New Type Modelling of the Circumscribed Self-Excited Spherical Attractor
Abstract
:1. Introduction
2. Existence and Uniqueness Results
- For , ∃ constants and such that
- For each , ∃ a constant such that
3. Ulam–Hyres Stability
- ,
4. Numerical Results and Simulations
5. Numerical Experiments
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kengne, J.; Negou, A.N.; Tchiotsop, D. Antimonotonicity, chaos and multiple attractors in a novel autonomous memristor-based jerk circuit. Nonlinear Dyn. 2017, 88, 2589–2608. [Google Scholar] [CrossRef]
- Sprott, J.C. Some simple chaotic flows. Phys. Rev. E 1994, 50, R647–R650. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, D.; Chowdhury, A.R.; Saha, P. Multiple delay Rossler system-Bifurcation and chaos control. Chaos Solitons Fractals 2008, 35, 472–485. [Google Scholar] [CrossRef]
- Anwar, M.S.; Sar, G.K.; Ray, A.; Ghosh, D. Behavioral study of a new chaotic system. Eur. J. Spec. Top. 2020, 229, 1343–1350. [Google Scholar] [CrossRef]
- Ray, A.; Ghosh, D. Another new chaotic system: Bifurcation and chaos control. Int. J. Bifurc. Chaos 2020, 30, 2050161. [Google Scholar] [CrossRef]
- Bao, H.; Hua, Z.; Wang, N.; Zhu, L.; Chen, M.; Bao, B. Initials-boosted coexisting chaos in a 2-D sine map and its hardware implementation. IEEE Trans. Ind. 2020, 17, 1132–1140. [Google Scholar] [CrossRef]
- Bao, B.; Zhu, Y.; Li, C.; Bao, H.; Xu, Q. Global multistability and analog circuit implementation of an adapting synapsebased neuron model. Nonlinear Dyn. 2020, 101, 1105–1118. [Google Scholar] [CrossRef]
- Ray, A.; Ghosh, D.; Chowdhury, A.R. Topological study of multiple coexisting attractors in a nonlinear system. Phys. Math. Theor. 2009, 42, 385102. [Google Scholar] [CrossRef]
- Bayani, A.; Rajagopal, K.; Khalaf, A.J.M.; Jafari, S.; Leutcho, G.D.; Kengne, J. Dynamical analysis of a new multistable chaotic system with hidden attractor: Antimonotonicity, coexisting multiple attractors, and offset boosting. Phys. Lett. A 2019, 383, 1450–1456. [Google Scholar] [CrossRef]
- Sprott, J.C.; Jafari, S.; Khalaf, A.J.M.; Kapitaniak, T. Megastability: Coexistence of a countable infinity of nested attractors in a periodically-forced oscillator with spatiallyperiodic damping. Eur. Phys. J. Spec. 2017, 226, 1979–1985. [Google Scholar] [CrossRef] [Green Version]
- Leutcho, G.D.; Khalaf, A.J.M. A new oscillator with mega-stability and its Hamilton energy: Infinite coexisting hidden and self-excited attractors. Chaos Interdiscip. J. Nonlinear Sci. 2020, 30, 033112. [Google Scholar] [CrossRef] [PubMed]
- Leutcho, G.D.; Jafari, S.; Hamarash, I.I.; Kengne, J.; Njitacke, Z.T.; Hussain, I. A new megastable nonlinear oscillator with infinite attractors. Chaos Solitons Fractals 2020, 134, 109703. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Z.; Wu, H.; Chen, S.; Bao, B. Two-memristor-based chaotic system and its extreme multistability reconstitution via dimensionality reduction analysis. Chaos Solitons Fractals 2020, 127, 354–363. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Z.; Wu, H.; Chen, S.; Bao, B. Extreme multistability in memristive hyper-jerk system and stability mechanism analysis using dimensionality reduction model. Eur. Phys. J. Spec. Top. 2019, 228, 1995–2009. [Google Scholar] [CrossRef]
- Li, H.; Bao, H.; Zhu, L.; Bao, B.; Chen, M. Extreme multistability in simple area-preserving map. IEEE Access 2020, 8, 175972–175980. [Google Scholar] [CrossRef]
- Li, C.; Sprott, J.C. Variable-boostable chaotic flows. Optik 2016, 127, 10389–10398. [Google Scholar] [CrossRef]
