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Abstract: Simulation with position-based dynamics is very popular due to its high efficiency. How-
ever, it has the weaknesses of lacking details when too few vertices are involved in simulation and
inefficiency when too many vertices are used for simulation. To tackle this problem, in this paper, we
propose a new method of reconstructing dynamic 3D models with small data. The core elements of
the proposed approach are a curve-represented geometric model and a physics-based mathematical
model defined by dynamic partial differential equations. We first use the simulation method of
position-based dynamics to generate a group of keyframe poses, which are used to create the defor-
mation animation of a 3D model. Then, wireframe curves are extracted from skin deformation shapes
of the 3D model at different keyframe poses. A physics-based mathematical model defined by dy-
namic partial differential equations is proposed. Its closed-form solution is obtained to represent the
extracted curves, which are used to reconstruct the deformation models at different keyframe poses.
Experimental examples and comparisons made in this paper indicate that the proposed method of
reconstructing dynamic 3D models can greatly reduce data size while keeping good details.

Keywords: reconstruction; dynamic 3D models; position-based dynamics; dynamic partial differen-
tial equation; closed-form solution

MSC: 68-XX; 68Dxx; 68U05

1. Introduction

With the rapid development of the gaming industry, the demand for a high degree of
accuracy in game scenes has led to the increasing need to quickly animate more detailed 3D
models. In order to create efficient and realistic shape changes, various shape deformation
methods have been proposed, which could be roughly divided into geometric, data-driven,
and physics-based methods.

Geometric methods [1–5] are the most efficient but less capable of generating realistic
shape deformation since they do not consider any physics of shape changes. Data-driven
techniques [6–10] use known example models to create new deformation results. This
type of method can generate highly realistic deformation results with sufficient high-
quality examples. Similar to geometric methods, data-driven methods do not take the
physics of shape changes into account. Therefore, they require enough shape examples
to achieve authenticity. Generating enough shape examples is a main weakness of data-
driven methods. How to reduce the number of example shapes without losing realism is
a primary issue of data-driven methods. In contrast, physics-based approaches [11–14]
consider the underlying physics of object movements and deformations to create more
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realistic deformations. Unfortunately, physics-based approaches rely on heavy numerical
calculations and are not ideal in many applications requiring high computing performance.

To achieve the balance between efficiency and realism, position-based dynamics
(PBD) [15–17] is introduced. With a relatively high deformation performance, PBD tackles
the problem of the numerical calculation needed for physics-based techniques. Its high
simulation performance makes PBD-based methods popular in computer games and
interactive applications. However, the simulation with PBD is based on discrete vertices
of polygon models and influenced by the number of vertices involved in the simulation.
When too few vertices are involved in the simulation, the results are not detailed, causing
less realistic deformations. On the contrary, too many vertices involved in the simulation
cause a significant reduction in the calculation efficiency.

As shown in Figure 1, the dog model in (a) with 502 vertices and 1000 faces is very
rough with no details. The corresponding dog models become more detailed as the vertices
and faces increase further from (a) to (d).
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Figure 1. Dog model with different vertices and faces. (a) 502 vertices and 1000 faces, (b) 2002 vertices
and 4000 faces, (c) 10,002 vertices and 20,000 faces, (d) 49,714 vertices and 99,424 faces.

Table 1 shows how different faces of the same polygon model affect the CPU time of
PBD simulations. In order to carry out PBD simulations, a polygon surface model must
be first converted into a corresponding tetrahedron model, which is used in keyframes
to compute its deformation results by the PBD software library [18]. In Table 1, we listed
the face number of an original dog model in the first column and the face number of the
corresponding tetrahedron model in the first row. In order to achieve different simulation
accuracies, the converted tetrahedron model can have different resolutions, i.e., different
face numbers. In this paper, we only consider the cases where the face number of the
converted tetrahedron model is not more than the face number of the original model.
Since new positions of model vertices are determined by collision and deformation of
the corresponding tetrahedron model, different combinations of original and tetrahedron
models will cause different results and time consumption. When the polygon dog model
and its tetrahedron version have 1000 faces, the simulation takes 3.15 s to complete. As the
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faces of the polygon dog model and its tetrahedron version increase, the computational
time quickly increases. When the faces of the polygon dog model and its tetrahedron
version increase to 100,000, the simulation time increases to 243.43 s.

Table 1. Computational time (CPU) of position-based simulation for a dog model with different faces.

Model\TET 100,000 20,000 4000 1000

100,000 243.43 s 76.74 s 12.15 s 3.51 s
20,000 / 75.32 s 13.19 s 3.34 s
4000 / / 12.62 s 3.25 s
1000 / / / 3.15 s

The above discussions indicate that discrete representations of 3D models cause the
problem of either poor details or low computational efficiency. How to further improve
PBD to achieve both good details and high computational efficiency is an unsolved topic.

Continuous representations of 3D models can noticeably reduce the design variables
of discrete representations. Introducing continuous representations would tackle the above
problem. There are several methods that can be used to reconstruct discrete 3D models
with continuous representations. These reconstruction methods include using patch-based
modelling approaches such as Bézier, B-spline, Non-Uniform Rational B-Splines (NURBS),
ordinary differential equation (ODE), and partial differential equation (PDE). Among them,
Bézier-, B-spline-, and NURBS-based reconstruction has been developed in [19–23].

ODE-based modelling [24–26] uses the solution of a vector-valued ODE to create a 3D
curve, and then sweeps the 3D curve along two boundary curves subject to continuous
requirements to create 3D models. Since the solution to ODEs may involve complicated
mathematical functions such as sine and cosine functions and/or their combinations with
other mathematical functions, a single ODE patch has the potential to create a more
complicated shape than polygon modelling and a single Bézier, B-spline, and NURBS patch
with the same number of design variables. A simple example is given by the different
mathematical representations of a circle. When using sine and cosine functions to represent
the circle, only one design variable, i.e., the radius of the circle, is involved. Clearly, polygon
modelling, Bézier, B-spline, and NURBS cannot use one design variable to create the circle.

Similar to ODE-based modelling, PDE-based modelling [27–31] uses the solution
of a vector-valued PDE subjected to boundary constraints to create 3D models. It was
reported in [32] that for an original femur polygon mesh with a size of 3.2 MB, the NURBS
approximation reduces the size to 0.55 MB, and the analytical PDE approximation reduces
the size to 0.26 MB, indicating that analytical PDE-based modelling can significantly
reduce design variables in comparison with polygon modelling and other patch-based
modelling techniques.

PDE-based modelling, without considering the effects of acceleration and velocity, is
called static PDE-based modelling. It has been well-investigated. For objects in motion, the
effects of acceleration and velocity are considered in physics-based modelling. When PDE-
based modelling is used to deal with these situations, the effects of acceleration and velocity
are involved in PDEs, and the corresponding PDE-based modelling is called dynamic PDE-
based modelling. Although much work has investigated PDE-based modelling, few of them
are about dynamic PDE-based modelling. We have not found any work which integrates
dynamic PDEs with PBD to reconstruct dynamic 3D models obtained from PBD simulations.
Apart from the advantage of the dynamic PDE-based modelling in reducing the number of
design variables, 3D models reconstructed from dynamic PDE-based modelling are time-
dependent. By setting the time variable involved in mathematical expressions defining
dynamic 3D models to different values, some keyframes simulated by PBD can be replaced
by those generated with the corresponding dynamic PDE-based modelling. In doing
so, some PBD simulation calculations can be avoided and PBD simulation efficiency can
be improved.
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Motivated by the above discussions, this paper will combine the fourth-order ordinary
differential equation, describing the bending deformations of elastic beams, with Newton’s
second law of motion, which describes the underlying physics of object movements, to
achieve physics-based dynamic simulation while avoiding heavy numerical calculations of
physics-based simulations.

