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Abstract: Studying the optical properties of photosynthetic pigment–protein complexes (PPCs) in the
visible light range, both experimentally and theoretically, is one of the ways of gaining knowledge
about the function of the photosynthetic machinery of living species. To simulate the PPC optical
response, it is necessary to use semiclassical theories describing the effect of external fields–matter
interaction, energy migration in molecular crystals, and electron–phonon coupling. In this paper,
we report the results of photosystem II reaction center (PSIIRC) linear optical response simulations.
Applying the multimode Brownian oscillator model and the theory of molecular excitons, we have
demonstrated that the absorption, circular and linear dichroism, and steady-state fluorescence of
PSIIRC can be accurately fitted with the help of differential evolution (DE), the multiparametric
evolutionary optimization algorithm. To explore the effectiveness of DE, we used the simulated
experimental data as the target functions instead of those actually measured. Only 2 of 10 DE
strategies have shown the best performance of the optimization algorithm. With the best tuning
parameters of DE/rand-to-best/1/exp strategy determined from the strategy tests, we found the
exact solution for the PSIIRC exciton model and fitted the spectra with a reasonable convergence rate.

Keywords: differential evolution; evolutionary computations; chlorophyll; absorption; cumulant
expansion; multimode Brownian oscillator model; inhomogeneous broadening; photosystem II
reaction center

1. Introduction

Among the numerous proteins of living organisms, pigment–protein complexes (PPCs)
are perhaps the most interesting object for numerical simulations of the optical response of
proteins [1,2] simply because they control the light-driven reactions of the photosynthetic
process in organisms that transform light energy into chemical energy. With chlorophylls,
bacteriochlorophylls, and carotenoids as the main pigment molecules, PPCs actively absorb
from 300 to 900 nm, providing effective light harvesting in the visible range and subsequent
energy transport within a complex and between different complexes [3]. The optical
properties of individual pigments usually determine those of the whole PPC; however, in
some cases, the interaction energies between pigments in PPC and the local binding proteins
have much greater effect on the PPC’s optical response [1]. The number of pigments in PPCs
is crucial as well; it varies from a single carotenoid, such as in the orange carotenoid protein
(OCP) complex [4]; dozens of chlorophylls, such as in the trimeric Fenna–Matthews–Olson
complex [5–7]; hundreds of chlorophylls, such as in photosystem I [8,9]; and thousands of
bacteriochlorophylls, such as in chlorosomes [10].

The main feature of the electronic absorption bands of photosynthetic pigments is
a phonon wing, the shape and intensity of which depends on the electron–phonon inter-
action [11]. Chlorophylls and bacteriochlorophylls are characterized by a set of several
dozen vibronic states and a relatively weak electron–phonon interaction, while carotenoids
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have four pronounced vibronic states and strongly interact with the electronic states of a
pigment [12]. All of these features can be taken into account within the framework of a
theory called the multimode Brownian oscillator model (MBOM) [13]. This theory allows
for simulating a realistic absorption lineshape of an electronic transition of any pigment by
introducing the spectral density function [14]. The shape of a pigment absorption spectrum
is modeled by considering that an electronic transition is coupled to a set of effective
vibronic modes. Each mode is described by three parameters: the frequency, the damping
factor, and the Huang–Rhys factor (otherwise the electron–phonon coupling) [15]. The
first two parameters can be estimated experimentally, while the only way to obtain the
Huang–Rhys factor is by modeling the pigment’s optical response. Thus, by combining the
results of experimental analysis and theoretical modeling, we can determine a characteristic
set of microparameters for a pigment molecule and use them in further modeling.

In order to model the linear optical properties in the case of an assembly of interacting
pigment molecules, it is necessary to use the theory of molecular excitons [16] in addition
to MBOM. According to this theory, any system of interacting molecules of an arbitrary
geometry and dimensionally is described by the Frenkel exciton Hamiltonian, which is the
basis for the theory of molecular crystals [17]. Thus, combining the MBOM and the exciton
theory, the system’s optical response can be simulated with a high degree of accuracy. There
are many studies in which the combination of these two theories was used to obtain realistic
simulated spectra and kinetics of various PPCs. Nevertheless, the main disadvantage of
these works is the lack of optimization of the experimental data fitting procedure; evidence
of the uniqueness of the theoretical models are usually not given.