- Pham, V.T.; Akgül, A.; Volos, C.; Jafari, S.; Kapitaniak, T. Dynamics and circuit realization of a no-equilibrium chaotic system with a boostable variable. AEU Int. J. Electron. Commun. 2017, 78, 134–140. [Google Scholar] [CrossRef]
- Touchent, K.A.; Hammouch, Z.; Mekkaoui, T. A modified invariant subspace method for solving partial differential equations with non-singular kernel fractional derivatives. Appl. Math. Nonlinear Sci. 2020, 5, 35–48. [Google Scholar] [CrossRef]
- Rashid, S.; Hammouch, Z.; Kalsoom, H.; Ashraf, R.; Chu, Y.M. New investigation on the generalized K-fractional integral operators. Front. Phys. 2020, 25. [Google Scholar] [CrossRef]
- Fatmawati, M.A.K.; Bonyah, E.; Hammouch, Z.; Shaiful, E.M. A mathematical model of tuberculosis (TB) transmission with children and adults groups: A fractional model. Aims Math. 2020, 5, 2813–2842. [Google Scholar] [CrossRef]
- Abdeljawad, T.; Rashid, S.; Hammouch, Z.; İşcan, İ.; Chu, Y.M. Some new Simpson-type inequalities for generalized p-convex function on fractal sets with applications. Adv. Differ. Equ. 2020, 1, 1–26. [Google Scholar] [CrossRef]
- Li, Y.; Cang, S.; Kang, Z.; Wang, Z. A new conservative system with isolated invariant tori and six-cluster chaotic flows. Eur. Phys. J. Spec. Top. 2020, 229, 1335–1342. [Google Scholar] [CrossRef]
- Cang, S.; Li, Y.; Xue, W.; Wang, Z.; Chen, Z. Conservative chaos and invariant tori in the modified Sprott A system. Nonlinear Dyn. 2020, 99, 1699–1708. [Google Scholar] [CrossRef]
- Ramamoorthy, R.; Jamal, S.S.; Hussain, I.; Mehrabbeik, M.; Jafari, S.; Rajagopal, K. A New Circumscribed Self-Excited Spherical Strange Attractor. Complexity 2021, 2021, 8068737. [Google Scholar] [CrossRef]
- Farman, M.; Akgül, A.; Abdeljawad, T.; Naik, P.A.; Bukhari, N.; Ahmad, A. Modeling and analysis of fractional order Ebola virus model with Mittag-Leffler kernel. Alex. Eng. J. 2022, 61, 2062–2073. [Google Scholar] [CrossRef]
- Partohaghighi, M.; Akgül, A. Modelling and simulations of the SEIR and Blood Coagulation systems using Atangana-Baleanu-Caputo derivative. Chaos Solitons Fractals 2021, 150, 111135. [Google Scholar] [CrossRef]
- Farman, M.; Akgül, A.; Askar, S.; Botmart, T.; Ahmad, A.; Ahmad, H. Modeling and analysis of fractional order Zika model. AIMS Math. 2021, 3, 4. [Google Scholar] [CrossRef]
- Aslam, M.; Farman, M.; Ahmad, H.; Gia, T.N.; Ahmad, A.; Askar, S. Fractal fractional derivative on chemistry kinetics hires problem. AIMS Math. 2021, 7, 1155–1184. [Google Scholar] [CrossRef]
- Singh, R.; Abdeljawad, T.; Okyere, E.; Guran, L. Modeling, analysis and numerical solution to malaria fractional model with temporary immunity and relapse. Adv. Differ. Equ. 2021, 1, 1–27. [Google Scholar]
- Khan, H.; Begum, R.; Abdeljawad, T.; Khashan, M.M. A numerical and analytical study of SE (Is)(Ih) AR epidemic fractional order COVID-19 model. Adv. Differ. Equ. 2021, 1, 1–31. [Google Scholar] [CrossRef]
- Akgül, E.K.; Akgül, A.; Yavuz, M. New illustrative applications of integral transforms to financial models with different fractional derivatives. Chaos Solitons Fractals 2021, 146, 110877. [Google Scholar] [CrossRef]
- Özköse, F.; Yılmaz, S.; Yavuz, M.; Öztürk, İ.; Şenel, M.T.; Bağcı, B.Ş.; Doğan, M.; Önal, Ö. A Fractional Modeling of Tumor–Immune System Interaction Related to Lung Cancer with Real Data. Eur. Phys. J. Plus 2022, 137, 1–28. [Google Scholar] [CrossRef]
- Phuong, N.D.; Sakar, F.M.; Etemad, S. Rezapour, S. A novel fractional structure of a multi-order quantum multi-integro-differential problem. Adv. Differ. Equ. 2020, 633, 1–23. [Google Scholar]
