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1. Introduction

By considering the three major approaches (variational calculus, the Pontryagin maxi-
mum principle, and dynamic programming) associated with the optimal control theory,
many researchers have investigated certain controlled processes in nature using some func-
tionals with ODE/PDE or mixed constraints. In this regard, Treanţă [1–3], Jayswal et al. [4],
and Mititelu and Treanţă [5] studied some classes of optimization problems defined by
integral functionals of multiple and/or path-independent curvilinear type, having various
constraints involving first-order partial differential equations and inequations. Schmiten-
dorf [6], by transforming the considered control problems into the standard form and then
using Pontryagin’s principle, formulated necessary conditions of optimality for a class of
control problems subjected to isoperimetric constraints. Later, Forster and Long [7] derived
an alternative transformation technique for obtaining the necessary optimality conditions
for the control problem considered in Schmitendorf [6] (see also Schmitendorf [8]). On the
other hand, Benner et al. [9] studied bang-bang control strategies for a control problem
with isoperimetric constraints. For other studies on this subject, we direct the reader to
Batista [10], Caputo [11], Enache and Philippin [12], Takahashi [13], or Sabermahani and
Ordokhani [14].

Nevertheless, let us consider the following real problem: Under the action of gravity,
let us find a homogeneous chain of length l0, which is fixed at its ends. If we consider the chain
represented by the graph of the function x = x(τ), fixed at its ends x(τ0) = x0, x(τ1) = x1,
then the shape of the considered chain is given by the stipulation that the potential energy
is minimal. Consequently, we have to extremize the following simple integral

I(x(·)) =
∫ τ1

τ0

x(τ)
√

1 + ẋ2(τ)dτ

subject to

T(x(·)) =
∫ τ1

τ0

√
1 + ẋ2(τ)dτ = l0
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x(τ0) = x0, x(τ1) = x1.

Keeping in mind the form of the previous optimization problem and motivated and
inspired by continued research in this field (see, for instance, Hestenes [15], Lee [16],
Schmitendorf [6], Udrişte and Tevy [17], and Treanţă [2]) in the present paper, we study
new classes of variational control problems with isoperimetric constraints defined by
multiple and curvilinear integrals. More precisely, without limiting our investigation
to convex costs as in Lee [16], the current framework is more comprehensive than in
Schmitendorf [6], Hestenes [15], Udrişte and Ţevy [17], or Treanţă [2] both by the inclusion
of integral functionals of multiple and curvilinear type as constraints and by the inclusion of
new proofs. Additionally, compared with a very recent research paper (see Treanţă [18]), the
present paper takes into account the isoperimetric constraints defined by multiple integral
functionals (see Section 2.2). Moreover, due to the very important physical applications
of the functionals used (for example, mechanical work), this paper is a very good starting
point for researchers in the field of applied mathematics that deal with the design, theory,
and applications of mathematics, management science, operations research, optimal control
science, and economics.

The rest of the paper is structured as follows: Section 2 deals with the optimization of
a multiple integral functional with constraints given by curvilinear and multiple integrals.
Two main results are formulated and proven (see Theorems 1 and 2), and two illustrative
examples are given. This section is concluded with an algorithm that highlights the steps
for solving such problems. Section 3 provides the conclusions of this paper and formulates
further developments.

2. Constrained Optimization Problem with Multiple Integral Objective Functional

The following class of problems is motivated by generalized Dieudonné–Rashevski
type problems, which are seen as isoperimetric constrained variational problems and occur
when we talk about resources (see Pitea [19]). For this purpose, we start with a function
Θ(x(τ), ϑ(τ), τ) of C1-class, called multi-time Lagrangian, where τ = (τγ) = (τ1, · · · , τm) ∈
Ωτ0,τ1 ⊂ Rm

+, x = (xi) =
(

x1, · · · , xn
)

: Ωτ0,τ1 → Rn is a C2-class function (called the state

variable) and ϑ = (ϑα) =
(

ϑ1, · · · , ϑk
)

: Ωτ0,τ1 → Rk is a piecewise continuous function

(called the control variable). Additionally, denote xγ(τ) :=
∂x

∂τγ
(τ), γ ∈ {1, · · · , m}, and

consider Ωτ0,τ1 = [τ0, τ1], a multi-time interval in Rm
+.

