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Bakula, M. An Application of

Hayashi’s Inequality for

Differentiable Functions. Mathematics

2022, 10, 907. https://doi.org/

10.3390/math10060907

Academic Editor: Juan Benigno

Seoane-Sepúlveda

Received: 1 March 2022

Accepted: 10 March 2022

Published: 11 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

An Application of Hayashi’s Inequality for
Differentiable Functions
Mohammad W. Alomari 1,* and Milica Klaričić Bakula 2
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1. Introduction

In ([1], pp. 311–312) Hayashi proved the following theorem.

Theorem 1. Let p : [a, b] → R be a nonincreasing mapping on [a, b] and h : [a, b] → R an
integrable mapping on [a, b] with 0 ≤ h(x) ≤ A for all x ∈ [a, b]. Then, the inequality

A
∫ b

b−λ
p(x)dx ≤

∫ b

a
p(x)h(x)dx ≤ A

∫ a+λ

a
p(x)dx (1)

holds, where λ = 1
A
∫ b

a h(x)dx.

Inequality (1), called Hayashi’s inequality, is a simple generalization of Steffensen’s
inequality which holds with same assumptions with A = 1. For recent results concerning
Hayashi’s inequality see [2].

In 1996, Agarwal and Dragomir [3] presented an application of this inequality
as follows.

Theorem 2. Let f : I ⊆ R→ R be a differentiable mapping on I◦ (the interior of I) and [a, b] ⊆ I◦

with M = sup
x∈[a,b]

f ′(x) < ∞, m = inf
x∈[a,b]

f ′(x) < ∞ and M > m. If f ′ is integrable on [a, b], then

the following inequality holds∣∣∣∣ 1
b− a

∫ b

a
f (t)dt− f (a) + f (b)

2

∣∣∣∣ (2)

≤ [ f (b)− f (a)−m(b− a)][M(b− a)− f (b) + f (a)]
2(M−m)(m− a)

≤ (M−m)(b− a)
8

.

This elegant inequality presents an error estimation for the trapezoidal rule.
In 2002, Gauchman [4] generalized (2) for n-times differentiable functions using the

Taylor expansion so that (2) becomes a special case of Gauchman’s result when n = 0.
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In this paper, we present a generalization of (2). In the same argument, two other
inequalities of the Ostrowski and trapezoidal type are also introduced.

2. The Results

Let us begin with a generalization of (2).

Theorem 3. Let g : [a, b] → R be an absolutely continuous function on [a, b] with 0 ≤ g′(t) ≤
(b− a), and suppose that g′ is integrable on [a, b]. Then∣∣∣∣ 1

b− a

∫ b

a
g(t)dt− (x− a)g(a) + (b− x)g(b)

b− a
− λ

(
x− a + b

2

)∣∣∣∣
≤ λ

2
(b− a− λ) ≤ (b− a)2

8
(3)

for all x ∈ [a, b], where λ = g(b)−g(a)
b−a . In particular, for x = a+b

2 , the following inequality holds∣∣∣∣ 1
b− a

∫ b

a
g(t)dt− g(a) + g(b)

2

∣∣∣∣ ≤ λ

2
(b− a− λ) ≤ (b− a)2

8
.

Proof. Let f (t) = x− t, t ∈ [a, b]. Applying Hayashi’s inequality (1) by setting p(t) = f (t)
and h(t) = g′(t), we get

(b− a)
∫ b

b−λ
(x− t)dt ≤

∫ b

a
(x− t)g′(t)dt ≤ (b− a)

∫ a+λ

a
(x− t)dt (4)

where, A = b− a or we write

λ =
1

b− a

∫ b

a
g′(t)dt =

g(b)− g(a)
b− a

.

Also, we have ∫ b

b−λ
(x− t)dt = λ(x− b) +

1
2

λ2,

∫ b

a
(x− t)g′(t)dt = −(x− a)g(a)− (b− x)g(b) +

∫ b

a
g(t)dt,

and ∫ a+λ

a
(x− t)dt = λ(x− a)− 1

2
λ2.

Substituting the above equalities in (4) and dividing by (b− a), we get

`1(x) := λ(x− b) +
1
2

λ2

≤ − (x− a)g(a) + (b− x)g(b)
b− a

+
1

b− a

∫ b

a
g(t)dt := I

≤ λ(x− a)− 1
2

λ2 := `2(x).