The remaining parts of this paper will be organised as follows. Related work will be
reviewed in Section 2. Deformation simulation with PBD will be introduced in Section 3.
The mathematical model and its closed-form solution will be investigated in Section 4.
Experimental examples and comparisons will be made in Section 5. Conclusions and future
work will be discussed in Section 6.

2. Related Work

The work carried out in this paper is related to shape deformations and parametric
surface-based 3D reconstruction, and continuous ODE and PDE based modelling. In this
section, we briefly review the existing work in these areas.

2.1. Shape Deformations

Shape deformations can be achieved through manual creation or automatic generation.
The aim of this paper is to integrate PBD and PDE, and PBD automatically generates shape
deformations. Therefore, in this subsection, we review automatic shape deformation gener-
ation methods, which can be divided into geometric, data-driven and physics-based ones.

Geometric shape deformations relate skin shape changes to the underlying skeleton move-
ments. Among various geometric shape deformation methods, Linear Blend Skinning [1]
is most popular due to its efficiency and simplicity. Unfortunately, it has the artefacts of
collapsing joints and candy-wrapper effects, etc. In order to overcome these artefacts, Dual
Quaternion blending [2] was proposed. Although it eliminates the artefacts of collapsing
joints and candy-wrapper effects, it causes a new problem called joint-bulging artefact. The
Delta Mush algorithm [3] treats skinning as a problem of smoothing the low-frequency
geometry while preserving detail to avoid manual weight painting, which is required in
existing geometric skinning methods. Since the Delta Mush algorithm involves heavy
iterative calculations, the Direct Delta Mush algorithm [4] was proposed to improve the
efficiency and control of the Delta Mush algorithm at the cost of high storage requirements.
In order to tackle this problem, a compression method was introduced into the Direct Delta
Mush algorithm in [5] to reduce its storage and run-time computing costs.

Geometric shape deformation methods are simple, efficient, easily controllable, and
suitable for the applications requiring high performance. However, they are less capable of
creating realistic shape changes.

Data-driven shape deformations are proposed to improve the realism of shape changes.
They treat the problem as a general data regression that learns the relationship between
shape changes and skeleton movements from example shapes. Pose Space Deformation
(PSD) [6] improves shape interpolation by representing shape changes as mappings from a
pose space defined by a skeleton or a more abstract system of parameters to displacements.
PSD requires a large amount of memory and is not suitable for use in interactive systems.
This problem was tackled in [7] by fitting the parameters of a deformation model to best
approximate the example data. The method proposed in [8] automatically extracts linear
blending skinning by learning from a set of example poses. In recent years, machine
learning has been introduced into data-driven methods. In [9], mesh deformations were
split into linear and non-linear ones. The transformations of the skeleton underlying the
mesh were used to determine the linear deformations, and deep learning was used to
approximate remaining non-linear deformations. RigNet [10] predicted a skeleton to match
an input 3D articulated character model and estimated surface skin weights by learning
example data in a dataset.



Mathematics 2022, 10, 821 5 of 24

Data-driven methods can create realistic shape changes when example shapes are
sufficient and high-quality example shapes are obtained. The main weakness of data-driven
methods is the preparation of many high-quality example shapes.

Physics-based shape deformations are introduced to tackle the problem of geometric
methods in creating less realistic shapes and address the weakness of data-driven methods
in requiring enough high-quality example shapes. Various physics-based shape deforma-
tion models have been developed as reviewed in [11]. Among these models, the three most
important physics-based deformable models are mass-spring systems, the finite element
method (FEM), and finite volume method. In [12], a mass-spring system of a facial muscle
model was developed. For the simulation of elastic and elastoplastic fracturing materi-
als, FEM is more effective and can generate more realistic results [13]. The finite volume
method [14] employs a divergence-free vector field, representing solid shape deformations
without losing self-interactions or features.

Due to the consideration of underlying physics, physics-based methods can create
more realistic shape changes than geometric methods. However, due to the expensive cost
involved in numerical calculations of physics-based methods, various physics-based ap-
proaches are mainly applied in movies and other applications requiring good realism. Since
computer games require both high efficiency and good realism, physics-based methods are
not ideal for computer games.

Position-based dynamics makes a good compromise between realism and efficiency. It is
initially proposed for solid simulation, such as cloth simulation [15]. Since bending con-
straints are determined by the dihedral angle rather than edge lengths, they and stretching
constraints are separated into two independent parameters. Müller et al. have used this
method to generate robust cloth simulation with high controllability. Macklin et al. have
presented an alternative approach to simulate fluids in the PBD framework [16] by mod-
elling the fluids as a particle system. Each particle is constrained by a minimum distance
from others. Compared with force-based fluids simulation, the method of position-based
fluids uses a larger time step with a comparable result, which significantly reduces the
computation cost. Besides the particle-based models, the position-based method has also
been applied in rigid body simulation by solving constraints between rigid bodies [17].

This paper will take advantage of position-based dynamics in making a good com-
promise between realism and efficiency but tackle its weakness caused by discrete rep-
resentations. Our approach is to obtain detailed deformation shapes at a few keyframes
with position-based dynamics, use our proposed dynamic reconstruction to convert the
discrete representations of the detailed deformation shapes into continuous representa-
tions, and create more deformation shapes with the same details from the continuous
representations to reduce the number of design variables and raise simulation efficiency of
position-base dynamics.

2.2. Parametric Surfaces-Based Reconstruction

In existing research studies, polygonal, implicit, and parametric surfaces have been
used in 3D reconstruction. Here we review existing works on parametric surface-based
reconstruction techniques, including Bézier, B-spline, and NURBS surfaces, which can be
more easily represented with analytical mathematical expressions.

Bézier surfaces were used to reconstruct the 3D model of a broken blade in [19]. Bézier
and B-splines techniques were introduced in [20–22]. Bézier surfaces have the weakness
that they cannot be modified locally, and the local modification of control points will affect
the shape of the entirety of all the Bézier surfaces. Besides, the polynomial order of Bézier
surfaces is related to the number of vertices, which makes it not flexible to manipulate the
whole surface, and as larger vertices number leads to higher polynomial order, the polygon
control over the shape of the curve will be significantly weakened. Hence, to overcome the
weakness of the Bezier surface technique, the B-splines surface method was developed to
provide local modification of the surface. In addition, B-splines have the advantages that
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the polynomial degree of a B-spline can be independent of the number of control points.
When the degree is lower, the B-spline curve follows the control polyline more closely.

However, both Bézier and B-splines have some limitations, such as the incapability
in accurately representing conics and complicated shapes, whilst NURBS do not have
these limitations, as discussed in [21,23]. They have become an industry standard and
been included in various geometric modelling and computer graphics software packages
due to their generality, the same excellent properties as B-splines, and incorporation in
international standards.

Bézier, B-spline, and NURBS functions are constructed using polynomials. In contrast,
the solutions to ODEs and PDEs may contain complicated mathematical functions, which
will be introduced in Section 2.3. Due to this reason, a single Bézier, B-spline, and NURBS
patch may not be as capable as a single ODE or PDE patch in creating a complicated shape.