Isoperimetric constrained control problem. Find (x∗, ϑ∗) that provides the minimum for
the following multiple integral objective functional

T(x(·), ϑ(·)) =
∫

Ωτ0,τ1

Θ(x(τ), ϑ(τ), τ)dτ1 · · · dτm (1)

among all of the pair functions (x, ϑ) with

x(τ0) = x0, x(τ1) = x1,

or
x(τ)|∂Ωτ0,τ1

= given

and satisfying the following isoperimetric constraints:

2.1. Curvilinear Integrals as Isoperimetric Constraints

We begin with the next constraints∫
Γτ0,τ1

ga
ζ(x(τ), xγ(τ), ϑ(τ), τ)dτζ = la, a = 1, 2, · · · , r ≤ n,
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where Γτ0,τ1 represents a piecewise smooth curve, which is contained in Ωτ0,τ1 and join
τ0, τ1 ∈ Rm

+. The C1-class functions

ga
ζ(x(τ), xγ(τ), ϑ(τ), τ)dτζ , a = 1, 2, · · · , r

are considered complete integrable differential 1-forms, more exactly, Dγgζ = Dζ gγ, γ 6=

ζ, γ, ζ ∈ {1, · · · , m}, with Dγ :=
∂

∂τγ
, γ ∈ {1, · · · , m}.

This kind of problem arises when we have in mind the optimization problems associ-
ated with convex bodies and the geometrical constraints. More precisely, the maximization
of a surface with fixed width and diameter.

For the study of the aforementioned variational control problem (1), associated with
the above constraints, we consider Γτ0,τ ⊂ Γτ0,τ1 and the auxiliary variables

Ψa(τ) =
∫

Γτ0,τ
ga

ζ(x(s), xγ(s), ϑ(s), s)dsζ , a = 1, 2, · · · , r,

satisfying Ψa(τ0) = 0, Ψa(τ1) = la. In other words, the functions Ψa are solutions for the
next first-order complete integrable PDEs

∂Ψa

∂τζ
(τ) = ga

ζ(x(τ), xγ(τ), ϑ(τ), τ), Ψa(τ1) = la.

Introducing p =
(

pζ
a(τ)

)
(Lagrange multiplier) and considering Ψ = (Ψa(τ)), we

build a new Lagrangian

Θ1
(

x(τ), xγ(τ), ϑ(τ), Ψ(τ), Ψζ(τ), p(τ), τ
)
= Θ(x(τ), ϑ(τ), τ)

+pζ
a(τ)

(
ga

ζ(x(τ), xγ(τ), ϑ(τ), τ)− ∂Ψa

∂τζ
(τ)

)
that modifies the original problem (with constraints of isoperimetric type) into an uncon-
strained optimization problem

min
x(·), ϑ(·), Ψ(·), p(·)

∫
Ωτ0,τ1

Θ1
(
x(τ), xγ(τ), ϑ(τ), Ψ(τ), Ψζ(τ), p(τ), τ

)
dτ1 · · · dτm (2)

x(τ0) = x0, x(τ1) = x1

Ψ(τ0) = 0, Ψ(τ1) = l.

An extreme pair function of (1) can be found among the extreme pair functions of (2).
The next theorem is the first main result. It establishes the necessary optimality conditions
of the considered optimization problem.

Theorem 1. Consider (x∗(·), ϑ∗(·), Ψ∗(·), p∗(·)) solves (2). Then,

(x∗(·), ϑ∗(·), Ψ∗(·), p∗(·))

solves the following Euler–Lagrange PDEs

∂Θ1

∂xi − Dγ
∂Θ1

∂xi
γ

= 0, i = 1, n

∂Θ1

∂ϑα
− Dγ

∂Θ1

∂ϑα
γ
= 0, α = 1, k

∂Θ1

∂Ψa − Dζ
∂Θ1

∂Ψa
ζ

= 0, a = 1, r
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∂Θ1

∂pζ
a
− Dγ

∂Θ1

∂pζ
a,γ

= 0,

where pζ
a,γ :=

∂pζ
a

∂τγ
.

