
14.8957

	
14.89520

	
14.89681




	
20

	
1

	
15.1189

	
15.1177

	
15.1825

	
15.18244

	
15.18316




	
5

	
15.0607

	
15.0607

	
15.1251

	
15.12506

	
15.12623




	
10

	
15.1056

	
15.1047

	
15.1330

	
15.13257

	
15.13403




	
2

	
5

	
1

	
25.6912

	
25.6294

	
25.2563

	
25.25781

	
25.25932




	
5

	
24.3625

	
24.3453

	
23.8994

	
23.89854

	
23.90119




	
10

	
24.3109

	
24.2696

	
23.6297

	
23.62625

	
23.62944




	
10

	
1

	
28.2316

	
28.2023

	
28.2878

	
28.28833

	
28.28988




	
5

	
26.7223

	
26.7201

	
26.7859

	
26.78627

	
26.78890




	
10

	
26.5586

	
26.5362

	
26.4775

	
26.47653

	
26.47974




	
20

	
1

	
29.2272

	
29.2181

	
29.4271

	
29.42715

	
29.42860




	
5

	
27.7770

	
27.7772

	
27.9891

	
27.98915

	
27.99147




	
10

	
27.5919

	
27.5847

	
27.6803

	
27.67920

	
27.68203











In each table, in addition to the examination of the aspect ratios   a / b  , thickness ratios   a / h  , and the FG power-law index  p , we discussed several combinations of the foundation parameters     k ¯  w    and     k ¯  s   . Furthermore, different values of the third damping coefficient     c ¯  d    are considered. The results show that the three Visco-Winkler-Pasternak foundation parameters have effects of increasing the non-dimensional frequencies. The Pasternak parameter     k ¯  s    has more of an effect on increasing the frequencies than the Winkler parameter     k ¯  w   . However, the damping parameter     c ¯  d    has a little and sensitive effect on increasing the frequencies. It is interesting to discuss the effect of the FG power-law index  p  on the non-dimensional frequencies. As shown in Table 11, the frequency parameter    ω ˇ    decreases with the increase in  p  and this is irrespective of the values of   a / h   and   a / b  . Additionally, it is observed in Table 12 that if a plate is just rested on Winkler’s foundation or visco-Winkler foundations, the increase of the FG power-law index decreases the non-dimensional frequency. However, this situation is inversed if the plate is rested on Pasternak’s foundation regardless of the absence (Table 13) or presence (Table 14) of Winkler’s foundation or visco-Winkler foundations.
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Table 14. Non-dimensional fundamental frequencies    ω ˇ  =  (  ω  a 2  / h  )     ρ m  /  E m      for Al/Al2O3 FG rectangular plates resting on Visco-Winkler-Pasternak foundations (    k ¯  w  = 100  ,     k ¯  s  = 100  ).






Table 14. Non-dimensional fundamental frequencies    ω ˇ  =  (  ω  a 2  / h  )     ρ m  /  E m      for Al/Al2O3 FG rectangular plates resting on Visco-Winkler-Pasternak foundations (    k ¯  w  = 100  ,     k ¯  s  = 100  ).





	
   a / b   

	
   a / h   

	
  p  

	
Akavci [35]

	
Thai and Choi [38]

	
Mantari et al. [36]