Mathematics 2022, 10, 907 3 of 9

We also have∣∣∣∣I − `1(x) + `2(x)
2

∣∣∣∣ = ∣∣∣∣I − λ

(
x− a + b

2

)∣∣∣∣ ≤ `2(x)− `1(x)
2

=
λ

2
(b− a− λ)

which proves the first inequality in (3). The second inequality follows by applying the same
technique as in ([3], pp. 96–97).

Remark 1. For some results closely related to Theorem 3 we refer the reader to [5–13].

A corrected generalized version of the Agarwal-Dragomir result (2) is incorporated in
the following corollary.

Corollary 1. Let g : [a, b]→ R be an absolutely continuous function on [a, b] with γ ≤ g′(t) ≤ Γ,
and suppose that g′ is integrable on [a, b]. Then∣∣∣∣ 1

b− a

∫ b

a
g(t)dt− (x− a)g(a) + (b− x)g(b)

b− a
− g(b)− g(a)

b− a
·
(

x− a + b
2

)∣∣∣∣
≤ Γ− γ

2
· λ · (b− a− λ)

b− a
≤ (Γ− γ)(b− a)

8
(5)

for all x ∈ [a, b], where λ = g(b)−g(a)−γ(b−a)
Γ−γ . In particular, for x = a+b

2 , the following inequality
holds ∣∣∣∣ 1

b− a

∫ b

a
g(t)dt− g(a) + g(b)

2

∣∣∣∣ ≤ Γ− γ

2
· λ · (b− a− λ)

b− a
≤ (Γ− γ)(b− a)

8
.

Proof. Repeating the proof of Theorem 3, with h(t) = g′(t)− γ, t ∈ [a, b], we get the first
inequality. The second inequality in (5) follows by applying the same technique as in ([3],
pp. 96–97). Analogous manipulation for x = a+b

2 gives the same result as in (2).

Remark 2. Let the assumptions of Corollary 1 be satisfied. Then Corollaries 3 and 4 and Remarks
1 and 2 in [3] (p. 97) also hold.

In 1997, Dragomir and Wang [11] introduced an inequality of Ostrowski-Grüss type
as follows: inequality∣∣∣∣ f (x)− 1

b− a

∫ b

a
f (t)dt− f (b)− f (a)

b− a

(
x− a + b

2

)∣∣∣∣ ≤ 1
4
(b− a)(Γ− γ) (6)

holds for all x ∈ [a, b], where f is assumed to be differentiable on [a, b] with f ′ ∈ L1[a, b]
and γ ≤ f ′(x) ≤ Γ, ∀x ∈ [a, b].

In 1998, another result for twice differentiable was proved in [10]. In 2000, the constant
1
4 in (6) was improved by 1√

3
in [14].

A better improvement of (6) can be deduced by applying Hayashi’s inequality as it is
presented in the following theorem.

Theorem 4. Let g : [a, b] → R be an absolutely continuous function on [a, b] with 0 ≤ g′(t) ≤
(b− a) and suppose that g′ is integrable on [a, b]. Then∣∣∣∣ 1

b− a

∫ b

a
g(t)dt− g(x) + λ

(
x− a + b

2

)∣∣∣∣ ≤ λ
b− a

2
− λ2 ≤ (b− a)2

16
(7)
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for all x ∈ [a, b], where λ = g(b)−g(a)
b−a . In particular, for x = a+b

2 , the following inequality holds∣∣∣∣ 1
b− a

∫ b

a
g(t)dt− g

(
a + b

2

)∣∣∣∣ ≤ λ
b− a

2
− λ2 ≤ (b− a)2

16
.

Proof. Fix x ∈ [a, b] and let f (t) = a− t, t ∈ [a, x]. Applying Hayashi’s inequality (1) by
setting p(t) = f (t) and h(t) = g′(t), we get

(b− a)
∫ x

x−λ
(a− t)dt ≤

∫ x

a
(a− t)g′(t)dt ≤ (b− a)

∫ a+λ

a
(a− t)dt (8)

where,

λ =
1

b− a

∫ b

a
g′(t)dt =

g(b)− g(a)
b− a

.