2.3. ODE and PDE Based Modelling

Since ODEs and PDEs are widely used in science and engineering to describe under-
lying physics, ODE- and PDE-based geometric modelling is physics-based. Like Bézier,
B-spline, and NURBS surfaces, which have been used in 3D reconstruction, ODE and PDE
surfaces can also be used in 3D reconstruction. Here we briefly review some work in ODE-
and PDE-based modelling.

ODE-based modelling sweeps a curve defined by the solution to a vector-valued ODE
along two boundary curves subject to continuity constraints on boundary curves to create an
ODE surface. Various ODE-based modelling methods have been developed. For example,
ODE-based sweeping surfaces were proposed in [24], ODE-based surface blending was
investigated in [25], and ODE-based skin deformations were discussed in [26]. Since
solving an ODE is easier than solving a PDE, ODE-based modelling is easier than PDE-
based modelling. One weakness of ODE-based modelling is the difficulty of manipulating
ODE sweeping surfaces since the manipulation is carried out on curves.

PDE-based modelling uses the solution to a vector-valued PDE subject to given boundary
constraints to define a PDE surface. PDE-based modelling has received a lot of research
attention. Here we briefly review some work on PDE-based modelling using continuous
PDE surfaces defined with analytical solutions to PDEs. PDE-based modelling of free form
surfaces was pioneered in [27], where a vector-valued fourth-order PDE with one shape
control parameter was used. Then it was used to develop the technique of interactive
design [28] and achieve PDE surface-based reconstruction [29]. The current state in PDE-
based modelling is analytical PDE-based skin deformation [30] and real-time PDE surface
manipulation [31].

Although there has been much work on PDE-based modelling using continuous PDE
surfaces and PDE surface-based reconstruction has also been investigated, few research
studies investigate dynamic PDE-based modelling. To the best of our knowledge, we are
unaware of any work that integrates dynamic PDE-based modelling and PBD simulation
to reconstruct dynamic 3D models.

In this paper, a physics-based dynamic model represented with PDE will be developed
from the governing equation for the bending deformations of elastic beams and Newton’s
second law for object motion. The separation of variables will be used to transform a PDE
into two ODEs. The closed-form solutions to the two ODEs will be obtained to achieve the
dynamic reconstruction of deformed 3D models at different keyframes.

3. Deformation Simulation with Position-Based Dynamics

Position based dynamics (PBD) methods were developed for specific use in interactive
environments. Unlike the traditional simulation methods for dynamic scenes using the force
to represent the momentum change and calculate the position of each vertex, position-based
approaches directly focus on the position alteration, omitting the velocity and acceleration.
Compared with force-driven techniques, PBD has advantages of simplicity, efficiency, and
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robustness [33]. Due to these advantages, they have become very popular in computer
graphics and the gaming industry in recent years.

3.1. The Development of PBD

Due to its high efficiency, position-based dynamics has been widely applied in the
graphics field, recently including computer games. Müller et al. first introduced Position-
Based Dynamics as a generalised framework capable of solving a large variety of con-
straints [15]. They demonstrated PBD applications on many types of deformable solids.
Unlike the physics-based skin deformation methods, these methods use the solution of a
quasi-static problem to calculate each timestep’s position change directly. When using an
explicit time integration scheme, it avoids the issues of force-based simulation models like
overshooting. They are more appropriate when computing object interaction due to their
versatility, robustness, controllability, and efficiency.

Nevertheless, as they do not satisfy underlying physics laws, position-based ap-
proaches are only plausible in vision and have problems such as the failure in converging
to a particular solution. To speed up the convergence brought by the Gauss–Seidel-type
manner of the PBD solver in early work, a multi-grid-based strategy was used to process
general non-linear constraints [34], which makes the simulation process more suitable
for interactive applications such as computer games. To obtain a more complex physical
phenomenon, Bender et al. proposed a continuum-based formulation and regarded strain-
energy as a constraint function for the PBD solver [35]. Besides, the previous PBD methods
suffer from a longstanding problem: constraints can become arbitrarily stiff because of the
iteration count and time step. In order to address this problem, Macklin et al. introduced
the XPBD method, which uses a new constraint formulation and the Lagrange multiplier for
solving constraints in a time step and iteration count independent manner [36]. A thorough
overview of various PBD methods has been made in [33]. Volume conservation among
all collision constraints plays a significant role in the dynamic simulation of deformable
bodies, especially for the simulation of tetrahedral meshes, such as the horse model used
in this paper where a constraint to conserve the volume of a single tetrahedron has to be
considered. It has been addressed in [37,38].

3.2. PBD Algorithm Overview

The overview of the PBD algorithm in [15] could be roughly considered as a loop with
the following four steps for each timestep ∆t:

1. Get the initial attributes of vertices of the mesh, including the initial coordinates x0,
velocity v0, and weight w = 1/ m (m denotes the mass of the vertex);

2. Each vertex will update its velocity v as well as its predicted position p by the external
force fext according to the following formula:

v = v0 + ∆tfextw
p = x0 + ∆tv

3. After the predicted position p has been gained, add constraints, including collisions,
volume conservation, cloth balloons, and so on. The position p will be directly
modified to p′ with a group of iterations:

p′ = projectConstraints(C1, . . . , CM, p1, . . . , pN)

where M stands for the number of constraints and N denotes the solver iteration
number;

4. Finally, the position change ∆p = p′ − x0 will be reused to calculate the attributes v1

and x1:
v1 = ∆p / ∆t

x1 = p′
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where x1 and v1 will be used as the initial information of the vertices in the loop of
the next timestep.

3.3. Our PBD Simulation Experiment

The software library “PositionBasedDynamics” was developed from position-based
dynamics by Bender et al. for the physically-based simulation of rigid bodies, deformable
solids, and fluids. It is available from the link given in [18]. In this subsection, we use it to
obtain the PBD simulation results of deforming a horse model on an Intel i7 6700 CPU with
a clock rate of 3.4 GHz for use in the following Section 5 by our proposed approach.

After checking all examples in the package, we finally chose the SceneLoaderDemo as
our simulation environment as it allows us to use custom models with plausible deforma-
tion results. We first use tetGenerator to create the tetrahedral data of a curve-based horse
model. Then, we input both the horse model and its corresponding tetrahedral files into
the program to generate 100 sequential keyframes and obtain the deformation animation.

Figure 2 shows the results of the PBD simulation. As could be seen, the neck part has
been significantly deformed with torsion and stretching. In what follows, we will propose
a PDE-based modelling algorithm to reduce design variables in Sections 4 and 5 below.
Besides, we will extend the functionality of the proposed PDE-based modelling algorithm
in reducing design variables to the replacement of some PBD simulation calculations in our
future work. With the improved algorithm, the computational time of PBD simulation will
be shortened.
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4. Mathematical Model and Closed-Form Solution

In the field of geometric modelling and computer animation, physics-based methods
are developed to improve simulation realism. As stated in [39,40], physics-based modelling
has improved the realism of animated objects and physics-based models provide realistic
3D geometry of the bones and muscles.

Newton’s second law has been used to develop physics-based dynamic simulations
for computer animation, etc., in existing research studies. Although Newton’s second law
actually applies only to particles [41], it was also used to describe shape changes of 3D
models such as in [42,43] to describe deformations of 3D facial models, in [44] to simulate
soft tissue deformation for virtual surgery applications, in [45] to describe dynamics of
facial tissues, and in [46] to describe dynamic deformations of cloth motion. In this paper,
Newton’s second law will also be introduced to develop a physics-based method.