	
Present




	
     c ¯  d    =   0   

	
     c ¯  d    =   0.25   






	
0.5

	
5

	
1

	
11.1817

	
11.1780

	
11.0894

	
11.08946

	
11.09007




	
5

	
11.3598

	
11.3593

	
11.2700

	
11.26956

	
11.27071




	
10

	
11.4581

	
11.4558

	
11.3285

	
11.32767

	
11.32909




	
10

	
1

	
11.4284

	
11.4270

	
11.4358

	
11.43582

	
11.43638




	
5

	
11.6243

	
11.6243

	
11.6322

	
11.63214

	
11.63311




	
10

	
11.7103

	
11.7093

	
11.6957

	
11.69536

	
11.69657




	
20

	
1

	
11.5008

	
11.5005

	
11.5331

	
11.53311

	
11.53346




	
5

	
11.7054

	
11.7054

	
11.7374

	
11.73738

	
11.73796




	
10

	
11.7888

	
11.7886

	
11.8021

	
11.80186

	
11.80257




	
1

	
5

	
1

	
14.6407

	
14.6305

	
14.4792

	
14.47947

	
14.48030




	
5

	
14.5862

	
14.5843

	
14.4258

	
14.42519

	
14.42675




	
10

	
14.6702

	
14.6636

	
14.4366

	
14.43508

	
14.43698




	
10

	
1

	
15.1927

	
15.1887

	
15.2084

	
15.20848

	
15.20924




	
5

	
15.1498

	
15.1497

	
15.1669

	
15.16678

	
15.16811




	
10

	
15.2075

	
15.2045

	
15.1810

	
15.18053

	
15.18217




	
20

	
1

	
15.3674

	
15.3663

	
15.4293

	
15.42927

	
15.43000




	
5

	
15.3414

	
15.3414

	
15.4039

	
15.40390

	
15.40509




	
10

	
15.3938

	
15.3929

	
15.4198

	
15.41946

	
15.42094




	
2

	
5

	
1

	
25.8251

	
25.7640

	
25.3782

	
25.37974

	
25.38125




	
5

	
24.5206

	
24.5036

	
24.0450

	
24.04408

	
24.04674




	
10

	
24.4759

	
24.4352

	
23.7803

	
23.77672

	
23.77992




	
10

	
1

	
28.3613

	
28.3322

	
28.4137

	
28.41429

	
28.41586




	
5

	
26.8763

	
26.8741

	
26.9360

	
26.93632

	
26.93896




	
10

	
26.7186

	
26.6964

	
26.6338

	
26.63282

	
26.63605




	
20

	
1

	
29.3557

	
29.3467

	
29.5539

	
29.55394

	
29.55539




	
5

	
27.9292

	
27.9294

	
28.1392

	
28.13924

	
28.14156




	
10

	
27.7497

	
27.7426

	
27.8366

	
27.83544

	
27.83829











Table 15 presents the non-dimensional fundamental frequencies for Al/Al2O3 FG rectangular plates resting on viscoelastic foundations with   h / a = 0.15   and several values of   a / b  . The non-dimensional frequency and the non-dimensional viscoelastic foundation coefficients are utilized as
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Table 15. Non-dimensional fundamental frequencies for Al/Al2O3 FG rectangular plates (  h / a = 0.15  ).






Table 15. Non-dimensional fundamental frequencies for Al/Al2O3 FG rectangular plates (  h / a = 0.15  ).





	
   (   k ¯  w  ,   k ¯  s  )   

	
   a / b   

	
Theory

	
  p  




	
0

	
1

	
5

	
  ∞  






	
(0,0)

	
0.5

	
Akavci [35]

	
0.08018

	
0.06148

	
0.05215

	
0.04081




	
Hosseini et al. [3]

	
0.08006

	
0.06335

	
0.05379

	
0.04100




	
Mantari et al. [36]

	
0.08021

	
0.06238

	
0.05321

	
0.04083




	
Present

	
    c ¯  d  = 0  

	
0.080209

	
0.062382

	
0.053210

	
0.040825




	
1

	
Akavci [35]

	
0.12508

	
0.09613

	
0.08089

	
0.06366




	
Hosseini et al. [3]

	
0.12480

	
0.09644

	
0.08027

	
0.06335




	
Mantari et al. [36]

	
0.12514

	
0.09753

	
0.08253

	
0.06370




	
Present

	
    c ¯  d  = 0  

	
0.12514

	
0.09753

	
0.08253

	
0.063696




	
2

	
Akavci [35]

	
0.28659

	
0.22189

	
0.18232

	
0.14587




	
Hosseini et al. [3]

	
0.28513

	
0.20592

	
0.16315

	
0.14591




	
Mantari et al. [36]

	
0.28682

	
0.22498

	
0.18592

	
0.14600




	
Present

	
    c ¯  d  = 0  

	
0.286844

	
0.224999

	
0.185947

	
0.146000




	
(100,10)

	
0.5

	
Baferani et al. [45]

	
0.12869

	
0.10498

	
0.09227

	
---




	
Akavci [35]

	
0.12876

	
0.10388

	
0.09098

	
0.06554




	
Hosseini et al. [3]

