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Abstract: In this paper, we give some remarks on the recent papers on generalized F-contractions.
Our results unify and generalize the previous results in the existing literature. Moreover, we give an
example to support our results. As an application, we give the existence and uniqueness of a solution
to a class of differential equations.
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1. Introduction and Preliminaries

Since Banach invented the Banach contraction principle (for short, BCP) [1], fixed
point theory has shown rapid development (see [2–5]). In recent years, by using different
methods, BCP has been generalized greatly. One of the significant generalizations of BCP is
due to Wardowski [6], who introduced a new contraction based on an auxiliary function
F satisfying certain conditions, called F-contraction, and presented a fixed point theorem.
Subsequently, several interesting modifications and extensions dealing with the original
results of Wardowski have been carried out in various ways by many researchers. For the
details on F-contractions, the reader may refer to [7–10] and references therein. Motivated
by the previous work on F-contractions, throughout this paper, we introduce a generalized
F-contraction, which embeds a Hardy–Rogers type function (see [3]). Moreover, we obtain
a fixed point theorem for this contraction. In our opinion, our results are more general than
ones in the literature. We simplify and correct some errors from previous papers. Further,
as an application, we utilize our results to study the existence of the unique solution for a
class of differential equations.

In what follows, unless otherwise specified, we always denote by R the set of all real
numbers, N, the set of all nonnegative integers, N∗, the set of all positive integers.

Inspired by the works of Wardowski [6,11,12], we denote by F ↑ the family of all
the functions F : (0,+∞) → R satisfying that F is a strictly increasing function. Clearly,
limc→d− F(c) = F(d−) and limc→d+ F(c) = F(d+) hold for all d ∈ (0,+∞). Moreover, for
all x ∈ (0,+∞), we have

F(x−) ≤ F(x) ≤ F(x+).

Let F ∈ F ↑, then, there are two possibilities as follows:
(1) F(0+) = limx→0+ F(x) = r ∈ R;
(2) F(0+) = limx→0+ F(x) = −∞ (for more details, see [1,13–15]).

That is to say, each F ∈ F ↑ satisfies either (1) or (2) (see Proposition 1, Section 8 of [1]).
Hence, the second and third conditions for the function F from [6,11,12] are superfluous.

Suppose that α, β, γ, δ, η are nonnegative real constants for which one of the following
conditions is satisfied:
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(I) α + β + γ + δ + η < 1;

(II) δ <
1
2

, γ < 1, α + β + γ + 2δ = 1 and 0 < α + δ + η ≤ 1.
It is not hard to verify that (I) and (II) are incompatible. Indeed, if we take α = 1, β =

γ = δ = η = 0, then (II) does not imply (I). Further, if we take α =
1
3

, β = γ = δ = η = 0,

then (I) does not imply (II). Note that if α = δ =
1
3

, β = γ = η = 0, then both (I) and (II)
are satisfied.

In the statement of our results in the sequel we will use the following lemmas.

Lemma 1. If the nonnegative real numbers α, β, γ, δ and η satisfy Condition (II), then γ + δ < 1.

Proof. Suppose the opposite, i.e., that γ + δ ≥ 1, then

1 = α + β + γ + 2δ ≥ α + β + 1 + δ,

so α + β + δ ≤ 0, which follows α = β = δ = 0. Thus, by α + β + γ + 2δ = 1, it means
γ = 1. This leads to a contradiction with γ < 1.

Lemma 2. ([5]) Suppose that {xn}n∈N, which belongs to a metric space (X, d) and satisfies
limn→∞ d(xn, xn+1) = 0, is not a Cauchy sequence. Then, there exist ε > 0 and sequences of
positive integers {nk}, {mk}, nk > mk > k such that each of the next sequences

{d(xnk , xmk )}, {d(xnk+1, xmk )}, {d(xnk , xmk−1)},

{d(xnk+1, xmk−1)}, {d(xnk+1, xmk+1)}

tends to ε+ as k→ ∞.

Lemma 3. Let (X, d) be a metric space and T : X → X a mapping. If there exists some n ∈ N
such that Tn has a unique fixed point p in X, then T admits a unique fixed point p in X.

Proof. By the hypothesis, it is valid that Tn p = p, then

Tn(Tp) = Tn+1 p = T(Tn p) = Tp.

Hence, Tp is also a fixed point of Tn. Since Tn has a unique fixed point, then Tp = p,
i.e., p is a fixed point of T.

We will prove the uniqueness of the fixed point of T. Actually, assume that T has
another fixed point q, then

Tn p = Tn−1(Tp) = Tn−1 p = · · · = Tp = p,

Tnq = Tn−1(Tq) = Tn−1q = · · · = Tq = q.

Accordingly, p and q are fixed points of Tn. By the uniqueness of the fixed point of Tn,
it follows that p = q.