Proof. Consider that (x(τ), ϑ(τ), Ψ(τ), p(τ)) solves (2) and x(τ) + ωh(τ), p(τ) + ω f (τ),
and ϑ(τ) + ωm(τ), Ψ(τ) + ωn(τ) are some variations of x(τ), p(τ), ϑ(τ), and Ψ(τ),
respectively, with h(τ)|∂Ωτ0,τ1

= f (τ)|∂Ωτ0,τ1
= m(τ)|∂Ωτ0,τ1

= n(τ)|∂Ωτ0,τ1
= 0. Therefore,

the multiple integral functional turns into a function of ω, more precisely

I(ω) =
∫

Ωτ0,τ1

Θ1(x(τ) + ωh(τ), xγ(τ) + ωhγ(τ), ϑ(τ) + ωm(τ),

Ψ(τ) + ωn(τ), Ψζ(τ) + ωnζ(τ), p(τ) + ω f (τ), τ)dτ1 · · · dτm.

By our hypothesis, we must have

0 =
d

dω
I(ω)|ω=0

=
∫

Ωτ0,τ1

(
∂Θ1

∂xj hj +
∂Θ1

∂xj
γ

hj
γ +

∂Θ1

∂ϑα
mα +

∂Θ1

∂Ψa na +
∂Θ1

∂Ψa
ζ

na
ζ +

∂Θ1

∂pζ
a

f a
ζ

)
dτ1 · · · dτm

= BT +
∫

Ωτ0,τ1

(
∂Θ1

∂xj − Dγ
∂Θ1

∂xj
γ

)
hjdτ1 · · · dτm

+
∫

Ωτ0,τ1

(
∂Θ1

∂Ψa − Dζ
∂Θ1

∂Ψa
ζ

)
nadτ1 · · · dτm

+
∫

Ωτ0,τ1

(
∂Θ1

∂ϑα
− Dγ

∂Θ1

∂ϑα
γ

)
mαdτ1 · · · dτm

+
∫

Ωτ0,τ1

(
∂Θ1

∂pζ
a
− Dγ

∂Θ1

∂pζ
a,γ

)
f a
ζ dτ1 · · · dτm.

By using the following equalities

∂Θ1

∂xj
γ

hj
γ = −hjDγ

∂Θ1

∂xj
γ

+ Dγ

(
∂Θ1

∂xj
γ

hj

)
,

∂Θ1

∂Ψa
ζ

na
ζ = −naDζ

∂Θ1

∂Ψa
ζ

+ Dζ

(
∂Θ1

∂Ψa
ζ

na

)
and the formula of divergence, the boundary terms BT (see below) disappear (see nξ(τ) as
the normal vector associated with ∂Ωτ0,τ1 , and δνξ as the symbol of Kronecker),

∫
Ωτ0,τ1

Dγ

(
∂Θ1

∂xj
γ

hj

)
dτ1 · · · dτm =

∫
∂Ωτ0,τ1

δνξ
∂Θ1

∂xj
ν

hjnξ dσ

∫
Ωτ0,τ1

Dζ

(
∂Θ1

∂Ψa
ζ

na

)
=
∫

∂Ωτ0,τ1

δνξ
∂Θ1

∂Ψa
ν

nanξ dσ.
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Now, by using a fundamental lemma of variational calculus (“If
∫ x1

x0

f (x)φ(x)dx =

0, for all C2-class functions satisfying f (x0) = f (x1) = 0, then φ(x) = 0.”), the proof
is complete.