Also, we have ∫ x

x−λ
(a− t)dt = −λ(x− a) +

1
2

λ2,

∫ x

a
(a− t)g′(t)dt = −(x− a)g(x) +

∫ x

a
g(t)dt,

and ∫ a+λ

a
(a− t)dt = −1

2
λ2.

Substituting in (8), we get

(b− a)
(
−λ(x− a) +

1
2

λ2
)
≤ −(x− a)g(x) +

∫ x

a
g(t)dt ≤ −1

2
λ2(b− a). (9)

Now, let f (t) = b− t, t ∈ [x, b]. Applying Hayashi’s inequality (1) again we get

(b− a)
∫ b

b−λ
(b− t)dt ≤

∫ b

x
(b− t)g′(t)dt ≤ (b− a)

∫ x+λ

x
(b− t)dt (10)

where, ∫ b

b−λ
(b− t)dt =

1
2

λ2,

∫ b

x
(b− t)g′(t)dt = −(b− x)g(x) +

∫ b

x
g(t)dt,

and ∫ x+λ

x
(b− t)dt = λ(b− x)− 1

2
λ2.

Substituting in (10), we obtain

1
2

λ2(b− a) ≤ −(b− x)g(x) +
∫ b

x
g(t)dt ≤ (b− a)

(
λ(b− x)− 1

2
λ2
)

. (11)
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Adding (9) and (11) we get

(b− a)
(
−λ(x− a) + λ2

)
≤
∫ b

a
g(t)dt− (b− a)g(x)

≤ (b− a)
(

λ(b− x)− λ2
)

.

Setting

I :=
1

b− a

∫ b

a
g(t)dt− g(x)

`1(x) = −λ(x− a) + λ2,

and
`2(x) = λ(b− x)− λ2.

Therefore,∣∣∣∣I − `1(x) + `2(x)
2

∣∣∣∣ = ∣∣∣∣ 1
b− a

∫ b

a
g(t)dt− g(x) + λ

(
x− a + b

2

)∣∣∣∣
≤ `2(x)− `1(x)

2

= λ
b− a

2
− λ2,

which proves the first inequality in (7). To prove the second inequality, define the mapping

φ(t) = −t2 + b−a
2 t. Then max φ(t) = φ

(
b−a

4

)
=
(

b−a
4

)2
, so that φ(λ) = −λ2 + b−a

2 λ ≤(
b−a

4

)2
, which completes the proof of this theorem.

Corollary 2. Let g : [a, b]→ R be an absolutely continuous function on [a, b] with γ ≤ g′(t) ≤ Γ
and suppose that g′ is integrable on [a, b]. Then∣∣∣∣ 1

b− a

∫ b

a
g(t)dt− g(x) +

g(b)− g(a)
b− a

·
(

x− a + b
2

)∣∣∣∣ (12)

≤
(

Γ− γ

b− a

)(
λ

b− a
2
− λ2

)
≤ (b− a)(Γ− γ)

16

for all x ∈ [a, b], where λ = g(b)−g(a)−γ(b−a)
Γ−γ . In particular, for x = a+b

2 , the following inequality
holds ∣∣∣∣ 1

b− a

∫ b

a
g(t)dt− g

(
a + b

2

)∣∣∣∣ ≤ (Γ− γ

b− a

)(
λ

b− a
2
− λ2

)
≤ (b− a)(Γ− γ)

16
.

Proof. Repeating the proof of Theorem 4, with h(t) = g′(t)− γ, t ∈ [a, b], we get the first
inequality. The second inequality (12) follows by applying the same technique.

Remark 3. As we notice, (12) improves (6) by 1
4 , which is better than Matić et al. result from [14].

In [6], under the assumptions of Theorem 4, Alomari proved the following version of
a Guessab–Schmeisser-type inequality (see [12]):∣∣∣∣ g(x) + g(a + b− x)

2
− 1

b− a

∫ b

a
g(t)dt

∣∣∣∣ ≤ (Γ− γ)(b− a)
8

, (13)
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for all x ∈
[

a, a+b
2

]
.

Next we give an improvement of (13).

Theorem 5. Let g : [a, b] → R be an absolutely continuous function on [a, b] with 0 ≤ g′(t) ≤
(b− a) and suppose that g′ is integrable on [a, b]. Then∣∣∣∣ 1

b− a

∫ b

a
g(t)dt− g(x) + g(a + b− x)

2

∣∣∣∣ ≤ λ

[
b− a

2
− 3

2
λ

]
≤ (b− a)2

24
(14)

for all x ∈
[

a, a+b
2

]
, where λ = g(b)−g(a)

b−a .