2. Main Results

Let (X, d) be a metric space and T : X → X a mapping. We introduce a Hardy–Rogers
type function as follows:

Hα,β,γ,δ,η(x, y) = αd(x, y) + βd(x, Tx) + γd(y, Ty) + δd(x, Ty) + ηd(y, Tx),

where x, y ∈ X, α, β, γ, δ, η satisfy Condition (I) or Condition (II).
We give the following theorem.
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Theorem 1. Let (X, d) be a complete metric space. Suppose that T : X → X is a generalized
F-contraction, that is,

τ + F(d(Tx, Ty)) ≤ F(Hα,β,γ,δ,η(x, y)) (1)

holds for all x, y ∈ X with Tx 6= Ty, where τ > 0 is a constant and F ∈ F ↑, then T has a unique
fixed point x∗ ∈ X, and for each x ∈ X, the sequence {Tnx}n∈N converges to x∗.

Proof. By (1) and the monotonicity of the function F, we have

d(Tx, Ty) < Hα,β,γ,δ,η(x, y). (2)

We will first prove the existence of fixed point of T. Indeed, we take an arbitrary point
x0 ∈ X and form the corresponding Picard sequence: {xn} = {Txn−1}, where n ∈ N∗.

If xp = xp−1 for some p ∈ N∗, then xp−1 is the fixed point of T. Hence, the proof is
finished. Now, suppose that xn 6= xn−1 for each n ∈ N∗. Putting x = xn−1, y = xn in (2),
we obtain

0 < d(xn, xn+1) < Hα,β,γ,δ,η(xn−1, xn), (3)

where

Hα,β,γ,δ,η(xn−1, xn)

= αd(xn−1, xn) + βd(xn−1, xn) + γd(xn, xn+1)

+ δd(xn−1, xn+1) + ηd(xn, xn)

≤ αd(xn−1, xn) + βd(xn−1, xn) + γd(xn, xn+1)

+ δ[d(xn−1, xn) + d(xn, xn+1)] + η · 0
= (α + β + δ)d(xn−1, xn) + (γ + δ)d(xn, xn+1).

Further, putting x = xn, y = xn−1 in (2), we obtain

0 < d(xn+1, xn) < Hα,β,γ,δ,η(xn, xn−1), (4)

where

Hα,β,γ,δ,η(xn, xn−1)

= αd(xn, xn−1) + βd(xn, xn+1) + γd(xn−1, xn)

+ δd(xn, xn) + ηd(xn−1, xn+1)

≤ αd(xn, xn−1) + βd(xn, xn+1) + γd(xn−1, xn)

+ δ · 0 + η[d(xn−1, xn) + d(xn, xn+1)]

= (α + γ + η)d(xn−1, xn) + (β + η)d(xn, xn+1).

Adding up (3) and (4) yields

d(xn, xn+1) ≤ µd(xn−1, xn), (5)

where µ = 2α+β+γ+δ+η
2−(β+γ+δ+η)

.
If Condition (I) holds, then µ ∈ [0, 1). In view of (5), it is valid that

d(xn, xn+1) ≤ µd(xn−1, xn) ≤ µ2d(xn−2, xn−1) ≤ · · · ≤ µnd(x0, x1).

Accordingly, for any n, m ∈ N, n < m, we speculate

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xm−1, xm)

≤ µnd(x0, x1) + µn+1d(x0, x1) + · · ·+ µm−1d(x0, x1)

= µn(1 + µ + µ2 + · · ·+ µm−n−1)d(x0, x1)
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≤ µn(1 + µ + µ2 + · · · )d(x0, x1)

=
µn

1− µ
d(x0, x1)→ 0 (n→ ∞),

which means that d(xn, xm)→ 0 as n, m→ ∞. Thus, {xn} is a Cauchy sequence.
If Condition (II) holds, then by Lemma 1 and α + β + γ + 2δ = 1, (3) becomes

0 < d(xn, xn+1) <
α + β + δ

1− (γ + δ)
· d(xn−1, xn) = d(xn−1, xn). (6)

Then, by (6), the sequence {d(xn−1, xn)} has a limit ` ≥ 0 as n→ ∞. In the following,
we will prove ` = 0.

As a matter of fact, suppose that ` > 0, then (1) becomes

τ + F(d(xn, xn+1)) ≤ F((α + β + δ)d(xn−1, xn) + (γ + δ)d(xn, xn+1)). (7)

Taking the limit as n→ ∞ in (7), we obtain τ + F(`+) ≤ F(`+) which is a contradiction
with τ > 0. Consequently, we obtain ` = 0, i.e., limn→∞ d(xn−1, xn) = 0.