The use of evolution optimization algorithms [18,19], in particular differential evo-
lution (DE) [20,21], has shown that the search for optimal quantum models of primary
photosynthesis processes is possible [22,23]. As opposed to genetic evolutionary algorithms,
DE creates a new generation of model parameters, perturbing the current generation with
the scaled difference of randomly selected population members. The detailed introduction
to DE can be found in different surveys of the topic [24,25]; including descriptions of some
modifications of the classical version of the algorithm designed to improve the convergence
of DE [26–29].

The aim of our study is to explore, for the first time, the potential of DE to be an
effective optimization routine for the fitting of the PPC optical response. We have chosen
the reaction center of photosystem II (PSIIRC) as an example of PPCs (Figure 1), the linear
spectra of which should be simulated and an appropriate exciton model created [30–33]. PSIIRC
is a rather small protein. It contains only eight cofactors embedded in the protein matrix:
six chlorophylls (Chl) and two pheophytins [34]. The eight pigments in PSIIRC give us an
optically active, eight-level excitonic manifold; however, PSIIRC also has three so-called
charge separation states [31], which are optically inactive and will not be considered in our
simulations. For the sake of simplicity and clarity, we will use the pre-calculated linear
spectra of PSIIRC as target functions instead of the actually measured ones. The absence of
noise in the spectra will allow us to estimate the DE convergence with great accuracy.

The statement of the optimization problem is considered in the second section. The DE
algorithm and the references that describe its applications for the modeling of the optical
response of photosynthetic pigments are discussed in the third section. In the fourth section,
we briefly survey some important aspects of quantum theory on the basis of which the
simulation procedures were written. The quantum model of energy transfer in PSIIRC that
was used to generate the target functions is explained in the fifth section. The results of
the strategy test for different settings of DE and full datasets of the fitting procedure for
two different strategies are given in section six. Finally, some features of the strategy test, the
algorithm convergence at different DE settings, and further perspectives of DE application
for the modeling of primary photosynthetic processes are discussed in section seven.
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Figure 1. Scheme of the PPC linear optical response fitting procedure. The crystal structure of 
photosystem II and the isolated reaction center are shown at the bottom of the figure. The left block 
represents the employed theories in the simulation: the exciton theory (transition energies Ω௡, 
transition moments 𝑑௡, distances between the centers of transition moments 𝑅௡௠, coupling ener-
gies 𝐽௡௠, the dielectric constant 𝜀, the full width at half maximum of inhomogeneous broadening 𝐹𝑊𝐻𝑀ஐ) and the multimode Brownian oscillator model (൛𝜔௝, 𝑆௝, 𝛾௝ൟ are frequencies, the Huang–
Rhys factors, and damping factors of a vibronic mode). The upper blocks symbolize the differential 
evolution fitting procedures (𝐼(𝜔௡) is a measured spectrum, 𝜎௔௕௦൫𝜔௡, 𝐱௜௚൯ is a simulated spec-
trum). See more detailed explanations in the text. 
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procedures such as matrix diagonalization, fast Fourier transform, and numerical inte-
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Figure 1. Scheme of the PPC linear optical response fitting procedure. The crystal structure of
photosystem II and the isolated reaction center are shown at the bottom of the figure. The left
block represents the employed theories in the simulation: the exciton theory (transition energies
Ωn, transition moments dn, distances between the centers of transition moments Rnm, coupling
energies Jnm, the dielectric constant ε, the full width at half maximum of inhomogeneous broadening

FWHMΩ) and the multimode Brownian oscillator model (
{

ωj, Sj, γj

}
are frequencies, the Huang–

Rhys factors, and damping factors of a vibronic mode). The upper blocks symbolize the differential

evolution fitting procedures (I(ωn) is a measured spectrum, σabs

(
ωn, xg

i

)
is a simulated spectrum).

See more detailed explanations in the text.