A surface can be generated by sweeping a curve. Similar to existing methods that
use Newton’s second law to simulate surface deformations, Newton’s second law can
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be used to describe curve deformations. Newton’s second law only applies to particles.
When discretizing a curve into points, each point is treated as a particle. When using
Newton’s second law to simulate movements of these points, each of the points moves
independently. This does not conform with the fact that the points defining a curve cannot
move independently. Curve deformations are similar to beam deformations. Therefore,
introducing the governing equation of beam deformations into Newton’s second law can
tackle the problem that the points defining a curve move independently when simulating
their movements with Newton’s second law only.

For physics-based modelling, achieving good realism requires accurate models, which
involves heavy numerical calculations leading to low efficiency. In order to obtain a good
balance between realism and efficiency, simplified physics-based models are usually used
in computer animation and computer games, etc. For example, soft tissues are simplified
as an isotropic and linear elastic material in [47] for finite element simulations of anatomy-
and physics-based facial animation, although they have anisotropic, nonhomogeneous,
and non-linear elastic mechanical behaviours. With the same treatment, we will simplify
deformations of 3D models as isotropic and linear elastic and use Young’s modulus to
describe their mechanical properties in this paper.

Based on the above discussions, we integrate Newton’s second law of motion and the
governing equation for bending deformations of elastic beams to develop a new mathemat-
ical model, obtain the closed-form solution of the mathematical model, and combine the
closed-form solution with position-based dynamics to develop a dynamic reconstruction
method for reconstructing dynamic 3D models with small data.

As discussed above, Newton’s second law of motion has been applied in computer
animation, etc., to develop physics-based dynamic simulations [42]. It describes the rela-
tionship between the product of the mass and acceleration of an object and the external
forces acting on the object, i.e.,

ma = f (1)

When considering the bending deformation of an elastic beam, the governing equation
is [48]:

EI
d4w
dx4 = f (2)

where EI denotes the flexural rigidity and w(x) describes the deflection of the beam.
Combining (1) and (2), we have:

ma = EI
d4w
dx4 (3)

As derived in Appendix A, the mathematical model for reconstructing dynamic 3D
models can be obtained from Equation (3) and has the following form:

m
∂2w
∂t2 = D

∂4w
∂u4 (w = x, y, z) (4)

In order to solve the above PDE, we use the method of separation of variables [49] to
solve Equation (4). As derived in Appendix B, the closed-form solutions to Equation (4)
can be written as the following four forms:

For the case cw0/m > 0 and cw0/D > 0:

w(u, t) = cw1emw0t eDw0u + cw2emw0te−Dw0u + cw3emw0tcosDw0u
+cw4emw0tsinDw0u + cw5e−mw0teDw0u + cw6e−mw0te−Dw0u

+cw7e−mw0tcosDw0u + cw8e−mw0tsinDw0u
(w = x, y, z)

(5)
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For the case cw0/m > 0 and cw0/D < 0:

w(u, t) = cw1emw0t eDw1ucosDw1u + cw2emw0teDw1usinDw1u
+cw3emw0te−Dw1ucosDw1u + cw4emw0te−Dw1usinDw1u
+cw5e−mw0teDw1ucosDw1u + cw6e−mw0teDw1usinDw1u
+cw7e−mw0te−Dw1ucosDw1u + cw8e−mw0te−Dw1usinDw1u

(w = x, y, z)

(6)

For the case cw0/m < 0 and cw0/D > 0:

w(u, t) = cw1cos (mw0t)eDw0u + cw2cos(mw0t)e−Dw0u

+cw3cos(mw0t)cos(Dw0u) + cw4cos(mw0t)sin(Dw0u)
+cw5sin(mw0t)eDw0u + cw6sin(mw0t)e−Dw0u

+cw7sin(mw0t)cos(Dw0u) + cw8sin(mw0t)sin(Dw0u)
(w = x, y, z)

(7)

For the case cw0/m < 0 and cw0/D < 0:

w(u, t) = cw1cos (mw0t)eDw1ucosDw1u + cw2cos(mw0t)eDw1usinDw1u
+cw3cos(mw0t)e−Dw1ucosDw1u
+cw4cos(mw0t)e−Dw1usin(Dw1u)
+cw5sin(mw0t)eDw1ucosDw1u
+cw6sin(mw0t)eDw1usinDw1u
+cw7sin(mw0t)e−Dw1ucos(Dw1u)
+cw8sin(mw0t)e−Dw1usin(Dw1u)

(w = x, y, z)

(8)

All the four Equations (5)–(8) can be used to reconstruct dynamic 3D models. In
order to reconstruct dynamic 3D models using one of the four Equations (5)–(8), we first
extract curves from the 3D models at the undeformed position called the first keyframe
(j = 0), and different deformation positions called jth (1 < j ≤ J) keyframe. For each of the
extracted curves, we find the minimum values xmin, ymin, and zmin and maximum values
xmax, ymax, and zmax of the x, y, and z components for all the N + 1 points on the curve
with the following equations:

wmin = min
{

w0 w1 · · · wN−1 wN
}

wmax = max
{

w0 w1 · · · wN−1 wN
}

(w = x, y, z)
(9)

Having obtained the minimum values xmin, ymin, and zmin and maximum values xmax,
ymax, and zmax of the x, y, and z components for all the N + 1 points on the curve, we use
the following equation to obtain the parametric values of the nth point on the curve:

un = wn−wmin
wmax−wmin

(w = x, y, z; n = 0, 1, 2, . . . , N)
(10)

When Equations (5)–(8) are used to reconstruct more than one curve, each curve to
be reconstructed has its own parametric values of un according to Equation (10), which
may be different from each other. In Equations (5)–(8), un must be the same value at the
corresponding points of different curves to be reconstructed. In such a case, an average
value of un at the corresponding points of different curves is used in Equations (5)–(8).

If we use one of the four Equations (5)–(8) to reconstruct the dynamic models at
J keyframes, the time variable t takes the value tj = j/J where J is the total number
of keyframes.

At the nth point of the jth keyframe, the position components of the point are wj,n
obtained from the position-based dynamics. The position components calculated with
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one of Equations (5)–(8) are w
(
un, tj

)
. If the dynamic models are accurately reconstructed,

we have w
(
un, tj

)
= wj,n. If the dynamic models are not accurately reconstructed, we

minimise the squared error sum between w
(
un, tj

)
and wj,n for all the N + 1 points on the

J + 1 keyframes, i.e., minimise.

Ew =
J

∑
j=0

N
∑

n=0

[
w
(
un, tj

)
− wj,n

]2
(w = x, y, z)

(11)

In what follows, we take Equation (5) as an example to demonstrate how to reconstruct
dynamic 3D models.