Under Condition (II), if {xn} is not a Cauchy sequence, then putting x = xnk , y = xmk

in (1), we obtain
τ + F(d(xnk+1, xmk+1)) ≤ F(Hα,β,γ,δ,η(xnk , xmk )), (8)

where

Hα,β,γ,δ,η(xnk , xmk )

= αd(xnk , xmk ) + βd(xnk , xnk+1) + γd(xmk , xmk+1)

+ δd(xnk , xmk+1) + ηd(xmk , xnk+1).

Then, by Lemma 2, there exist ε > 0 and sequences of positive integers {nk}, {mk},
nk > mk > k such that

Hα,β,γ,δ,η(xnk , xmk )→ (α + δ + η)ε+ (k→ ∞).

Therefore, taking the limit as k→ ∞ in (8), we obtain

τ + F(ε+) ≤ F((α + δ + η)ε+) ≤ F(ε+),

which leads to a contradiction with τ > 0.
To sum up, under Condition (I) or Condition (II), we claim that the Picard sequence

{xn}n∈N is a Cauchy sequence. Since (X, d) is complete, then there exists p ∈ X such that
xn → p as n→ ∞. In the sequel, we will prove that Tp = p.

Suppose that Tp 6= p. Putting x = xn, y = p in (2), we have

d(xn+1, Tp) < Hα,β,γ,δ,η(xn, p), (9)

where

Hα,β,γ,δ,η(xn, p)

= αd(xn, p) + βd(xn, xn+1) + γd(p, Tp)

+ δd(xn, Tp) + ηd(p, xn+1)

→ (γ + δ)d(p, Tp) (n→ ∞).

Taking the limit as n→ ∞ in (9), we obtain

0 < d(p, Tp) ≤ (γ + δ)d(p, Tp),
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If Condition (I) holds, then

0 < d(p, Tp) ≤ (γ + δ)d(p, Tp)

≤ (α + β + γ + δ + η)d(p, Tp)

< d(p, Tp),

which is a contradiction.
If Condition (II) holds, then by Lemma 1, it is easy to say that

0 < d(p, Tp) ≤ (γ + δ)d(p, Tp) < d(p, Tp).

This is a contradiction.
Finally, we will prove the uniqueness of the fixed point of T. To this end, we suppose

for absurd that T has another fixed point q in X. That is, Tq = q, q 6= p. On account of
(2), then

0 < d(p, q) < αd(p, q) + β · 0 + γ · 0 + δd(p, q) + ηd(q, p),

that is,
0 < d(p, q) < (α + δ + η)d(p, q) ≤ (α + β + γ + δ + η)d(p, q),

which establishes α + δ + η > 1 and α + β + γ + δ + η > 1. We obtain a contradiction with
Condition (II) or Condition (I). This means that the fixed point of T is unique.

Remark 1. The above theorem shows several things. First, it generalizes and corrects the recent
results on a fixed point for a so-called F-contraction (see [7–10]. Secondly, various consequences can
be obtained by assuming Condition (I) or Condition (II) if we choose the special values of parameters
α, β, γ, δ, and η.

Remark 2. Putting α ∈ [0, 1), β = γ = δ = η = 0, we obtain the main results from [6].

Remark 3. Putting α = 1, β = γ = δ = η = 0, we obtain Corollary 2 from [16].

Remark 4. Let us recall consequence 2 from [16]. Only the strictly increasing function F is
assumed and it is proved that the mapping T : X → X has a unique fixed point if d(Tx, Ty) > 0
which implies τ + F(d(Tx, Ty)) ≤ F(d(x, y)). In the proof, among other things, d(xn, xn+1)→ 0
as n → ∞ was used. Since d(xn, xn+1) > 0, then τ + F(d(xn, xn+1)) ≤ F(d(xn−1, xn)). By
taking the limit in the obtained inequality as n → ∞, we obtain τ + F(0+) ≤ F(0+) which is a
contradiction if there is not a condition F(0+) = −∞. So, the assumption that F(0+) = −∞ is an
infinitely mandatory condition for the mentioned results.

Now, we give the following example to illustrate Theorem 1.

Example 1. Let X = [0, 1] with d(x, y) = |x − y| for all x, y ∈ X. Then (X, d) is a complete
metric space. Define T : X → X as

Tx =
1
4

x2 +
1
2

x

for all x ∈ X. Define
F(t) = ln t, t ∈ (0,+∞).

Then, it is not hard to verify that

ln 2 + F(d(Tx, Ty)) ≤ F(Hα,β,γ,δ,η(x, y))

for all x, y ∈ X, where

Hα,β,γ,δ,η(x, y) = αd(x, y) + βd(x, Tx) + γd(y, Ty) + δd(x, Ty) + ηd(y, Tx),
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and α =
2
3

, β =
1
6

, γ =
1
8

, δ =
1
2

, η =
1
2

. Thus, all conditions of Theorem 1 are satisfied. So, T
has a unique fixed point 0 in X.