Remark 1. We notice that the above PDEs of Euler–Lagrange type can be formulated as follows

∂Θ1

∂xi − Dγ
∂Θ1

∂xi
γ

= 0, i = 1, n

∂Θ1

∂ϑα
− Dγ

∂Θ1

∂ϑα
γ
= 0, α = 1, k

∂pζ
a

∂τζ
= 0, a = 1, r, ζ ∈ {1, 2, · · · , m}

∂Ψa

∂τζ
(τ) = ga

ζ(x(τ), xγ(τ), ϑ(τ), τ).

Consequently, we obtain that p has zero total divergence. Moreover, this multiplier is well defined
only if the optimal pair function is not an extreme pair function for at least one of the following

functionals
∫

Γτ0,τ1

ga
ζ(x(τ), xγ(τ), ϑ(τ), τ)dτζ , a = 1, r.

Example 1. Let us find the optimal pair function for the next objective functional

I(x(·), ϑ(·)) = 1
2

∫
Ω

(
x2(τ) + ϑ2(τ)

)
dτ1dτ2

subject to
∫

Γ
xτ1(τ)dτ1 + xτ2(τ)dτ2 = 0 and the boundary conditions x(0, 0) = x(1, 1) = 0,

where Γ is a curve of C1-class that is contained in Ω = [0, 1]2 and join (0, 0), (1, 1).
Solution. The auxiliary Lagrangian is

Θ =
1
2

(
x2(τ) + ϑ2(τ)

)
+ p(τ)(Ψτ1(τ)− xτ1(τ)) + q(τ)(Ψτ2(τ)− xτ2(τ)).

The extreme pair functions are given by the following partial differential equations

∂Θ
∂x
− ∂

∂τ1

(
∂Θ

∂xτ1

)
− ∂

∂τ2

(
∂Θ

∂xτ2

)
= 0

∂Θ
∂ϑ
− ∂

∂τ1

(
∂Θ

∂ϑτ1

)
− ∂

∂τ2

(
∂Θ

∂ϑτ2

)
= 0

∂p
∂τ1 +

∂q
∂τ2 = 0, Ψτ1(τ)− xτ1(τ) = 0, Ψτ2(τ)− xτ2(τ) = 0,

or, equivalently,

x +
∂p
∂τ1 +

∂q
∂τ2 = 0

ϑ = 0
∂p
∂τ1 +

∂q
∂τ2 = 0, Ψτ1(τ)− xτ1(τ) = 0, Ψτ2(τ)− xτ2(τ) = 0,

which involves (x∗, ϑ∗) = (0, 0).
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2.2. Multiple Integrals as Isoperimetric Constraints

Let the following be constraints:∫
Ωτ0,τ1

ga(x(τ), xγ(τ), ϑ(τ), τ)dτ1 · · · dτm = 0, a = 1, 2, · · · , r ≤ n.

This type of problem arises when we characterize the torsion of prismatic bars in the
elastic and elastic-plastic case (see Ting [20]).

By introducing the variations x̂(τ) = x(τ) + ω1h(τ) and ϑ̂(τ) = ϑ(τ) + ω2m(τ)
associated with x(τ) and ϑ(τ), respectively, we convert the multiple integral functionals in
functions depending on (ω1, ω2). Furthermore, we introduce the constant vector multiplier
p = (pa) and the auxiliary Lagrangian

Θ2(x(τ), xγ(τ), ϑ(τ), p, τ) = Θ(x(τ), ϑ(τ), τ)

+paga(x(τ), xγ(τ), ϑ(τ), τ).

In this way, we modify the original constrained optimization problem (1) (with isoperimetric
constraints) in a new optimization problem (without constraints of isoperimetric type)

min
x(·), ϑ(·), p

∫
Ωτ0,τ1

Θ2(x(τ), xγ(τ), ϑ(τ), p, τ)dτ1 · · · dτm (3)

subject to
x(τ0) = x0, x(τ1) = x1

or
x(τ)|∂Ωτ0,τ1

= given.

An extreme pair function of (1) is found among the extreme pair functions of (3). The
next theorem is the second main result. It formulates the necessary optimality conditions
of the considered constrained optimization problem.