Proof. Fix x ∈
[

a, a+b
2

]
and let f (t) = a− t, t ∈ [a, x]. Applying Hayashi’s inequality (1)

by setting p(t) = f (t) and h(t) = g′(t), we get that (8) holds, i.e.,

(b− a)
(
−λ(x− a) +

1
2

λ2
)
≤ −(x− a)g(x) +

∫ x

a
g(t)dt (15)

≤ −1
2

λ2(b− a).

where

λ =
1

b− a

∫ b

a
g′(t)dt =

g(b)− g(a)
b− a

.

Now, let f (t) = a+b
2 − t, t ∈ [x, a + b− x]. Applying Hayashi’s inequality (1) again

we get

(b− a)
∫ a+b−x

a+b−x−λ

(
a + b

2
− t
)

dt ≤
∫ a+b−x

x

(
a + b

2
− t
)

g′(t)dt (16)

≤ (b− a)
∫ x+λ

x

(
a + b

2
− t
)

dt

where ∫ a+b−x

a+b−x−λ

(
a + b

2
− t
)

dt = −λ

(
a + b

2
− x
)
+

1
2

λ2,

∫ a+b−x

x

(
a + b

2
− t
)

g′(t)dt

= −
(

a + b
2
− x
)
(g(x) + g(a + b− x)) +

∫ a+b−x

x
g(t)dt,

and ∫ x+λ

x

(
a + b

2
− t
)

dt = λ

(
a + b

2
− x
)
− 1

2
λ2.



Mathematics 2022, 10, 907 7 of 9

Substituting in (16), we get

− (b− a)
[

λ

(
a + b

2
− x
)
− 1

2
λ2
]

≤ −
(

a + b
2
− x
)
(g(x) + g(a + b− x)) +

∫ a+b−x

x
g(t)dt (17)

≤ (b− a)
[

λ

(
a + b

2
− x
)
− 1

2
λ2
]

.

Now, let f (t) = b − t, t ∈ [a + b − x, b]. Applying Hayashi’s inequality (1) again
we obtain

(b− a)
∫ b

b−λ
(b− t)dt ≤

∫ b

a+b−x
(b− t)g′(t)dt (18)

≤ (b− a)
∫ a+b−x+λ

a+b−x
(b− t)dt

where ∫ b

b−λ
(b− t)dt =

1
2

λ2,

∫ b

a+b−x
(b− t)g′(t)dt = −(x− a)g(a + b− x) +

∫ b

a+b−x
g(t)dt,

and ∫ a+b−x+λ

a+b−x
(b− t)dt = λ(x− a)− 1

2
λ2.

Substituting in (18) we get

1
2

λ2(b− a) ≤ −(x− a)g(a + b− x) +
∫ b

a+b−x
g(t)dt (19)

≤ (b− a)
[

λ(x− a)− 1
2

λ2
]

.

Adding (15), (17) and (19) we obtain

−λ(b− a)
[

b− a
2
− 3

2
λ

]
≤
∫ b

a
g(t)dt− (b− a)

g(x) + g(a + b− x)
2

≤ λ(b− a)
[

b− a
2
− 3

2
λ

]
,

which is equivalent to the first inequality in (14). To prove the second inequality in (14),

define the mapping φ(t) = − 3
2 (b− a)t2 + (b−a)2

2 t. Then max φ(t) = φ
(

b−a
6

)
= (b−a)2

24 , so

that φ(λ) = − 3
2 (b− a)λ2 + (b−a)2

2 λ ≤ (b−a)2

24 , which completes the proof.

A generalization of (13) and (14) is incorporated in the following result.
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Corollary 3. Let g : [a, b]→ R be an absolutely continuous function on [a, b] with γ ≤ g′(t) ≤ Γ
and suppose that g′ is integrable on [a, b]. Then∣∣∣∣ 1

b− a

∫ b

a
g(t)dt− g(x) + g(a + b− x)

2

∣∣∣∣
≤ 1

2
λ

(
Γ− γ

b− a

)
[(b− a)− 3λ] ≤ (Γ− γ)(b− a)

24
(20)

for all x ∈
[

a, a+b
2

]
, where λ = g(b)−g(a)−γ(b−a)

Γ−γ .