	
0.12870

	
0.10519

	
0.09223

	
0.06591




	
Mantari et al. [36]

	
0.12804

	
0.10388

	
0.09118

	
0.06517




	
Present

	
    c ¯  d  = 0  

	
0.128037

	
0.103883

	
0.091179

	
0.065169




	
    c ¯  d  = 0.5  

	
0.128140

	
0.103981

	
0.091284

	
0.065243




	
1

	
Baferani et al. [45]

	
0.17020

	
0.13854

	
0.12077

	
---




	
Akavci [35]

	
0.17039

	
0.13592

	
0.11774

	
0.08673




	
Hosseini et al. [3]

	
0.17020

	
0.13652

	
0.11786

	
0.08663




	
Mantari et al. [36]

	
0.16931

	
0.13610

	
0.11825

	
0.08618




	
Present

	
    c ¯  d  = 0  

	
0.169312

	
0.136102

	
0.118253

	
0.086178




	
    c ¯  d  = 0.5  

	
0.169454

	
0.136236

	
0.118398

	
0.086279




	
2

	
Baferani et al. [45]

	
0.31449

	
0.26966

	
0.22932

	
---




	
Akavci [35]

	
0.32889

	
0.25901

	
0.21785

	
0.16741




	
Hosseini et al. [3]

	
0.32768

	
0.24674

	
0.20359

	
0.16773




	
Mantari et al. [36]

	
0.32670

	
0.25992

	
0.21953

	
0.16630




	
Present

	
    c ¯  d  = 0  

	
0.326723

	
0.259934

	
0.219551

	
0.166298




	
    c ¯  d  = 0.5  

	
0.327020

	
0.260213

	
0.219848

	
0.166511










       ω ˜  = ω h      ρ c     E c        ,     c ¯  d  =  c d  h    h   ρ c    D ¯  c        ,     k ¯  w  =    a 4      D ¯  c     k w  ,         k ¯  s  =    a 2      D ¯  c     k s    ,   D ¯  c  =    h 3    12  (  1 −  ν 2   )      p  (   p 2  + 3 p + 8  )   E m  + 3  (   p 2  + p + 2  )   E c     (  1 + p  )   (  2 + p  )   (  3 + p  )    .      



(40)







It is to be noted that when   p → 0   (ceramic plate),     D ¯  c    will tends to    D c    while when   p → ∞   (metal plate)     D ¯  c    will tends to    D m   .



The present frequencies are compared with the corresponding ones of the FSDT of Hosseini-Hashemi et al. [3], the HSDTs proposed by Akavci [35] and Baferani et al. [45], and a quasi-3D hybrid type HSDT by Mantari et al. [36] It can be seen from this table that the present results are identical to those proposed by Mantari et al. [36], close to the ones of Akavci [38] and Mantari et al. [36], and slightly more than those of Baferani et al. [45] Once again, the frequencies increase with the inclusion of the damping coefficient     c ¯  d   .



Table 16 presents the non-dimensional fundamental frequencies for Aluminum-Zirconia (Al/ZrO2) FG rectangular plates (  a / b = 1.5  ) resting on viscoelastic foundations with several values of the side-to-thickness ratio   a / h  . The non-dimensional frequency and the non-dimensional viscoelastic foundation coefficients are utilized as given in Equation (40). The present solution is compared with the corresponding ones of the theories presented in Table 15. In general, the frequencies are slightly decreasing as the FG power-law index  p  increases while they rapidly increase as the side-to-thickness ratio   a / h   increases. Furthermore, the inclusion of the viscoelastic foundations increases the values of the frequency parameter. Once again, the present results are identical to those proposed by Mantari et al. [36] for free pleats or plates resting on elastic foundations. In the case of     k ¯  w  =   k ¯  s  = 0  , the present frequencies are slightly greater than those proposed by Akavci [38] and Hosseini et al. [3]. However, in the case of     k ¯  w  = 250  ,     k ¯  s  = 25  , the present frequencies are slightly smaller than those proposed by Akavci [38] and Hosseini et al. [3], especially when   a / h ≥ 10  . In the case of the viscoelastic coefficients, the frequencies increase with the inclusion of the damping coefficient     c ¯  d   .
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Table 16. Non-dimensional fundamental frequencies    ω ˜  = ω h    ρ c  /  E c      for Al/ZrO2 FG rectangular plates (  a / b = 1.5  ).