Theorem 2. Consider that (x∗(·), ϑ∗(·)) solves (Equation(1)). Then, (x∗(·), ϑ∗(·)) solves the
following system:

∂Θ2

∂xi − Dγ
∂Θ2

∂xi
γ

= 0, i = 1, n

∂Θ2

∂ϑα
− Dγ

∂Θ2

∂ϑα
γ
= 0, α = 1, k.

Proof. As mentioned above, by introducing the variations x(τ) + ω1h(τ) and
ϑ(τ) + ω2m(τ) associated with x(τ) and ϑ(τ), respectively, we convert the multiple inte-
gral functionals in functions of (ω1, ω2), namely

F(ω1, ω2) =
∫

Ωτ0,τ1

Θ(x(τ) + ω1h(τ), ϑ(τ) + ω2m(τ), τ)dτ1 · · · dτm

Ga(ω1, ω2) =
∫

Ωτ0,τ1

ga(x(τ) + ω1h(τ), xγ(τ) + ω1hγ(τ), ϑ(τ) + ω2m(τ), τ)dτ1 · · · dτm,

for a = 1, 2, · · · , r ≤ n.
Let (x(·), ϑ(·)) be an optimal solution for (1). In consequence, (0, 0) is the solution for

the following optimization problem

min
ω1,ω2

F(ω1, ω2)
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subject to
Ga(ω1, ω2) = 0, a = 1, 2, · · · , r ≤ n

h|∂Ωτ0,τ1
= m|∂Ωτ0,τ1

= 0,

and there exists the constant vector p = (pa) such that the following Karush–Kuhn–Tucker
conditions at (0, 0) are fulfilled

∇F(0, 0) + pa∇Ga(0, 0) = 0, (4)

where ∇ f (x, Ψ) represents the gradient of f at (x, Ψ). The relation (4) can be rewritten
as follows: ∫

Ωτ0,τ1

(
∂Θ
∂xi hi + pa

∂ga

∂xi hi + pa
∂ga

∂xi
γ

hi
γ

)
dτ1 · · · dτm = 0

∫
Ωτ0,τ1

(
∂Θ
∂ϑα

mα + pa
∂ga

∂ϑα
mα

)
dτ1 · · · dτm = 0,

or, equivalently,

∫
Ωτ0,τ1

(
∂Θ
∂xi + pa

∂ga

∂xi − paDγ
∂ga

∂xi
γ

)
hidτ1 · · · dτm = 0,

∫
Ωτ0,τ1

(
∂Θ
∂ϑα

+ pa
∂ga

∂ϑα

)
mαdτ1 · · · dτm = 0.

Furthermore, by using the conditions h|∂Ωτ0,τ1
= m|∂Ωτ0,τ1

= 0, it follows that

∂Θ
∂xi + pa

∂ga

∂xi − paDγ
∂ga

∂xi
γ

= 0, i = 1, n

∂Θ
∂ϑα

+ pa
∂ga

∂ϑα
= 0, α = 1, k,

or, equivalently,
∂Θ2

∂xi − Dγ
∂Θ2

∂xi
γ

= 0, i = 1, n

∂Θ2

∂ϑα
− Dγ

∂Θ2

∂ϑα
γ
= 0, α = 1, k

and this completes the proof.

Remark 2. We notice that the Lagrange multiplier p is well defined only if the optimal pair function
is not an extreme pair function for at least one of the following functionals∫

Ωτ0,τ1

ga(x(τ), xγ(τ), ϑ(τ), τ)dτ1 · · · dτm, a = 1, r.

Example 2. For Ω = [0, 1]2, let us compute the extreme pair functions associated with the
following functional

I(x(·), ϑ(·)) = 1
2

∫
Ω

(
x2(τ) + ϑ2(τ)

)
dτ1dτ2

subject to
∫

Ω
xτ1(τ)xτ2(τ)dτ1dτ2 = 0 and x(0, 0) = 0, x(1, 1) = 1.

