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Abstract: We propose a characterization for the roots of power residues modulo powers of two. By
this characterization, the remainder of dividing a root by a power of two is uniformly distributed
in a set with two odd integers, while the quotient is uniformly distributed in an initial segment of
positive integers. This property allows us to generate roots of power residues modulo powers of
two efficiently.
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1. Introduction and Preliminaries

Recent years have shown a significant interest in studying algorithmic problems
related to higher-order residuosity. That is because higher-order residuosity may help
design cryptographic systems at the binary stream level, while quadratic residuosity is
usually limited to bit-by-bit data processing [1–11]. Unfortunately, the use of higher-order
residuosity in cryptography faces several challenging problems related to the computation
of higher-order residues. A lot of research has recently been dedicated to these kinds of
problems [12–17].

In this paper, we focus on roots of power residues modulo powers of two. Given a
positive integer n, nth roots of power residues modulo powers of two are solutions to the
congruence

xn ≡ a mod 2e, (1)

where a is an odd integer and e ≥ 1. This congruence can be easily solved when e = 1
or e = 2 because in such a case, the multiplicative group Z∗2e of integers modulo 2e has
primitive roots. For instance, when e = 2, g = 3 is a primitive root modulo 22. Thus,
solving (1) comes down to finding solutions to the linear congruence

ny ≡ indg(a) mod 2, (2)

where indg(a) is the index of a with respect to g [18,19]. The congruence (2) has solutions if
and only if the gcd of n and 2, denoted (n, 2), divides indg(a). Moreover, if it has solutions,
then it has (n, 2) solutions in Z∗22 . Two cases are now to be considered:

• n is odd. In this case, (n, 2) = 1 and so the congruence (2) has exactly one solution in
Z∗22 , no matter a;

• n is even. In this case, the congruence (2) has solutions if and only if indg(a) = 0,
which is equivalent to saying that a ≡ 1 mod 22. Moreover, if the congruence has
solutions, then it has exactly two solutions in Z∗22 , namely 1 and 3.

Solving (1) when e > 2 is harder mainly because Z∗2e does not have primitive roots.
When n is odd, the unique solution modulo 22 can be lifted to 2e in exactly one way. Thus,
for n odd, the congruence (1) always has a unique solution in Z∗2e .
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The case when n is even contrasts sharply with the case when n is odd. It can be
shown in this case [20,21] that the congruence (1) is solvable if and only if a ≡ 1 mod 2d+2,
where 2d = (n, 2e−2). Moreover, if the congruence is solvable, then it has 2d+1 solutions in
Z∗2e . This result gives information about the solvability of (1) when n is even, but it does
not say anything about the form of the solutions or how to obtain them. Nor does its proof
in [21] provide a characterization of the solutions.

Contribution

In this paper, we provide a characterization of the solutions to xn ≡ a mod 2d+`, where
n = 2dk, d ≥ 1, k is odd, and ` ≥ 2. More precisely, we show that each solution to this
congruence can be written in the form u + 2`q, where u is uniformly distributed in a set
with exactly two odd integers less than 2`, while q is uniformly distributed between 0 and
2d − 1. Moreover, we show that u can be obtained recursively from one of the two integers
in the set {1, 3}. This characterization leads to a reasonably efficient algorithm to generate
random solutions for the above congruence:

• Choose randomly an integer u2 from the set {1, 3};
• Apply the recursive procedure to u2 in `− 2 steps to get an integer u`;
• Randomly generate q between 0 and 2d − 1;
• Return the solution u` + 2`q.

Preliminaries

We recall some basic notation and terminology on elementary number theory that we
are going to use in the paper. For details, the reader is referred to [18,19].

The set of integers is denoted by Z. For two positive integers a and b, Cb
a stands for

the number of combinations of a taken by b.
The gcd of two integers a and b is denoted (a, b). a and b are called co-prime if

(a, b) = 1. If m is another integer, then a and b are called congruent modulo m, which are
denoted a ≡ b mod m or a ≡m b, if m divides a− b. The remainder of the integer division
of a by m, assuming m 6= 0, is denoted a mod m.