Substituting Equation (3) into Equation (11), we obtain the squared error sum:

Ew =
J

∑
j=0

N
∑

n=0

[
cw1emw0tj eDw0un + cw2emw0tj e−Dw0un + cw3emw0tj cosDw0un

+cw4emw0tj sinDw0un + cw5e−mw0tj eDw0un + cw6e−mw0tj e−Dw0un

+cw7e−mw0tj cosDw0un + cw8e−mw0tj sinDw0un − wj,n

]2

(w = x, y, z)

(12)

In the above equation, cwi(i = 1, 2, . . . , 8) are unknown constants, which can be op-
timised to minimise the squared error sum. To do this, we use the least squares method,
which leads to the following equation:

∂Ew
∂cwi

= 0 (i = 1, 2, . . . , 8)
(w = x, y, z)

(13)

If we let,

fw =
[
cw1emw0tj eDw0un + cw2emw0tj e−Dw0un + cw3emw0tj cosDw0un

+cw4emw0tj sinDw0un + cw5e−mw0tj eDw0un

+cw6e−mw0tj e−Dw0un + cw7e−mw0tj cosDw0un

+cw8e−mw0tj sinDw0un − wj,n

]
(w = x, y, z)

(14)

Equation (12) becomes:

Ew =
J

∑
j=0

N
∑

n=0
( fw)

2

(w = x, y, z)
(15)

and Equation (13) is changed into:

∂E
∂cwi

= 2
J

∑
j=0

N
∑

n=0
fw

∂ fw
∂cwi

= 0 (i = 1, 2, . . . , 8)

(w = x, y, z)
(16)

Equation (16) consists of eight linear equations, which can be solved to determine the
eight unknown constants cwi (i = 1, 2, . . . , 8). Substituting the obtained eight unknown
constants cwi (i = 1, 2, . . . , 8) into Equation (5), Equation (5) becomes the mathematical
expressions of the reconstructed curves at the (J + 1) keyframes. All the curves of 3D
models described by Equation (5) define the reconstructed 3D models.

As discussed in Section 2, Bézier, B-splines, and NURBS surfaces are frequently
used to reconstruct the 3D models that do not change their positions and shapes with
time. In this paper, such a type of reconstruction is called static reconstruction. In the
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following section, we compare our proposed dynamic reconstruction with Bézier and
B-spline static reconstruction.

The mathematical equation of Bézier curves can be written as [50]:

w(u) = ∑k
i=0

k!
i!(k− i)!

ui(1− u)k−iPwi (w = x, y, z) (17)

Using Equation (17) and the least squares method to reconstruct one curve defined by
wj,n is to solve the following linear equations:

∂E
∂Pwm

= ∂
∂Pwm

∑N
n=0

(
∑k

i=0
k!

i!(k−i)! u
i(1− u)k−iPwi − wj,n

)2
=

∑N
n=0

[
2
(

∑k
i=0

k!
i!(k−i)! u

i(1− u)k−iPwi − wj,n

)
k!

m!(k−m)! u
m(1− u)k−m

]
= 0

(w = x, y, z; j = 0, 1, 2, . . . ; m = 0, 1, 2, . . . , k)

(18)

The mathematical equation of B-spline curves can be written as [51]:

w(u) = ∑k
i=0 Ni,q(u)Pwi (w = x, y, z) (19)

where

Ni,q(u) =
{

1 ui ≤ u ≤ ui+1
0 otherwise

(20)

Ni,q(u) =
u− ui

ui+q − ui
Ni,q−1(u) +

ui+q+1 − u
ui+q+1 − ui+1

Ni+1,q−1(u) (21)

Same as above, using Equation (19) and the least squares method to reconstruct one
curve defined by wj,n is to solve the following linear equations:

∂E
∂Pwm

= ∂
∂Pwm

∑N
n=0

(
∑k

i=0 Ni,q(u)Pwi − wj,n

)2
= ∑N

n=0

[
2
(

∑k
i=0 Ni,q(u)Pwi−

wj,n
)

Nm,q(u)
]
= 0

(w = x, y, z; j = 0, 1, 2, . . . ; m = 0, 1, 2, . . . , k)

(22)

In the following section, we will use Equations (5), (17), and (19) to reconstruct the
same curves. The computational errors and time will be compared among them to validate
our proposed dynamic reconstruction method.

5. Reconstruction of Dynamic 3D Models
5.1. Comparison with Bézier and B-Spline Static Representations

In this section, we compare our proposed dynamic reconstruction method with Bézier
and B-spline static reconstruction and give some examples to demonstrate the capacity of
the proposed method in reconstructing complicated curves and its advantage in greatly
reducing design variables through comparing the reconstructed curves with the original
points used in the reconstruction. After that, we give two examples of reconstructing a 3D
horse model and an armadillo model with the proposed method.

The proposed method is applicable to situations where the curves from two or more
keyframes are used in Equation (5) to determine the eight unknown constants for dynamic
curve reconstruction. In this paper, we consider the situation where only two curves,
one from the first one and another from the second one of two keyframes, are used in
Equation (5) to determine the eight unknown constants for dynamic curve reconstruction.
For the comparison, two mathematical equations of Bézier curves defined in Equation (17)
and two mathematical equations of B-spline curves defined in Equation (19) are used to
reconstruct the same two curves.

The first example reconstructs a closed curve and its open version at the 20th frame
and the 100th frame with our proposed dynamic reconstruction and Bézier and B-spline
static reconstruction. Our proposed dynamic reconstruction method reconstructs the
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two curves: one at the 20th frame and the other at the 100th frame, with eight vector-
valued design variables involved in one of the Equations from (5)–(8). In order to make
the comparison fair, we use the same parametric values un in our proposed dynamic
reconstruction and Bézier and B-spline static reconstruction with four vector-valued design
variables (coefficients), i.e., k = 3 in Equations (17) and (19), leading to cubic Bézier and
uniform cubic B-spline equations, to reconstruct each of the two curves. In total, eight
design variables are involved in Bézier and B-spline static reconstruction. For the curve
from the 20th keyframe, tj = t0 = 0 in Equation (5). For the 100th keyframe, tj = tJ = 1
in the same equation. Two Bézier equations defined in Equation (17) and two B-spline
equations defined in Equation (19) are used to reconstruct the curve at the 20th frame and
the curve at the 100th frame, respectively. The average and maximum errors between the
points on the original curves and the corresponding points on the reconstructed curves are
calculated with the following equations:

Eaj =
1

N+1

N
∑

n=0

djn

djn

Emj = max
{

dj0

dj0

dj1

dj1
· · · djN

djN

djN

djN

}
(j = 0, 1)

(23)

where
djn =

√[
fx
(
tj, un

)]2
+
[

fy
(
tj, un

)]2
+
[

fz
(
tj, un

)]2
djn =

√
xj,n

2 + yj,n
2 + zj,n

2

(j = 0, 1)

(24)

and fx
(
tj, un

)
, fy
(
tj, un

)
, and fz

(
tj, un

)
are determined by Equation (14) for our proposed

dynamic reconstruction and the differences between the known wj,n and the corresponding
ones obtained from Equation (17) for Bézier reconstruction and from Equation (19) for
B-spline reconstruction.

The original and reconstructed curves are shown in Figure 3 where the curves shown
on the left of (a), (b), (c), (d), (e), and (f) are open curves, the curves shown on the right of
(a), (b), (c), (d), (e), and (f) are closed curves, and “PDE” stands for our proposed dynamic
reconstruction method. In the figure, (a) shows the original curves at the 20th frame and
100th frame, (b) is the reconstructed curves with our proposed dynamic reconstruction
method, (c) gives the reconstructed curves with Bézier static reconstruction, (d) shows the
reconstructed curves with B-spline static reconstruction, (e) depicts the original curves and
reconstructed ones at the 20th frame with our proposed dynamic reconstruction method
and Bézier and B-spline static reconstruction, and (f) indicates the original curves and
reconstructed ones at the 100th frame with our proposed dynamic reconstruction method
and Bézier and B-spline static reconstruction. The original curves depicted in Figure 3a
have complicated shapes. In spite of this, Figure 3e,f show the reconstructed curves with
our proposed method approximate the original ones well. Figure 3e,f also show the recon-
structed curves with our proposed method look the same as those reconstructed with Bézier
and B-spline methods. In some local regions, they are slightly closer to the original curves
than those reconstructed with B-spline and Bézier methods. Our proposed reconstruction
method only involves eight vector-valued unknown constants, which are 5.7% of the design
variables of the original curves. It indicates that the proposed method has a strong ability
in reconstructing complicated open and closed curves with few design variables.