Solution. The auxiliary Lagrangian is

Θ =
1
2

(
x2 + ϑ2

)
+ pxτ1 xτ2 .
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The extreme pair functions are provided by the following partial differential equations

∂Θ
∂x
− ∂

∂τ1

(
∂Θ

∂xτ1

)
− ∂

∂τ2

(
∂Θ

∂xτ2

)
= 0

∂Θ
∂ϑ
− ∂

∂τ1

(
∂Θ

∂ϑτ1

)
− ∂

∂τ2

(
∂Θ

∂ϑτ2

)
= 0,

or, equivalently,
x− 2pxτ1τ2 = 0

ϑ = 0.

Furthermore, the optimal pair function is given by the above second-order partial differential equation
associated with the boundary conditions x(0, 0) = 0, x(1, 1) = 1. The constant p is determined by
imposing the isoperimetric condition, as well.

Taking into account the aforementioned applications and the theory presented in this
paper, we establish the following algorithm. Its main purpose is to highlight the steps used
to solve a problem such as the one formulated here.

More precisely, for a cost functional of multiple integral type, and a set of isoperimetric
and boundary restrictions, together with self and/or normal data, our purpose is to find
(x?, ϑ?) such that T(x?, ϑ?) ≤ T(x, ϑ), for all (x, ϑ). For this, we consider a feasible solution
(x, ϑ). If it satisfies the necessary conditions of optimality in Theorem 1 (or Theorem 2),
then the “Stage of Generating” is verified and we move on to the next stage; otherwise, the
algorithm stops. If the self/normal data set is satisfied, then we move on to the next stage,
namely “Stage of Deciding”; otherwise, the algorithm stops. For (x?, ϑ?) derived in “Stage
of Detecting”, if the inequality T(x?, ϑ?) ≤ T(x, ϑ) is true for all feasible solutions (x, ϑ),
then (x?, ϑ?) is an optimal solution; otherwise, the algorithm stops (see Algorithm 1).

Algorithm 1: for new classes of constrained optimization problems involving
multiple and curvilinear integral functionals

DATA:
• the objective functional of multiple integral type

min
(x,ϑ)

T(x, ϑ) =
∫

Ωτ0,τ1

Θ(x(τ), ϑ(τ), τ)dτ1 · · · dτm;

• the constraint set∫
Γτ0,τ1

ga
ζ(x(τ), xγ(τ), ϑ(τ), τ)dτζ = la, a = 1, 2, · · · , r ≤ n,

or ∫
Ωτ0,τ1

ga(x(τ), xγ(τ), ϑ(τ), τ)dτ1 · · · dτm = 0, a = 1, 2, · · · , r ≤ n

x(τ0) = x0, x(τ1) = x1,

or
x(τ)|∂Ωτ0,τ1

= given;

• the self/normal data set
- g =

(
ga

ζ

)
fulfils the complete integrability conditions;

RESULT:

S = {(x?, ϑ?)|T(x?, ϑ?) ≤ T(x, ϑ),

with (x?, ϑ?) fulfiling the constraint and self/normal data set};
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Algorithm 1: Cont.
BEGIN

• Stage of Generating: let (x, ϑ) be a feasible solution
if the necessary optimality conditions
are incompatible with respect to (x, ϑ)
then STOP
else GO to the next stage

• Stage of Detecting: the analysis of Lagrange multipliers
if the self/normal data set is not satisfied
then STOP
else GO to the next stage

• Stage of Deciding: let (x?, ϑ?) is obtained in Stage of Detecting
if T(x, ϑ) ≥ T(x?, ϑ?) is true for all (x, ϑ)
then (x?, ϑ?) is an optimal solution
else STOP

END

3. Conclusions and Further Developments

We studied two classes of optimization problems with isoperimetric constraints in-
volving multiple and path-independent curvilinear integrals. More precisely, by using
some tools of variational analysis, necessary conditions of optimality have been established
for the considered problems. In order to illustrate the mathematical development derived
in the paper, two examples were provided as well. Additionally, to synthesize the concrete
steps in order to solve an optimization problem such as those analyzed in the paper, an
algorithm was formulated.

As further developments associated with this paper, we mention the study of multidi-
mensional variational problems with deviating arguments.
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