Given a positive integer m, Zm stands for {0, . . . , m− 1} andZ∗m = {a ∈ Zn | (a, m) = 1}.
The cardinality of Z∗m is φ(m), where φ is Euler’s totient function. As a multiplicative group,
Z∗m is cyclic if and only if m is 2, 4, pe, or 2pe for some prime p ≥ 3 and e ≥ 1. When Z∗m is
cyclic, it has generators (also called primitive roots), and each integer a ∈ Z∗m can be written
as gi mod m for any generator g and some unique 0 ≤ i < φ(m) that depends on g. The
integer i is called the index of a with respect to g modulo m, which is denoted indq(a) mod m.

Let f be a polynomial with integer coefficients, p be a prime, and e > 1. If a ∈ Zpe is a
solution to the congruence

f (x) ≡ 0 mod pe (3)

then r = a mod pe−1 is a solution to the congruence

f (x) ≡ 0 mod pe−1 (4)

When a solution r ∈ Zpe−1 to (4) gives rise to a solution a to (3) such that r = a mod
pe−1, we say that r is lifted from pe−1 to pe. The theorem below provides the lifting criteria.

Theorem 1 (Hensel’s Lemma, [18,19]). Let p ≥ 2 be a prime integer, e > 1, and r ∈ Zpe−1 be a
solution to (4). Then, the following properties hold:

1. If f ′(r) 6≡ 0 mod p, where f ′ is the formal derivative of f , then r can be lifted from pe−1

to pe in a unique way a = r + qpe−1, where q is the unique solution modulo p to the
linear congruence;

q f ′(r) +
f (r)
pe−1 ≡ 0 mod p (5)
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2. If f ′(r) ≡ 0 mod p and f (r) ≡ 0 mod pe, then r can be lifted from pe−1 to pe in exactly p
distinct ways ai = r + ipe−1, for all 0 ≤ i < p;

3. If f ′(r) ≡ 0 mod p and f (r) 6≡ 0 mod pe, then r cannot be lifted from pe−1 to pe.

An integer a co-prime with m is an nth residue modulo m, where n ≥ 2, if the congruence
xn ≡ a mod m is solvable. When solvable, any solution to this congruence will be called an
nth root of a modulo m.

2. Characterization Results

Let n = 2dk be an even integer, a be an odd integer, and e ≥ 2, where d, k ≥ 1. In the
study of the solutions to the congruence (1), we will distinguish two important cases: the
first case is the one in which e ≤ d + 2, and the second is the one in which e > d + 2.

Before entering into the treatment of the two cases, we present a technical result.

Lemma 1. Let n = 2dk be an even integer, where d, k ≥ 1. Then, for any 1 ≤ i < n,
2d+b(i−1)/2c+1 divides Ci

n2i, where b·c stands for the floor function.

Proof. Recall from [22] (Chapter 1, §15) that the highest power of a prime p that divides i !,
where i ≥ 1, is given by ⌊

i
p

⌋
+

⌊
i

p2

⌋
+ . . .

Taken p = 2 and assuming that 2t ≤ i < 2t+1 for some t ≥ 1, we obtain⌊
i
2

⌋
+

⌊
i

22

⌋
+ . . . =

⌊
i
2

⌋
+

⌊
i

22

⌋
+ · · ·+

⌊
i

2t

⌋
≤ i ∑t

j=1
1
2j

= i−
i

2t

≤ i− 1

Now, given 1 ≤ i < n, we have

Ci
n2i =

n(n− 1) · · · (n− i + 1)
1 · · · i 2i

Let i ! = 2sa, where a is odd. According to the above result, s ≤ i− 1.
The factors (n− 2), (n− 4), and so on are all even. There are b(i− 1)/2c such factors.

As n = 2dk, we conclude that 2d+b(i−1)/2c+1 must divide Ci
n2i.

The following lemma completely treats the first case.

Lemma 2. Let a be an odd integer and n = 2dk be an even integer, where d, k ≥ 1. Then, for any
0 ≤ ` ≤ d, the following two properties hold:

1. The congruence
xn ≡ a mod 2`+2; (6)

is solvable in Z if and only if a ≡ 1 mod 2`+2;
2. If the congruence (6) is solvable, then it has 2`+1 solutions in Z∗2`+2 , namely all the odd

integers in this set.