2. Statement of the Optimization Problem

Using of the molecular exciton theory in modeling the optical properties of a PPC from
a mathematical point of view is the sequential implementation of computational procedures
such as matrix diagonalization, fast Fourier transform, and numerical integration of time-
and frequency-dependent functions. Depending on the characteristics of the vibronic
modes of the correlation functions, the number of pigments in the complex, and the
interaction energies between them, the speed and quality of the calculated spectra can vary
significantly. In general (Figure 1), a set of parameters xj = {ωk, Sk, γk, Ωn, ε, FWHMΩ}
is fed to the input of the simulation program, which entirely determines the simulated
spectra of the complexes. This set, with which the spectra are calculated, we will hereafter
refer to as a solution of the PSIIRC optical response modeling. Since the exciton theory is
semiclassical and does not assume ab initio calculations, in order to find xj, it is necessary to
compare the calculated spectra with those measured experimentally. Thus, by varying the
values of xj, one can try to find a solution for which the calculated spectra most accurately
describe the measured ones. Ideally, the best solution is the set that corresponds to the
exact coincidence of the calculated and measured spectra.

The dependence of the calculated spectra on xj is very complex and cannot be factor-
ized. Many publications are devoted to the search “manually” for a set of xj for the PSIIRC
exciton model and almost always use the simultaneous simulation of several spectra obtained
by different experimental techniques. For example, in the paper by Novoderezhkin et al. [32],
four exciton models of energy transfer in PSIIRC are considered, which correspond to four
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different sets of xj. It is clear that the process of finding a set of model parameters that
would allow the most accurate fit of the calculated and measured spectra can be optimized.
Evolutionary algorithms are applicable for this purpose if we consider the squared dif-
ference between the calculated and experimental spectra as an objective function to be
minimized. The use of DE in this case is preferable to genetic algorithms, since it allows
for varying the parameters continuously instead of discretely. Moreover, DE allows us
to classify the found solutions xj with respect to the value of the objective function. The
smallest value of the objective function corresponds to the smallest difference between the
calculated and experimental spectra. Of course, the algorithm may become stuck in the
local minimum, when any changes in xj within certain values xlocal

j make the objective
function only worse and convergence stagnates.

Thus, the combined software implementation of the optical response modeling pro-
cedures and the differential evolution algorithm will make it possible to find the exciton
model parameters that will provide the best match between the experimental and compu-
tational data.

3. Differential Evolution

The algorithm of DE has four data processing steps: initialization, mutation, crossover,
and selection. The initialization of DE runs once at the beginning of the fitting, while
three other steps sequentially repeat themselves as many times as required to obtain the
appropriate simulated spectra (Figure 1).

At the initialization of DE, a matrix of model parameters, X, is filled with random
values within specified limits, and then the objective function values are estimated. The size
of the matrix is D× Np, where D is equal to the number of model parameters, and Np is
the size of the population. Assuming that xi are the parameters to find, j = 1, 2, . . . , D and
x = xj, then the matrix of model parameters is written as X = xi, where i = 1, 2, . . . , Np.
The elements of the matrix are chosen taking into account the boundary conditions, which
consider the physical limits of the parameters to find.

After the initialization step, the main cycle of DE starts with the generation of a new
matrix, Xg, where g = 0, 1, . . . , gmax is a generation index. In the classical version of DE, a
mutant vector, vg

i , is calculated according to one of the following five expressions:

vg
i = xg

r0 + F
(

xg
r1 − xg

r2

)
, (1)

vg
i = xg

best + F
(

xg
r1 − xg

r2

)
, (2)

vg
i = xg

i + F
(

xg
best − xg

r0

)
+ F

(
xg

r1 − xg
r2

)
, (3)

vg
i = xg

best + F
(

xg
r1 − xg

r2

)
+ F

(
xg

r3 − xg
r4

)
, (4)

vg
i = xg

r0 + F
(

xg
r1 − xg

r2

)
+ F

(
xg

r3 − xg
r4

)
, (5)

where F is the weighting factor and F ∈ [0, 1]; xg
i , xg

r0, xg
r1, and xg

r2 are randomly chosen
vectors from the current population; and (i 6= r0 6= r1 6= r2) ∈ [0, Np]. xg

best is a vector
corresponding to the best solution (minimum of the objective function).