Mathematics 2022, 10, 821 14 of 24

Mathematics 2022, 10, x FOR PEER REVIEW 14 of 25 
 

 

Figure 3a have complicated shapes. In spite of this, Figure 3e,f show the reconstructed 
curves with our proposed method approximate the original ones well. Figure 3e,f also 
show the reconstructed curves with our proposed method look the same as those recon-
structed with Bézier and B-spline methods. In some local regions, they are slightly closer 
to the original curves than those reconstructed with B-spline and Bézier methods. Our 
proposed reconstruction method only involves eight vector-valued unknown constants, 
which are 5.7% of the design variables of the original curves. It indicates that the proposed 
method has a strong ability in reconstructing complicated open and closed curves with 
few design variables.  

  
(a) (b) 

   
(c) (d) 

 
(e) (f) 

Figure 3. Original and reconstructed curves with 71 points at 20th and 100th frames. (a) Original 
curves at 20th, 100th frames. (b) PDE reconstructed curves at 20th, 100th frames. (c) B-spline recon-
structed curves at 20th, 100th frames. (d) Bézier reconstructed curves at 20th, 100th frames. (e) Orig-
inal, PDE, B-spline, and Bézier curves at 20th frame. (f) Original, PDE, B-spline, and Bézier curves 
at 100th frame. 

Table 2 gives a comparison of the number of design variables and average and max-
imum errors among the original curves and the reconstructed curves with our proposed 
dynamic reconstruction and Bézier and B-spline static reconstruction. The table also com-
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Figure 3. Original and reconstructed curves with 71 points at 20th and 100th frames. (a) Original
curves at 20th, 100th frames. (b) PDE reconstructed curves at 20th, 100th frames. (c) B-spline
reconstructed curves at 20th, 100th frames. (d) Bézier reconstructed curves at 20th, 100th frames.
(e) Original, PDE, B-spline, and Bézier curves at 20th frame. (f) Original, PDE, B-spline, and Bézier
curves at 100th frame.

Table 2 gives a comparison of the number of design variables and average and maxi-
mum errors among the original curves and the reconstructed curves with our proposed
dynamic reconstruction and Bézier and B-spline static reconstruction. The table also com-
pares the computational time (CPU) used in reconstructing the curves. In the table, OC and
CC indicate open curves and closed curves, respectively. PM is the total number of points
on the two curves obtained from the 20th and 100th keyframes. PBB is the total number of
vector-valued coefficients involved in Equation (5) and the total number of vector-valued
coefficients used to reconstruct the two curves at the 20th and 100th frames with Equations
(17) and (19). EA1 and Em1 are the average error and maximum error between the original
and reconstructed curves at the 20th keyframe, EA2 and Em2 are the average error and
maximum error between the original and reconstructed curves at the 100th keyframe, EA12
is the average value of the average errors at the 20th and 100th keyframes, Em12 is the
bigger one of the maximum errors at the 20th and 100th keyframes, and all the errors in
the table are multiplied by 10−3. The average errors EA1 and EA2 and maximum errors Em1
and Em2 are determined by the first one and second one of Equation (23), respectively.

Table 2. Design variables, errors (×10−3), and computational time (CPU) for reconstruction shown
in Figure 3.

PM PBB EA1 EA2 EA12 Em1 Em2 Em12 CPU (ms)

PDE OC 140 8 4.641821 3.811424 4.226623 71.60692 7.954821 71.60692 5.7532
B-spline OC 140 8 4.631861 3.813969 4.222915 79.84222 7.796782 79.84222 3.3210
Bézier OC 140 8 4.631861 3.813969 4.222915 79.84222 7.796782 79.84222 2.8257
PDE CC 142 8 4.624602 3.810121 4.217362 71.00726 7.620819 71.00726 5.8322
B-spline CC 142 8 4.615302 3.811597 4.213450 71.01385 7.470214 71.01385 3.5928
Bézier CC 142 8 4.615302 3.811597 4.213450 71.01385 7.470214 71.01385 2.9644
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The data shown in Table 2 indicate that both average errors and maximum errors from
our proposed dynamic reconstruction method are small and almost same as those from
Bézier and B-spline static reconstruction except for the maximum error for the open curve.
The results from Bézier and B-spline static reconstruction are exactly the same. For the
open curve, the maximum error from our proposed method is 71.60692, which is smaller
than the maximum error from Bézier and B-spline static reconstruction at 79.84222. The
computational time of our proposed dynamic reconstruction method is approximately
two times that of Bézier static reconstruction and from 1.6–1.7 times that of B-spline
static reconstruction.

The curve at the 20th frame and the corresponding curve at the 100th frame used in the
above reconstruction are far away. In spite of this, our proposed dynamic reconstruction
method still gives good reconstruction accuracy. When the two frames are closer, the
errors can be significantly reduced. Here, we use two adjacent frames shown in Figure 4
to demonstrate this. The two adjacent frames used in this example are the 37th and
38th. The obtained results are given in Figure 4, which are organised in the same way as
Figure 3. Figure 4e,f also clearly show that the reconstructed curves from our proposed
dynamic reconstruction and Bézier and B-spline static reconstruction are very close to the
original curves.
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The average and maximum errors caused by our proposed dynamic reconstruction
and Bézier and B-spline static reconstruction are given in Table 3. In the table, all the
errors are multiplied by 10−4. The average errors caused by our proposed dynamic recon-
struction are very small and slightly larger than those caused by Bézier and B-spline static
reconstruction. The maximum errors of our proposed dynamic reconstruction are much
smaller than those of Bézier and B-spline static reconstruction, i.e., 8.077028∼8.422275
against 80.48240∼80.73569 and 18.39898∼19.07610 against 80.82564∼81.08065. Once again,
the computational time of our proposed method is higher than Bézier and B-spline static
reconstruction, i.e., 1.9–2.01 times that of Bézier static reconstruction and 1.77–1.94 times
that of B-spline static reconstruction.

Table 3. Design variables, errors (×10−4), and computational time (CPU) for reconstruction shown
in Figure 4.

PM PBB EA1 EA2 EA12 Em1 Em2 Em12 CPU (ms)

PDE OC 132 8 2.638812 3.142145 2.890479 8.422275 19.07610 19.07610 5.4184
B-spline OC 132 8 2.172167 2.181193 2.176680 80.48240 80.82564 80.48240 3.0592
Bézier OC 132 8 2.172167 2.181193 2.176680 80.48240 8.082564 80.48240 2.6934
PDE CC 134 8 2.632932 3.169087 2.901010 8.077028 18.39898 18.39898 5.4873
B-spline CC 134 8 2.186633 2.195735 2.191184 80.73569 81.08065 81.08065 3.1072
Bézier CC 134 8 2.186633 2.195735 2.191184 80.73569 81.08065 81.08065 2.8346

The above discussions indicate that the errors caused by our proposed dynamic
reconstruction method are almost as small as those caused by Bézier and B-spline static
reconstruction. Bézier and B-spline static reconstruction do not involve the time variable
in the reconstruction functions and are not applicable to dynamic and time-dependent
reconstruction. In contrast, our proposed method can effectively tackle this problem.