- Mohammadi, H.; Kumar, S.; Rezapour, S.; Etemad, S. A theoretical study of the Caputo–Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control. Chaos Solitons Fractals 2021, 144, 110668. [Google Scholar] [CrossRef]
- Baleanu, D.; Jajarmi, A.; Asad, J.H.; Blaszczyk, T. The motion of a bead sliding on a wire in fractional sense. Acta Phys. Pol. A 2017, 131, 1561–1564. [Google Scholar] [CrossRef]
- Hammouch, Z.; Yavuz, M.; Özdemir, N. Numerical solutions and synchronization of a variable-order fractional chaotic system. Math. Model. Numer. Simul. 2021, 1, 11–23. [Google Scholar] [CrossRef]
- Özköse, F.; Yavuz, M. Investigation of interactions between COVID-19 and diabetes with hereditary traits using real data: A case study in Turkey. Comput. Biol. Med. 2021, 141, 105044. [Google Scholar] [CrossRef]
- Veeresha, P.; Yavuz, M.; Baishya, C. A computational approach for shallow water forced Korteweg–De Vries equation on critical flow over a hole with three fractional operators. Int. J. Optim. Control. Theor. Appl. (IJOCTA) 2021, 11, 52–67. [Google Scholar] [CrossRef]
- Baleanu, D.; Sajjadi, S.S.; Asad, J.H.; Jajarmi, A.; Estiri, E. Hyperchaotic behaviours, optimal control, and synchronization of a nonautonomous cardiac conduction system. Adv. Differ. Equ. 2021, 157, 1–24. [Google Scholar]
- Guariglia, E. Riemann zeta fractional derivative—Functional equation and link with primes. Adv. Differ. Equ. 2019, 1, 261. [Google Scholar] [CrossRef]
- Chen, Y.; Yan, Y.; Zhang, K. On the local fractional derivative. J. Math. Anal. Appl. 2010, 362, 17–33. [Google Scholar] [CrossRef] [Green Version]
- Ortigueira, M.D.; Coito, F. From differences to derivatives. Fract. Calc. Appl. Anal. 2004, 7, 459–471. [Google Scholar]
- Chalice, D.R. A characterization of the Cantor function. Am. Math. Mon. 1991, 98, 255–258. [Google Scholar] [CrossRef]
- Li, C.; Dao, X.; Guo, P. Fractional derivatives in complex planes. Nonlinear Anal. 2009, 71, 1857–1869. [Google Scholar] [CrossRef]
- He, J.H. A Tutorial Review on Fractal Spacetime and Fractional Calculus. Int. J. Theor. Phys. 2014, 53, 3698–3718. [Google Scholar] [CrossRef]
- Atangana, A. Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex, system. Chaos Solitons Fractals 2017, 102, 396–406. [Google Scholar] [CrossRef]
- Atangana, A.; Akgül, A.; M, K. Owolabi, Analysis of fractal fractional differential equations. Alex. Eng. J. 2021, 59, 1117–1134. [Google Scholar] [CrossRef]
- Owolabi, K.M.; Atangana, A.; Akgül, A. Modelling and analysis of fractal-fractional partial differential equations: Application to reaction-diffusion model. Alex. Eng. J. 2020, 59, 2477–2490. [Google Scholar] [CrossRef]
- Heydari, M.H.; Razzaghi, M.; Avazzadeh, Z. Orthonormal Bernoulli polynomials for space–time fractal-fractional modified Benjamin–Bona–Mahony type equations. Eng. Comput. 2021, 1–14. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Partohaghighi, M.; Akgül, A.; Alqahtani, R.T. New Type Modelling of the Circumscribed Self-Excited Spherical Attractor. Mathematics 2022, 10, 732. https://doi.org/10.3390/math10050732
Partohaghighi M, Akgül A, Alqahtani RT. New Type Modelling of the Circumscribed Self-Excited Spherical Attractor. Mathematics. 2022; 10(5):732. https://doi.org/10.3390/math10050732
Chicago/Turabian StylePartohaghighi, Mohammad, Ali Akgül, and Rubayyi T. Alqahtani. 2022. "New Type Modelling of the Circumscribed Self-Excited Spherical Attractor" Mathematics 10, no. 5: 732. https://doi.org/10.3390/math10050732
APA StylePartohaghighi, M., Akgül, A., & Alqahtani, R. T. (2022). New Type Modelling of the Circumscribed Self-Excited Spherical Attractor. Mathematics, 10(5), 732. https://doi.org/10.3390/math10050732