The standard proof of Lemma 2 is based on the fact that any odd integer r fulfills
the congruence

r2` ≡ 1 mod 2`+2,
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for any ` ≥ 1 (remark that we can only get r2` ≡ 1 mod 2`+1 by Euler’s theorem). This fact
was first noticed in [21] and can be easily proved by mathematical induction. According
to this fact, the congruence (6) is solvable if and only if a ≡ 1 mod 2`+2 and, when it is
solvable, any odd integer is a solution to it.

We can also prove Lemma 2 by using Hensel’s Lemma. For the sake of uniformity
and completeness with the second case that we discuss further, we attach in Appendix A a
proof of this type for Lemma 2.

We now turn to the second case mentioned at the beginning of the section.

Theorem 2. Let a be an odd integer and n = 2dk be an even integer, where d ≥ 1 and k is odd.
Then, for any ` ≥ 2, the following two properties hold:

1. The congruence
xn ≡ a mod 2d+` (7)

is solvable in Z if and only if a ≡ 1 mod 2d+2.
2. If the congruence (7) is solvable, then there exists a set U` with exactly two odd integers less

than 2` such that the set of solutions in Z∗2d+` to the congruence (7) is

{u + 2`q | u ∈ U`, 0 ≤ q < 2d}

and has the cardinality 2d+1.

Proof. The congruence (7) is solvable if and only if the congruence xn ≡ a mod 2d+2 is
solvable and at least one of its solutions can be lifted from 2d+2 to 2d+`. According to
Lemma 2, the congruence xn ≡ a mod 2d+2 is solvable if and only if a ≡ 1 mod 2d+2. We
will further show that, when xn ≡ a mod 2d+2 is solvable, half of its solutions can be lifted,
in consecutive steps, from 2d+2 to 2d+`.

For the sake of clarity, we denote by C` the set of solution in Z∗2d+` to the congruence (7).
According to the division theorem, for any r ∈ C`, there exist unique u and q such that
r = u + 2`q, 0 < u < 2`, and q ≥ 0. Moreover, u must be odd. We further use the
following notation:

• U`—the set of remainders u of the solutions r ∈ C`, as defined above;
• C`(u)—the set of all r ∈ C` such that the remainder of dividing r by 2` is u;
• C`

0(u)—the set of all r ∈ C`(u) such that the quotient of dividing r by 2` is even;
• C`

1(u)—the set of all r ∈ C`(u) such that the quotient of dividing r by 2` is odd.

We are now ready to prove by mathematical induction on ` ≥ 2 the following properties:

(P1) The set U` contains exactly two odd integers and C` = {u+ 2`q | u ∈ U`, 0 ≤ q < 2`}.
As a result, |C`| = 2`+1;

(P2) |C`
0(u)| = |C`

1(u)| = 2d−1, for any u ∈ U`;
(P3) For any u ∈ U` and depending on it, either all solutions in C`

0(u) or all solutions in
C`

1(u) fulfill the lifting requirement from 2d+` to 2d+`+1. Then, C`+1 is obtained by
lifting all solutions r that fulfill the lifting requirement in exactly two ways, namely r
and r + 2d+`.

Base step: ` = 2. According to Lemma 2, the solutions to xn ≡ a mod 2d+2 are all
the integers in Z∗2d+2 . According to the division theorem, each of them can be written as
r = u + 22q, where u ∈ U2 = {1, 3} and 0 ≤ q < 2d. Then, we can easily show that the
properties (P1) and (P2) are true.

We focus now on the property (P3). Let f (x) = xn − a. We remark that f ′(x) =
nxn−1 ≡ 0 mod 2 and, therefore, according to Hensel’s Lemma, a solution r ∈ C2 can be
lifted from 2d+2 to 2d+3 if and only if f (r) ≡ 0 mod 2d+3. The last condition is equivalent
to rn ≡ a mod 2d+3.
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Let r = u + 22q ∈ C2, where u ∈ U2 and 0 ≤ q < 2d. Then,

rn = (u + 22q)n

= un + C1
nun−122q + C2

nun−224q2 + · · ·+ Cn
n22nqn

= un + 2d+2kun−1q + C2
nun−224q2 + · · ·+ Cn

n22nqn

Now, remark that k and u are odd and 2d+3 divides Ci
n22i, for all i ≥ 2 (Lemma 1).