Table 16. Non-dimensional fundamental frequencies    ω ˜  = ω h    ρ c  /  E c      for Al/ZrO2 FG rectangular plates (  a / b = 1.5  ).





	
   (   k ¯  w  ,   k ¯  s  )   

	
   a / h   

	
Theory

	
  p  




	
0

	
1

	
5

	
  ∞  






	
(0,0)

	
20

	
Akavci [35]

	
0.02393

	
0.02202

	
0.02244

	
0.02056




	
Hosseini et al. [3]

	
0.02392

	
0.02156

	
0.02180

	
0.02046




	
Mantari et al. [36]

	
0.02393

	
0.02217

	
0.02260

	
0.02057




	
Present

	
    c ¯  d  = 0  

	
0.023931

	
0.022174

	
0.022597

	
0.02056




	
10

	
Akavci [35]

	
0.09203

	
0.08489

	
0.08576

	
0.07908




	
Hosseini et al. [3]

	
0.09188

	
0.08155

	
0.08171

	
0.07895




	
Mantari et al. [36]

	
0.09207

	
0.08549

	
0.08638

	
0.07911




	
Present

	
    c ¯  d  = 0  

	
0.092068

	
0.085493

	
0.086386

	
0.079111




	
5

	
Akavci [35]

	
0.32471

	
0.30152

	
0.31860

	
0.27902




	
Hosseini et al. [3]

	
0.32284

	
0.29399

	
0.29099

	
0.27788




	
Mantari et al. [36]

	
0.32498

	
0.30349

	
0.29990

	
0.27925




	
Present

	
    c ¯  d  = 0  

	
0.325006

	
0.303514

	
0.299939

	
0.279268




	
(250,25)

	
20

	
Baferani et al. [45]

	
0.03421

	
0.03249

	
0.03314

	
---




	
Akavci [35]

	
0.03422

	
0.03213

	
0.03277

	
0.02940




	
Hosseini et al. [3]

	
0.03421

	
0.03184

	
0.03235

	
0.02937




	
Mantari et al. [36]

	
0.03417

	
0.03220

	
0.03283

	
0.02936




	
Present

	
    c ¯  d  = 0  

	
0.034169

	
0.032200

	
0.032834

	
0.029361




	
    c ¯  d  = 0.5  

	
0.034272

	
0.032213

	
0.032848

	
0.029395




	
10

	
Baferani et al. [45]

	
0.13365

	
0.12749

	
0.12950

	
---




	
Akavci [35]

	
0.13375

	
0.12585

	
0.12778

	
0.11492




	
Hosseini et al. [3]

	
0.13365

	
0.12381

	
0.12533

	
0.11484




	
Mantari et al. [36]

	
0.13302

	
0.12557

	
0.12755

	
0.11430




	
Present

	
    c ¯  d  = 0  

	
0.133019

	
0.125569

	
0.127554

	
0.114299




	
    c ¯  d  = 0.5  

	
0.133127

	
0.125707

	
0.127731

	
0.114495




	
5

	
Baferani et al. [45]

	
0.43246

	
0.46406

	
0.44824

	
---




	
Akavci [35]

	
0.50044

	
0.47298

	
0.47637

	
0.43000




	
Hosseini et al. [3]

	
0.49945

	
0.46997

	
0.47400

	
0.43001




	
Mantari et al. [36]

	
0.48945

	
0.46401

	
0.46838

	
0.42057




	
Present

	
    c ¯  d  = 0  

	
0.489466

	
0.464028

	
0.468392

	
0.420583




	
    c ¯  d  = 0.5  

	
0.489910

	
0.464595

	
0.469153

	
0.421389












3.5. Parametric Studies


The above two sections are concerned with verifying the accuracy of the present model with the corresponding ones available in the literature. The present parametric studies are carried out to investigate the influences of the FG power-law index  p , aspect ratio   a / b  , thickness ratio   a / h  , and the two foundation parameters     k ¯  w    and     k ¯  s    on the natural frequency of Al/Al2O3 and Al/ZrO2 plates. In addition, the effect of the damping parameter     c ¯  d    is taken into consideration in most cases.