Finally, we give two examples of reconstructing dynamic 3D models with our pro-
posed dynamic reconstruction and B-spline static reconstruction. Except that Bézier static
reconstruction is slightly faster than B-spline static reconstruction, Bézier static reconstruc-
tion gives the exactly results as B-spline static reconstruction. Due to this reason, Bézier
static reconstruction will not be considered in the following examples.

The first example is to reconstruct deformed shapes of a horse model at different
keyframes obtained from the simulations of position-based dynamics. To this aim, the
curves to be reconstructed are first extracted from undeformed polygon models. As
shown in Figure 5, the curves to be reconstructed shown in (b) are extracted from the
undeformed polygon horse model in (a). The original horse model has 15,389 vertices and
30,710 faces. Since each vertex has three components x, y, and z, the original horse model
has 46,167 design variables in total. To represent the horse model, 593 curves have been
extracted, and 4744 vector-value coefficients involved in Equation (5) are used to define
the 593 curves at two different keyframes. Since each vector-valued coefficient has three
components x, y, and z, the proposed method uses, in total, 14,232 unknown constants
(design variables) to reconstruct the horse model at two different keyframes. Although
the 593 curves are manually extracted, and the number of points on each of the extracted
curves has not been optimised to reduce the number of the extracted curves and accordingly
decrease the number of the unknown constants, the extracted curves still reduce more than
two-thirds of the design variables of the polygon horse model.

Figure 6 shows the original deformed models and the reconstructed ones with our
proposed method and B-spline method. In the figure, the “PDE model” is obtained from
our proposed dynamic reconstruction, the “B-spline model” is obtained with B-spline static
reconstruction, the images in the first and fourth rows are the original deformed models
obtained with PBD simulations, while those in the second and fifth rows are reconstructed
by our proposed dynamic reconstruction and the ones in the third row and sixth row are
reconstructed with B-spline static reconstruction. Comparing the original models in the first
and fourth rows to the reconstructed models with our proposed dynamic reconstruction in
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the second and fifth rows and B-spline static reconstruction in the third and sixth rows, we
could not find any visible differences. We have also calculated the average and maximum
errors between the reconstructed models obtained with the two methods and the original
deformed models. The average error and maximum error of using our proposed method
to reconstruct the first and tenth frames are 6.1746× 10−4 and 4.672209× 10−2, and the
average error and maximum error of using B-spline method to reconstruct these two
frames are 5.321225× 10−4 and 5.191078× 10−2. These data also indicate that our proposed
method and B-spline have almost same reconstruction accuracy. The average errors from
our proposed method and B-spline method are small as they are three to four orders of
magnitude lower than the differences between the maximum and minimum x, y, and z
coordinates. It indicates that the proposed method has good reconstruction accuracy.
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We have calculated the CPU time of using PBD to obtain the deformed shapes at
100 keyframes. In total, 6420 milliseconds were required in the PBD simulation. In contrast,
our proposed method takes 1827 milliseconds to reconstruct the deformed shapes at two
keyframes and generate 98 new deformed shapes between the two keyframes by setting
the time variable t in Equation (5) to 98 different values. Clearly, using our proposed
dynamic reconstruction to replace PBD simulations at some keyframes can reduce the time
of PBD simulations.

The second example is to reconstruct deformed shapes of an armadillo polygon model
at different keyframes obtained from the simulations of position-based dynamics. The
original armadillo model has 5182 vertices and 5180 faces, leading to 5182 vector-valued
design variables. In total, 196 curves were extracted to represent the armadillo model, and
1568 vector-value coefficients involved in Equation (5) are used to define the 196 curves
at two different keyframes. Once again, our proposed method reduces the vector-valued
design variables of the armadillo polygon model by more than two-thirds.

Figure 7 shows the original deformed shapes of the armadillo polygon model and
the reconstructed ones with our proposed method and B-spline method. Comparing the
original deformed shapes and those reconstructed with our method and B-spline method,
we could not find any visible differences. This example also indicates that our proposed
method has good reconstruction accuracy.
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5.2. Limitations of This Work

There are some limitations to the method proposed in this paper. Here, we identify
these limitations. In the following section, we discuss how to tackle these limitations.

The first limitation is that the extracted curves are not optimal. In this paper, the curves
used to represent the horse model were manually extracted without any optimization. This
has two problems. The first one is that some curves may have too few vertices, and
others may have too many vertices. Too few vertices cannot maximize the potential of
the proposed approach in reducing design variables. Too many vertices may lead to large
errors. The second one is that manually extracted curves are not proper in demonstrating
the advantage of the proposed approach in reducing design variables since it cannot
automatically increase or decrease the number of points on a curve according to a given
reconstruction error.

The second limitation is that the number and position of the keyframes have not been
optimized. In this paper, only the models from two keyframes are reconstructed. How many
keyframes and which keyframes are optimal for reconstruction have not been investigated.

The third limitation is that reconstructing dynamic 3D models subjected to a given
error threshold has not been examined. As it can be observed from Figures 3 and 4 and
the data in Tables 2 and 3, there are some reconstruction errors, which may not meet the
requirements of some applications where high accuracy is essential.

6. Conclusions and Future Work

In this paper, we have developed a new method to reconstruct dynamic 3D models
obtained from position-based dynamics simulation. We have integrated the governing
equation describing the bending deformations of elastic beams and Newton’s second law
describing object motion to develop the mathematical model for the reconstruction of
dynamic 3D models, used the separation of variables to obtain the closed-form solution
of the mathematical model, and applied the obtained closed-form solution to generate
reconstructed 3D models at different frames. We have also compared the reconstructed
curves to the original polygon vertices and those reconstructed with Bézier and B-spline
static reconstruction, and the reconstructed models with our method and B-spline method
to the original deformed models at different keyframes. These comparisons demonstrate
that the proposed method has good reconstruction accuracy and a small data size.

The work presented in this paper only used the closed-form solution of the proposed
mathematical model to reconstruct deformed models at different keyframes obtained from
the simulation of position-based dynamics. However, the proposed method can also be
used to create new deformed models at new frames by setting the time variable t to different
values between 0 ≤ t ≤ 1, which have not been generated with position-based dynamics.
With such applications, many keyframes simulated with position-based dynamics can
be replaced with the dynamic ODE-based simulation to reduce the computational time
spent on the simulation with position-based dynamics. We will investigate this in our
following work.

Secondly, we will investigate an automatic and optimal curve extraction method.
With this method, a curve reconstruction maximum error Emax is first specified. Subjected
to the limitation of Emax, the vertices for one curve are automatically identified, and the
reconstruction error Erec is calculated and compared with Emax. If Erec is less than Emax,
more vertices are added to the curve. If Erec is larger than Emax, some vertices on the curve
are removed. The process is repeated until Erec is not larger than Emax.