Therefore,

rn ≡
{

un mod 2d+3, if r ∈ C2
0(u)

(un + 2d+2) mod 2d+3, if r ∈ C2
1(u)

It remains now to investigate the relationship between un and a modulo 2d+3. Look-
ing back to the binomial expansion of rn, we conclude that rn ≡ un mod 2d+2. As
rn ≡ a mod 2d+2 (because r ∈ C2), we obtain un ≡ a mod 2d+2. Combining this with
a ≡ 1 mod 2d+2, we get

a = 1 + b2d+2 + β2d+3,

for some b ∈ {0, 1} and integer β ≥ 0, and

un = 1 + c2d+2 + γ2d+3,

for some c ∈ {0, 1} and integer γ ≥ 0.
Two cases are to be considered now:

• b = c. In such a case, un ≡ a mod 2d+3. As rn ≡ un mod 2d+3 for all r ∈ C2
0(u), we

obtain rn ≡ a mod 2d+3 for all r ∈ C2
0(u). This means that all r ∈ C2

0(u) fulfill the
lifting requirement from 2d+2 to 2d+3;

• b 6= c. This is equivalent to b ≡ c + 1 mod 2, and therefore, un + 1 ≡ a mod 2d+3. As
in the previous case, we obtain rn ≡ a mod 2d+3 for all r ∈ C2

1(u) and so, all solutions
in C2

1(u) can be lifted from 2d+2 to 2d+3.

One has also to remark that if a solution in C2
0(u) can be lifted from 2d+2 to 2d+3, then

no solution in C2
1(u) can be lifted from 2d+2 to 2d+3, and vice versa. Moreover, the lifting

requirement above is depended on u.
According to Hensel’s Lemma, a solution r is lifted to 2d+3 in exactly two ways, r and

r + 2d+2. Thus, the property (P3) is proved.
Inductive step: Assume that the three properties hold for ` ≥ 2 and we prove them for

`+ 1. The elements of the set C`+1 are obtained by lifting the elements of either C`
0(u) or

C`
1(u), depending on u ∈ U`, from 2d+` to 2d+`+1.

If r = u + 2`q ∈ C`
0(u), then

r = u + 2`+1q′

and
r + 2d+` = u + 2`+1(q′ + 2d−1),

where q = 2q′, 0 ≤ q′ < 2d−1. Therefore, if C`
0(u) is lifted to 2d+`+1, then u ∈ U`+1 and

C`+1 will include all the integers u + 2`+1q with and even q, 0 ≤ q < 2d.
If r = u + 2`q ∈ C`

1(u), then

r = u + 2` + 2`+1q′

and
r + 2d+` = u + 2` + 2`+1(q′ + 2d−1),

where q = 1 + 2q′, 0 ≤ q′ < 2d−1. Therefore, if C`
1(u) is lifted to 2d+`+1, then u + 2` ∈ U`+1

and C`+1 will include all the integers u + 2`+1q with an odd q, 0 ≤ q < 2d.
These show that (P1) and (P2) hold. The property (P3) is proven in a quite similar

way as in the base step of the induction, and so it is omitted.
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As the three properties (P1), (P2), and (P3) hold, we conclude that the theorem holds.

Example 1. Assume that we want to lift the solutions to the congruence x12 ≡ 81 mod 24 to 25

and 26. In this case, n = 22 · 3, d = 2, a = 81, and ` ∈ {2, 3, 4}.
As a ≡ 1 mod 24, the congruence has 23 solutions in Z∗24 . These solutions can be obtained

as shown by Lemma 2. They can be lifted to 25 and 26 by the procedure shown in the proof of
Theorem 2. The process is illustrated in Figure 1.