The variations of non-dimensional natural frequencies for Aluminum-Alumina (Al/Al2O3) FG rectangular plates concerning different parameters are presented in Table 17 and Table 18. The thickness and aspect ratios and the first mode number are fixed as   i = 1  ,   h / a = 0.2 ,   and   b / a = 0.5  , respectively. The effects of the FG power-law index  p , the second mode number  j , and the Visco-Winkler-Pasternak foundations     k ¯  w   ,     k ¯  s   , and     c ¯  d   . The frequencies increase as all parameters increase, except the FG power-law index  p  for which the frequencies decrease.
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Table 17. Non-dimensional fundamental frequencies    ω ˜  = ω h    ρ c  /  E c      for Al/Al2O3 FG rectangular plates (  h / a = 0.2  ,   b / a = 0.5  ).






Table 17. Non-dimensional fundamental frequencies    ω ˜  = ω h    ρ c  /  E c      for Al/Al2O3 FG rectangular plates (  h / a = 0.2  ,   b / a = 0.5  ).





	
Mode

	
     k ¯  s      

	
     k ¯  w    

	
     c ¯  d    

	
  p  




	
0

	
1

	
2

	
5

	
  ∞  






	
(1,1)

	
0

	
0

	
0

	
0.46607

	
0.36775

	
0.33164

	
0.29787

	
0.23722




	
10

	
0

	
0.46741

	
0.36892

	
0.33283

	
0.29905

	
0.23790




	
1

	
0.46916

	
0.37056

	
0.33448

	
0.30070

	
0.23917




	
2

	
0.47462

	
0.37569

	
0.33960

	
0.30576

	
0.24314




	
100

	
0

	
0.47923

	
0.37925

	
0.34336

	
0.30943

	
0.24392




	
1

	
0.48103

	
0.38094

	
0.34506

	
0.31114

	
0.24521




	
2

	
0.48661

	
0.38621

	
0.35034

	
0.31638

	
0.24928




	
10

	
0

	
0

	
0.52750

	
0.42118

	
0.38575

	
0.35094

	
0.26849




	
1

	
0.52947

	
0.42304

	
0.38766

	
0.35288

	
0.26990




	
2

	
0.53558

	
0.42886

	
0.39358

	
0.35885

	
0.27436




	
10

	
0

	
0.52866

	
0.42218

	
0.38676

	
0.35193

	
0.26908




	
1

	
0.53063

	
0.42405

	
0.38868

	
0.35387

	
0.27050




	
2

	
0.53675

	
0.42988

	
0.39461

	
0.35986

	
0.27496




	
100

	
0

	
0.53900

	
0.43112

	
0.39573

	
0.36066

	
0.24392




	
1

	
0.54101

	
0.43302

	
0.39769

	
0.36265

	
0.24521




	
2

	
0.54724

	
0.43897

	
0.40376

	
0.36879

	
0.24928
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Table 18. Non-dimensional natural frequencies    ω ˜  = ω h    ρ c  /  E c      for Al/Al2O3 FG rectangular plates (  h / a = 0.2  ,   b / a = 0.5  ).






Table 18. Non-dimensional natural frequencies    ω ˜  = ω h    ρ c  /  E c      for Al/Al2O3 FG rectangular plates (  h / a = 0.2  ,   b / a = 0.5  ).





	
Mode

	
     k ¯  s      

	
     k ¯  w    

	
     c ¯  d    

	
  p  




	
0

	
1

	
2

	
5

	
  ∞  






	
(1,2)