Proof. Repeating the proof of Theorem 5, with h(t) = g′(t)− γ, t ∈ [a, b], we get the first
inequality. The second inequality in (20) follows by applying the same technique.

3. Applications

Let X be a random variable taking values in the finite interval [a, b], with the probability
density function f : [a, b]→ [0, 1] with the cumulative distribution function F(x) = Pr(X ≤
x) =

∫ b
a f (t)dt.

Theorem 6. With the assumptions of Theorem 4, we have the inequality∣∣∣∣12 [F(x) + F(a + b− x)]− b− E(X)

b− a

∣∣∣∣ ≤ 1
2

λ

(
Γ− γ

b− a

)
[(b− a)− 3λ] ≤ (Γ− γ)(b− a)

24

for all x ∈
[

a, a+b
2

]
, where λ = F(b)−F(a)−γ(b−a)

Γ−γ , and E(X) is the expectation of X.

Proof. In the proof of Corollary 3, we set f = F, and take into account that

E(X) =
∫ b

a
tdF(t) = b−

∫ b

a
F(t)dt.

We leave the details to the interested reader.

4. Conclusions

This paper summarises several types of general quadrature rules, such as the general
trapezoidal rule or the so-called Ostrowski trapezoidal, Ostrowski midpoint and Guessab–
Schmeisser quadrature rules for symmetric points. Using the presented inequalities, several
error estimates of the above quadrature rules could therefore be derived with corresponding
numerical experiments. This work thus represents a very good application of Hayashi’s
inequality in quadrature approximation. One future research direction might be to use
Fink’s generalization of the Ostrowski inequality to obtain some Hayashi–Ostrowski-type
results. Further applications of Hayashi’s inequality we leave to the interested reader.
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1. Mitrinović, D.S.; Pexcxarixcx, J.E.; Fink, A.M. Classical and New Inequalities in Analysis. In Mathematics and Its Applications;

East European Series; Kluwer Academic Publishers Group: Dordrecht, The Netherlands, 1993; Volume 61.
2. Alomari, M.W.; Hussain, S.; Liu, Z. Some Steffensen’s type inequalities. Adv. Pure Appl. Math. 2017, 8, 219–226. [CrossRef]
3. Agarwal, R.P.; Dragomir, S.S. An application of Hayashi’s inequality for differentiable functions. Comput. Math. Appl. 1996, 32,

95–99. [CrossRef]
4. Gauchman, H. Some integral inequalities involving Taylor’s remainder I. J. Inequal. Pure Appl. Math. 2002, 3, 26.
5. Alomari, M.W. A companion of the generalized trapezoid inequality and applications. J. Math. Appl. 2013, 36, 5–15.
6. Alomari, M.W. A companion of Ostrowski’s inequality for mappings whose first derivatives are bounded and applications in

numerical integration. Kragujev. J. Math. 2012, 36, 77–82.
7. Alomari, M.W. New inequalities of Steffensen’s type for s–convex functions. Afr. Mat. 2014, 25, 1053–1062. [CrossRef]
8. Alomari, M.W. A companion of Dragomir’s generalization of Ostrowski’s inequality and applications in numerical integration.

Ukr. Math. J. 2012, 64, 491–510. [CrossRef]
9. Cerone, P.; Dragomir, S.S.; Pearce, C.E.M. A generalized trapezoid inequality for functions of bounded variation. Turk. J. Math.

2000, 24, 147–163.
10. Cerone, P.; Dragomir, S.S.; Roumeliotis, J. An inequality of Ostrowski-Griiss type for twice differentiable mappings and applica-

tions in numerical integration. RGMIA Res. Rep. Collect. 1998, 1, 8.
11. Dragomir, S.S.; Wang, S. An inequality of Ostrowski–Grüss’ type and its applications to the estimation of error bounds for some

special means and for Some numerical quadrature rules. Comput. Math. Appl. 1997, 33, 15–20. [CrossRef]
12. Guessab, A.; Schmeisser, G. Sharp integral inequalities of the Hermite-Hadamard type. J. Approx. Theory 2002, 115, 260–288.

[CrossRef]
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