`

2d+`

a mod 2d+`

C`
0(u1)

C`
1(u1)

C`
0(u2)

C`
1(u2)

u1

u2

{
1
1 + 23

{
1 + 22

1 + 22 + 23

{
3
3 + 23

{
3 + 22

3 + 22 + 23

{
1 + 22

1 + 22 + 24

{
1 + 22 + 23

1 + 22 + 23 + 24

{
3
3 + 24

{
3 + 23

3 + 23 + 24

{
1 + 22

1 + 22 + 25

{
1 + 22 + 24

1 + 22 + 24 + 25

{
3 + 23

3 + 23 + 25

{
3 + 23 + 24

3 + 23 + 24 + 25

2 3 4
24 25 26

1 17 17

1
3

1 + 22

3
1 + 22

3 + 23

Figure 1. Lifting the solutions to x12 ≡ 81 mod 24.

3. Computational Aspects

Let n = 2dk be an even integer, 0 ≤ ` ≤ d, and let a be an odd integer such that
a ≡ 1 mod 2`+2, where d, k ≥ 1. Finding solutions to the congruence (6) is easy. According
to Lemma 2, any odd integer between 0 and 2`+2 − 1 is a solution to this congruence, and
therefore, what we have to do is to generate integers in this interval. If a random integer in
this interval is odd, then it is a solution to the congruence. Otherwise, we may increment
or decrement it by one to get a solution.

Let us consider now n = 2dk, ` > 2, and a ∈ Z∗2d+` such that d ≥ 1, k ≥ 1 is odd,
and a ≡ 1 mod 2d+2. The proof of Theorem 2 leads to an efficient algorithm to generate
solutions to the congruence (7). The algorithm is based on the following remarks:

1. Each solution r has the form r = u + 2`q, where u ∈ U` and 0 ≤ q < 2d;
2. To compute r comes down to compute u. This can be efficiently done in a recursive

way starting with some u2 ∈ U2 = {1, 3} and updating it by

ui+1 =

{
ui, if un

i [d + i] = a[d + i]
ui + 2i, otherwise

for all 2 ≤ i < ` (x[d + i] denotes the (d + i)th bit in the binary representation of x);
3. When u` is reached, randomly choose q← [0, 2d) and return r = u` + 2`q.

The algorithm is presented below.

The correctness of Algorithm 1 follows from the proof of Theorem 2. As one can see,
the most complex operation is the modular exponentiation un mod 2d+i+1. This step can
be optimized by using Euler’s theorem. Namely:

• Compute s = k mod 2i;
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Algorithm 1 Generating a random solution to xn ≡ a mod 2d+`

Input: n = 2dk with d ≥ 1 and k ≥ 1 odd, ` > 2, a with a ≡ 1 mod 2d+2

Output: a random solution r to xn ≡ a mod 2d+`

u← {1, 3}
for i := 2 to `− 1 do

v := un mod 2d+i+1

if v[d + i] 6= a[d + i] then
u := u + 2i

end if
end for
q← [0, 2d)
r := u + 2`q

• Compute v = u2ds mod 2d+i+1.

The correctness of this is based on the fact that if k = s + 2iq, where 0 < s < 2i, then

u2dk ≡ u2dsu2d+iq
i mod 2d+i+1

≡ u2ds mod 2d+i+1

due to the Euler’s theorem, according to which u2d+i ≡ 1 mod 2d+i+1.
The extraction of the bits of the binary representations of a and un, and also the addition

and multiplication by powers of two, are very efficient operations that can be neglected.
Hensel’s lifting procedure is a general methodology for lifting solutions to polynomial

congruences. Algorithm 1 should be seen as a practical streamlining of the lifting process,
reducing the number of operations and the size of the operands. More precisely:

• By Hensel’s lifting, we start with an odd integer r2 in the interval [0, 2d+2) and try to
lift it in consecutive steps to 2d+`;

• Assume that we have obtained ri in the interval [0, 2d+i), where 2 ≤ i < `. If the lifting
requirement for ri is fulfilled, then ri is lifted to 2d+i+1 in one of the two possible ways.
Otherwise, we go back to ri−1 and lift it again in the second possible way if it has
not been tried yet. If both lifting possibilities have been tried, then we go back to
ri−2. Thus, we are faced with a backtracking process that can be very expensive. For
instance, let us look to the table in Figure 1. The solution r2 = 3 + 23 in the second
column is lifted to r3 = 3 + 23 and then to r4 = 3 + 23 + 25. However, r4 cannot be
lifted further and so, we have to go back to r3. Even the second lifting possibility for
r3 will not be able to lift further. As a result, we go back to r2;

• Algorithm 1 completely avoids the backtracking process above;
• Hensel’s lifting procedure exponentiates integers in Z∗2d+i to see if they can be lifted

from 2d+i to 2d+i+1. Algorithm 1 exponentiates only two residues modulo 2i to get all
solution modulo 2d+i+1.