	
0

	
0

	
0

	
1.17023

	
0.93832

	
0.83770

	
0.72561

	
0.59563




	
10

	
0

	
1.17072

	
0.93873

	
0.83813

	
0.72607

	
0.59588




	
1

	
1.17499

	
0.94280

	
0.84212

	
0.72977

	
0.59895




	
2

	
1.18832

	
0.95560

	
0.85469

	
0.74137

	
0.60870




	
100

	
0

	
1.17508

	
0.94244

	
0.84202

	
0.73020

	
0.59810




	
1

	
1.17935

	
0.94652

	
0.84602

	
0.73391

	
0.60117




	
2

	
1.19270

	
0.95933

	
0.85861

	
0.74557

	
0.61093




	
10

	
0

	
0

	
1.24726

	
1.00366

	
0.90580

	
0.79747

	
0.63484




	
1

	
1.25160

	
1.00781

	
0.90995

	
0.80143

	
0.63796




	
2

	
1.26515

	
1.02085

	
0.92301

	
0.81384

	
0.64785




	
10

	
0

	
1.24769

	
1.00402

	
0.90618

	
0.79787

	
0.63506




	
1

	
1.25204

	
1.00818

	
0.91033

	
0.80183

	
0.63818




	
2

	
1.26558

	
1.02122

	
0.92339

	
0.81424

	
0.64807




	
100

	
0

	
1.25158

	
1.00731

	
0.90959

	
0.80144

	
0.63704




	
1

	
1.25593

	
1.01147

	
0.91375

	
0.80541

	
0.64016




	
2

	
1.26948

	
1.02452

	
0.92683

	
0.81787

	
0.65006




	
(1,3)

	
0

	
0

	
0

	
1.95174

	
1.58204

	
1.40727

	
1.19641

	
0.99341




	
10

	
0

	
1.95203

	
1.58228

	
1.40752

	
1.19669

	
0.99356




	
1

	
1.95889

	
1.58883

	
1.41381

	
1.20228

	
0.99849




	
2

	
1.98029

	
1.60940

	
1.43361

	
1.21989

	
1.01411




	
100

	
0

	
1.95461

	
1.58442

	
1.40979

	
1.19918

	
0.99487




	
1

	
1.96146

	
1.59097

	
1.41607

	
1.20477

	
0.99979




	
2

	
1.98282

	
1.61150

	
1.43585

	
1.22237

	
1.01539




	
10

	
0

	
0

	
2.04872

	
1.66250

	
1.49197

	
1.28918

	
1.04277




	
1

	
2.05515

	
1.66863

	
1.49797

	
1.29470

	
1.04739




	
2

	
2.07508

	
1.68772

	
1.51677

	
1.31206

	
1.06190




	
10

	
0

	
2.04897

	
1.66271

	
1.49218

	
1.28941

	
1.04290




	
1

	
2.05539

	
1.66883

	
1.49818

	
1.29494

	
1.04751




	
2

	
2.07532

	
1.68792

	
1.51698

	
1.31230

	
1.06202




	
100

	
0

	
2.05118

	
1.66453

	
1.49410

	
1.29150

	
1.04402




	
1

	
2.05759

	
1.67064

	
1.50009

	
1.29702

	
1.04863




	
2

	
2.07747

	
1.68970

	
1.51886

	
1.31437

	
1.06311













4. Conclusions


In the present study, a refined quasi-3D elasticity theory is presented for natural vibration analysis of homogeneous and FG plates resting on Visco-Winkler-Pasternak foundations. The governing equations of motion are derived due to Hamilton’s principle. The closed-form solutions are obtained for different types of rectangular plates. A validation study is performed to verify the accuracy of the present frequencies. Furthermore, a parametric study is carried out to investigate the effects of various parameters on the natural frequencies of FG plates. Such parameters are the FG power-law index, aspect and thickness ratios, and foundation parameters, especially the inclusion of the third damping parameter. The following points can be outlined from the present study:




	
The quasi-3D theory satisfies both the zero transverse and normal shear stress conditions on the plate surfaces and does not require any shear correction factor;



	
Compared to other theories in the literature, the present quasi-3D theory produces accurate results for both thin and thick FG plates;



	
One of the important notes is that Pasternak’s parameter has a greater effect on increasing the non-dimensional frequency than both the Winkler’s and visco-Winkler parameters;



	
In general, in the inclusion of the viscoelastic foundation, increasing the value of Winkler, Pasternak, and damping coefficients causes an increase in the natural frequencies of FG plates;



	
The FG power-law index affects reducing the non-dimensional frequencies of FG plates on visco-Winkler-Pasternak foundations.
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Figure 1. The schematic diagram for the geometry of the FG plate resting on a Visco-Winkler-Pasternak foundation. 
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