Thirdly, we will develop an optimization method to obtain the optimal number of
keyframes used in the reconstruction and decide which keyframes should be selected for
reconstruction. In doing so, PDE-based dynamic deformations are combined with the
simulation of position-based dynamics to reduce the keyframes for reconstruction and
raise the computational efficiency of position-based dynamics while keeping the same
simulation accuracy.
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Fourthly, we will propose two approaches to tackle the problem of reconstructing
dynamic 3D models subjected to a given error threshold. One approach is to divide one
curve into two or more curves to reduce reconstruction errors until a given error threshold is
reached, and the other approach is to add more terms to Equations (5)–(8) through changing
mw0, Dw0, and Dw1 into mwk, Dwk, and Dwk (k = 1, 2, 3, . . .) to satisfy the requirement of a
given error threshold.
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Appendix A

If we use x, y, z to indicate the deformations in the x, y, and z directions, ax, ay, az
to indicate the three components of the acceleration, and use u to indicate the parametric
direction of a beam, Equation (3) becomes:

max = EI d4x
du4

may = EI d4y
du4

maz = EI d4z
du4

(A1)

If we let w = x, y, z, and D = EI, the above three equations can be written as the
following equation:

maw = D
d4w
du4 (w = x, y, z) (A2)

Acceleration components aw (w = x, y, z) are the derivatives of velocity components
vw (w = x, y, z) with respect to the time variable t, which are the derivatives of the position
components w = x, y, z with respect to the time variable t, i.e.,

aw =
d2w
dt2 (w = x, y, z) (A3)

where t is a time variable.
Introducing Equation (A2) into Equation (A1), we obtain the following PDE as the

mathematical model for the reconstruction of dynamic 3D models:

m
∂2w
∂t2 = D

∂4w
∂u4 (w = x, y, z) (A4)

Appendix B

Closed-Form Solutions to the PDE (4):
With the method of separation of variables, the solution to Equation (4) can be taken

as the following form:

w(u, t) = w1(u)·w2(t) (w = x, y, z) (A5)
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Substituting the second partial derivative of w with respect to the time variable
t, and the fourth partial derivative of w with respect to the parametric variable u into
Equation (A5), we obtain:

m
w′′2 (t)
w2(t)

= D
w′′′′1 (u)
w1(u)

(w = x, y, z) (A6)

Since w2 is the function of the time variable t and w1 is the parametric variable u,
making the above equation hold requires that both the left-hand side term and the right-
hand side term is a same constant, i.e.,

m
w′′2 (t)
w2(t)

= D
w′′′′1 (u)
w1(u)

= cw0 (w = x, y, z) (A7)

where cw0 is a non-zero constant.
The above Equation (A7) can be written as the following two equations:

mw′′2 (t)− cw0w2(t) = 0 (w = x, y, z) (A8)

Dw′′′′1 (u)− cw0w1(u) = 0 (w = x, y, z) (A9)

Substituting w2(t) = ert into Equation (A8) and deleting ert, we obtain the following
characteristic equation:

mr2 − cw0 = 0 (A10)

If cw0/m is positive, i.e., cw0/m > 0, we obtain the two real roots below from the
Equation (A10):

r1,2 = ±
√

cw0

m
(A11)

In order to simplify the mathematical notation, we use mw0 to denote
√
|cw0/m|, i.e.,

mw0 =
√
|cw0/m| where |·| indicates the absolute value, and rewrite the two real roots as:

r1 = mw0, r2 = −mw0 (A12)

With the two obtained real roots, the closed-form solution to the ODE (A8) is:

w2(t) = c∗w1emw0t + c∗w2e−mw0t (A13)

If cw0/m is negative, i.e., cw0/m < 0, we obtain the two complex roots below from the
above Equation (13):

r1 = imw0, r2 = −imw0 (A14)

where i is an imaginary number.
With the two obtained complex roots, the closed-form solution to the ODE (A8) is:

w2(t) = c∗w1cosmw0t + c∗w2sinmw0t (w = x, y, z) (A15)

Substituting w1(u) = eru into (A9), deleting eru, and solving the obtained characteristic
equation, we obtain:

r4 =
cw0

D
(A16)

If cw0/D is positive, i.e., cw0/D > 0, we obtain the four roots below from the above
Equation (A16):

r3 = Dw0, r4 = −Dw0, r5 = iDw0, r6 = −iDw0 (A17)

where Dw0 = 4
√
|cw0/D|.
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With the obtained four roots in Equation (A17), the closed-form solution to the
ODE (A9) is obtained as:

w1(u) = c∗w3eDw0u + c∗w4e−Dw0u + c∗w5cosDw0u + c∗w6sinDw0u (w = x, y, z) (A18)

If cw0/D is negative, i.e., cw0/D < 0, we obtain the following four roots Equation (A16):

r3,4 =
√

2(1 + i)Dw0/2, r5,6 = −
√

2(1 + i)Dw0/2, (A19)

If we let Dw1 =
√

2Dw0/2, the closed-form solution to the ODE (A9) is:

w1(u) = eDw1u(c∗w3cosDw1u + c∗w4sinDw1u
)
+ e−Dw1u(c∗w5cosDw1u + c∗w6sinDw1u)

(w = x, y, z)
(A20)

Introducing w2(t) from Equation (A13) and w1(u) from Equation (A18) into Equation (A5),
and completing the multiplication operations, we obtain the following closed-form solution
to the PDE (4) for the case cw0/m > 0 and cw0/D > 0:

w(u, t) = cw1emw0t eDw0u + cw2emw0te−Dw0u

+cw3emw0tcosDw0u
+cw4emw0tsinDw0u + cw5e−mw0teDw0u + cw6e−mw0te−Dw0u

+cw7e−mw0tcosDw0u + cw8e−mw0tsinDw0u
(w = x, y, z)

(A21)

Introducing w2(t) from Equation (A13) and w1(u) from Equation (A20) into Equation (A5),
and completing the multiplication operations, we obtain the following closed-form solution
to the PDE (4) for the case cw0/m > 0 and cw0/D < 0:

w(u, t) = cw1emw0t eDw1ucosDw1u + cw2emw0teDw1usinDw1u
+cw3emw0te−Dw1ucosDw1u + cw4emw0te−Dw1usinDw1u
+cw5e−mw0teDw1ucosDw1u + cw6e−mw0teDw1usinDw1u
+cw7e−mw0te−Dw1ucosDw1u + cw8e−mw0te−Dw1usinDw1u

(w = x, y, z)

(A22)

Introducing w2(t) from Equation (A15) and w1(u) from Equation (A18) into Equation (A5),
and completing the multiplication operations, we obtain the following closed-form solution
to the PDE (4) for the case cw0/m < 0 and cw0/D > 0:

w(u, t) = cw1cos (mw0t)eDw0u + cw2cos(mw0t)e−Dw0u

+cw3cos(mw0t)cos(Dw0u) + cw4cos(mw0t)sin(Dw0u)
+cw5sin(mw0t)eDw0u + cw6sin(mw0t)e−Dw0u

+cw7sin(mw0t)cos(Dw0u) + cw8sin(mw0t)sin(Dw0u)
(w = x, y, z)

(A23)

Introducing w2(t) from Equation (A15) and w1(u) from Equation (A20) into Equation (A5),
and completing the multiplication operations, we obtain the following closed-form solution
to the PDE (4) for the case cw0/m < 0 and cw0/D < 0:

w(u, t) = cw1cos (mw0t)eDw1ucosDw1u + cw2cos(mw0t)eDw1usinDw1u
+cw3cos(mw0t)e−Dw1ucosDw1u
+cw4cos(mw0t)e−Dw1usin(Dw1u)
+cw5sin(mw0t)eDw1ucosDw1u
+cw6sin(mw0t)eDw1usinDw1u
+cw7sin(mw0t)e−Dw1ucos(Dw1u)
+cw8sin(mw0t)e−Dw1usin(Dw1u)

(w = x, y, z)

(A24)
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