Our discussion above shows that the complexity of Algorihm 1 is O(log3 n), while the
complexity of Hensel’s lifting can be estimated to:

• Best case: O(` log3 n), where ` is the parameter in Algorithm 1;
• Worst case: O(`(∑`

i=1 si) log3 n), where si is the maximum number of backtraking
possibilities at the ith lifting.

4. Conclusions

We have proposed a characterization for the roots of power residues modulo powers
of two. Namely, by this characterization, each solution to xn ≡ a mod 2d+`, where n = 2dk,
d ≥ 1, k ≥ 1 is odd, and ` ≥ 2 can be written in the form u` + 2`q, where u` is uniformly
distributed in a set with two integers les than 2` and q is uniformly distributed between
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0 and 2d − 1. Moreover, we have also obtained a recurrence relation for u`, starting from
some u2 ∈ {1, 3}.

This characterization leads to a reasonably efficient algorithm to generate random
solutions for the above congruence. Finding a way to efficiently compute un

i+1 mod 2d+i+2

from un
i mod 2d+i+1, where 2 ≤ i < `, would lead to a great improvement of Algorithm 1.
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Appendix A. Proof of Lemma 2

Proof. We prove the lemma by mathematical induction on ` ≥ 0.
Base step: ` = 0. We know that the congruence xn ≡ a mod 22 is solvable if and only if

a ≡ 1 mod 22 [20]. Assuming that it is solvable, it has two solutions in Z∗4 , namely 1 and 3
(remark that n is even).

Inductive step: Assume that the lemma holds for 0 ≤ ` < d and we prove that it holds
for `+ 1. According to Hensel’s Lemma, the congruence xn ≡ a mod 2`+3 has solutions if
and only if the congruence (6) has solutions and at least one of it can be lifted to 2`+3.

Let us assume first that the congruence (6) has solutions, and let r be one of them. We
prove that this solution can be lifted to 2`+3. Let f (x) = xn − a. As f ′(x) = nxn−1 and n is
even, we deduce that f ′(x) ≡ 0 mod 2, for any integer x. Therefore, according to Hensel’s
Lemma, r can be lifted to 2`+3 if and only if f (r) ≡ 0 mod 2`+3. Let 0 ≤ q < 2`+1 such that
r = 1 + 2q. Then, by binomial expansion and Lemma 1, we obtain:

f (1 + 2q) = (1 + 2q)n − a

= (1− a) + C1
n2q + C2

n22q2 + C3
n23q3 + · · ·+ Cn

n2nqn

= (1− a) + 2d+1
(

kq + k(n− 1)q2 + C3
n23q3 + · · ·+ Cn

n2nqn
)

︸ ︷︷ ︸
(A)

The first two terms in A have the same parity, while all the other terms are even (again,
by Lemma 1). Therefore, A is even showing that 2d+1 A ≡ 0 mod 2d+2. As `+ 3 ≤ d + 2,
f (1 + 2q) ≡ 0 mod 2`+3 if and only if a ≡ 1 mod 2`+3. In other words, xn ≡ a mod 2`+3

has solutions if and only if a ≡ 1 mod 2`+3.
Let us assume now that xn ≡ a mod 2`+3 has solutions. Then, all its solutions in Z∗2`+3

are obtained by lifting the solutions to xn ≡ a mod 2`+2 to 2`+3. If 1 + 2q is a solution
to xn ≡ a mod 2`+2, for some 0 ≤ q < 2`+1, then it is lifted to 2`+3 in exactly two ways:
1 + 2q + 0 · 2`+2 and 1 + 2q + 1 · 2`+2 = 1 + 2(q + 2`+1). One can easily see now that in this
way, we get exactly 2`+2 (incongruent modulo 2`+3) solutions to xn ≡ a mod 2`+3, each of
the form specified by the lemma.
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