3. Application

In this section, we will give an application to our main results.
Let X be a Banach space, U a open subset of R× X, u0 = (t0, x0) ∈ U, f : U → X

a continuous function. The problem is to find a closed interval I such that t0 ∈ I and a
differentiable function x : I → X satisfying{

x′(t) = f (t, x(t)), t ∈ I,
x(t0) = x0.

(10)

It is easy to see that (10) is equivalent to the integral equation

x(t) = x0 +
∫ t

t0

f (s, x(s))ds, t ∈ I. (11)

Theorem 2. Assume that the following conditions are satisfied:
(i) there exists a function λ(t) ∈ [0,+∞) ∩ L1((t0 − a, t0 + a)) for some a > 0 such that

‖ f (t, x1)− f (t, x2)‖X ≤ λ(t)‖x1 − x2‖X

holds for all (t, x1), (t, x2) ∈ U, where ‖ · ‖X is the norm defined on X;
(ii) there exist a constant c > 0 and a closed ball B(u0, s) of U such that ‖ f (t, x)‖X ≤ c for

any (t, x) ∈ B(u0, s), where B(u0, s) is the closure of the ball B(u0, s).
Then, there exists τ0 > 0 such that, for each τ < τ0, there is a unique solution x ∈ C1(Iτ , X)

to (10) with Iτ = [t0 − τ, t0 + τ].

Proof. Put
r = min{a, s}, τ0 = min

{
r,

r
c

}
.

Let τ < τ0 and construct a complete metric space Y = B(x0, r) with the metric d
induced by the norm of C(Iτ , X), where Iτ = [t0 − τ, t0 + τ]. By virtue of τ < r, if y ∈ Y,
then (t, y(t)) ∈ B(u0, r) ⊂ U for all t ∈ Iτ , Hence, for y ∈ Y, define

Ty(t) = x0 +
∫ t

t0

f (s, y(s))ds, t ∈ Iτ

and
F(z) = ln z, z ∈ (0,+∞).

Then, we can show

ln 2 + F(d(Tny1, Tny2)) ≤ F(Hα,β,γ,δ,η(y1, y2)), (12)

for any n ∈ N, where

Hα,β,γ,δ,η(y1, y2)

= αd(y1, y2) + βd(y1, Ty1) + γd(y2, Ty2) + δd(y1, Ty2) + ηd(y2, Ty1),

and α =
2
n!
‖λ‖n

L1(Iτ)
, β = γ = δ = η = 0.

In fact, it is easy to deduce that (12) is equivalent to the following inequality:

d(Tny1, Tny2) ≤
1
n!
‖λ‖n

L1(Iτ)
d(y1, y2),
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that is,

‖Tny1 − Tny2‖C(Iτ ,X) ≤
1
n!
‖λ‖n

L1(Iτ)
‖y1 − y2‖C(Iτ ,X). (13)

Notice

sup
t∈Iτ

‖Ty(t)− x0‖X ≤ sup
t∈Iτ

∣∣∣∣∫ t

t0

‖ f (s, y(s))‖X ds
∣∣∣∣ ≤ cτ ≤ r,

then T maps Y into Y. In order to finish the proof of (13), by induction on n we need to
show that, for every t ∈ Iτ ,

‖Tny1(t)− Tny2(t)‖X

≤ 1
n!

(∫ t

t0

λ(s)ds
)n
‖y1 − y2‖C(Iτ ,X). (14)

For n = 1, (14) holds easily. So, assume that (14) is true for n− 1, n ≥ 2. Then, taking
t > t0 (the argument for t < t0 is analogous), we have

‖Tny1(t)− Tny2(t)‖X

= ‖T(Tn−1)y1(t)− T(Tn−1)y2(t)‖X

≤
∫ t

t0

‖ f (s, Tn−1y1(s))− f (s, Tn−1y2(s))‖X ds

≤
∫ t

t0

λ(s)‖Tn−1y1(s)− Tn−1y2(s)‖X ds

≤ 1
(n− 1)!

[∫ t

t0

λ(s)
(∫ s

t0

λ(u)du
)n−1

ds

]
‖y1 − y2‖C(Iτ ,X)

=
1
n!

(∫ t

t0

λ(s)ds
)n
‖y1 − y2‖C(Iτ ,X).

Accordingly, we have (14), which leads to (13), so we obtain (12). That is to say, (1)

of Theorem 1 holds. On account of α =
2
n!
‖λ‖n

L1(Iτ)
, then limn→∞ α = 0, thus, for a big

enough n, 0 < α < 1. Hence, for a big enough n and by Theorem 1, Tn has a fixed point.
Therefore, by Lemma 3, T has a unique fixed point, which is clearly the (unique) solution
to the integral Equation (11) and hence to (10).
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