The diversity of the trial vector population can be increased by applying a crossover
procedure. In this case, a new trial vector, ug

j , is created by exchanging the elements of
each target vector of the current population with those of a mutant one. The crossover
rate, Cr ∈ [0, 1], determines the number of exchanged values in the trial vector. There are
two types of crossovers: binomial and exponential. The combination of Equations (1)–(5)
and 2 crossovers provides us with 10 different strategies to create a new generation of
model parameters. The names of the strategies are formed as follows: DE/x/y/z, where x
is a base vector (rand, best, rand-to-best), y is the number of differences (1 or 2), and z is the
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crossover type (exp or bin). Thereby, the convergence of the algorithm can be controlled by
choosing the optimal strategy and varying the weighting factor and crossover rate.

Thus, the target vector of a new generation, g + 1, is determined by comparing f
(

ug
i

)
and f

(
xg

i

)
. The expression for the objective function f

(
xg

i

)
is:

f
(

xg
i

)
=

1
N

N

∑
n=1

(
I(ωn)− σabs

(
ωn, xg

i

))2
, (6)

where I(ωn), for example, is a measured absorption spectrum of PSIIRC at frequency ωn,
σabs

(
ωn, xg

i

)
is a simulated absorption spectrum of PSIIRC, and N is the number of points

in the spectra. After the objective functions are evaluated, xg+1
i vector allocation is made

according to the following conditions:

xg+1
i =

 ug
i , f

(
ug

i

)
≤ f

(
xg

i

)
xg

i , f
(

ug
i

)
> f

(
xg

i

) , (7)

When a new population is completed, the next cycle of DE starts, and the optimization
runs until the predetermined minimum of the objective function is reached or the number
of generations reaches a specified maximum.

4. Theory
4.1. Multimode Brownian Oscillator Model

According to quantum theory of the radiation interaction with matter, the optical
response of any pigment molecule can be estimated by expanding the expression for the
polarization of a system, P(t), in powers of the radiation field assuming this field as a
perturbation. Consider a system of two electronic states: a ground state |g〉 and an excited
one |e〉 , and let µeg(q) be a transition dipole moment between states. Then, the polarization
can be written as the expectation value of µ(q):

P(r, t) = Tr
[(

µeg(q)|e〉〈 g|+ µge(q)|g〉〈 e|
)
ρ(t)

]
, (8)

where ρ(t) is a density matrix whose time evolution is determined by the Hamiltonian of
the system. The expansion of ρ(t) in powers of the field results in the decomposition of
polarization P(r, t) = P(r, t)(1) + P(r, t)(2) + P(r, t)(3) + · · · . The first term P(r, t)(1) of this
decomposition is responsible for the linear absorption:

P(r, t)(1) = − i
}

∫ ∞

0
dt1E(r, t− t1)S(1)(t1), (9)

where S(1)(t1) =
i
}θ(t1)〈µeg(t1)µeg(0)ρ(−∞)〉+ c.c. is the linear response function in the

Liouville representation, E(r, t) is the radiation field, θ(t1) is the Heaviside step function,
and 〈. . .〉 denotes the averaging over nuclear degrees of freedom, t1 = τ2 − τ1, where τi are
the ordered points on [t0, t] used in the decomposition of polarization. A general expression
for an absorption spectrum can be written in an integral form:

σabs(ω) =
∫ ∞

−∞
dt S(1)(t1)eiωt, (10)

Introducing the effective operator of the electronic energy gap, U(τ) = exp
(

i
} Hgτ

)
U

exp
(
− i

} Hgτ
)

, where U = He(q)− Hg(q)− }ωeg, He(q), and Hg(q) are Hamiltonians of
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the electronic excited and ground states, and ωeg is an arbitrary parameter. Considering
the time evolution of U(τ), the first order response function [13] can be expressed as:

S(1)(t1) =
i
}θ(t1)e−iωegt1−g(t1) + c.c., (11)

g(t) =
∫ t

0
dτ2

∫ τ2

0
dτ1C(τ1), (12)

C(τ1) =
1
}2 〈U(τ1)U(0)ρg〉, (13)

where g(t) is the lineshape function; C(τ1) is the two-time correlation function of U(τ).
Since the correlation function is complex, it can be expressed in the time domain as
C(t) = C′(t) + C′′(t), and as C(ω) =

∫ ∞
−∞ dt eiωtC(t) = C′(ω) + C′′(ω) in the frequency

domain. Considering the fluctuation dissipation theorem, we obtain the expression for C(t)
in the following form:

C(t) =
∫ ∞

−∞
dω cos(ωt)coth(β}ω/2)C′′(ω) + i

∫ ∞

−∞
dω sin(ωt)C′′(ω), (14)

where C′′(ω) is the imaginary part of C(ω) and can be treated classically. This feature of
C′′(ω) makes it quite suitable for the modeling of the optical response. Thus, the equation
for g(t) in terms of C′′(ω) is written as:

g(t) =
1

2π

∫ ∞

−∞
dω

1− cos ωt
ω2 coth(β}ω/2)C′′(ω)− i

2π

∫ ∞

−∞
dω

sin(ωt)−ωt
ω2 C′′(ω). (15)

Taking into account Equations (10) and (11), the final expression for numerical simula-
tion of the absorption lineshape is given by:

σabs(ω) =
1
π

Re
∫ ∞

0
dt ei(ω−ωeg)te−g(t). (16)

The combination of Equations (15) and (16) allow for the modeling of the linear optical
response of a single electronic transition interacting with an arbitrary set of vibronic modes.

In order to evaluate C′′(ω), the theory of MBOM must be applied [13]. In terms of
MBOM, a system consisting of an electronic state interacting with a set of vibronic states is
described by the following Hamiltonians:

Hsys = Hg + He + HVB, (17)

Hg =
N

∑
j

(
p2

j

2mj
+

1
2

mjω
2
j q2

j

)
, (18)

He = }ω0
eg +

N

∑
j

(
p2

j

2mj
+

1
2

mjω
2
j
(
qj + dj

)2
)

, (19)

HVB =
M

∑
n

[
p2

n
2mn

+
1
2

mnω2
nx2

n − xn ∑
j

cnjqj +
∑j c2

njq
2
j

2mnω2
n

]
, (20)

where Hg and He are Hamiltonians of the ground |g〉 and the excited |e〉 states. Vibronic
states of the system are modeled by introducing a certain number of effective vibronic
modes. Each mode is characterized by frequency ωj, mass mj, momentum pj, coordinate qj,
and displacement dj of the excited state potential curve. j is the index of a mode, and N is
the number of modes. The influence of the local environment is represented by the HVB part
in the system Hamiltonian, which depends on another set of oscillators, the bath modes,
and their parameters {pn, xn, ωn, mn}. The coupling between electronic and vibronic states
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is set by microparameters cnj. Finally, the MBOM correlation function is calculated using
the path integral method. The imaginary part of C(t) is written in the form:

C′′(ω) = ∑
j

2Sjω
3
j ωγj(

ω2
j −ω2

)2
+ ω2γ2

j

, (21)

where Sj = d2
j /2 are the Huang–Rhys factors, and γj are the damping factors for each ωj

that are determined empirically.
So, to calculate the absorption or the fluorescence spectrum of a monomeric pigment

molecule, such as chlorophyll, bacteriochlorophyll, or carotenoid, both in solvent and in
protein, one has to evaluate the spectral density (Equation (21)) then the lineshape function
(Equation (15)), and the absorption lineshape is simulated according to Equation (16).

4.2. Excitons

In the previous section, it was shown how to model the linear optical response of a
monomeric pigment. The theory of molecular excitons considering electronic transition
and interaction energies between pigment molecules of PSIIRC allows calculating the contri-
butions of each Chl molecule to the resulting spectra and population kinetics [16,30,34,35]. We
consider that PSIIRC consist of eight two-level Chl molecules; each molecule can be either
in a ground |0〉 or in an excited |n〉 state. n runs from 1 to N, where N is the number of
pigments in PSIIRC. Denoting B+

n = |n〉〈0| as the exciton creation operator and Bn = |0〉〈n|
as that of annihilation, the PSIIRC exciton Hamiltonian is then written in the form:

Hext = ∑
n

ΩnB+
n Bn +

1
2 ∑

n 6=m
Jmn
(

B+
m Bn + B+

n Bm
)
, (22)

where Ωn is the transition energy between the ground and the excited states of a pigment.
B+

n and Bn obey the commutation rules [Bn, B+
n ] = 1. Jmn is a matrix of coupling energies

calculated employing the extended dipole approximation [36]. This method of calculating
the interaction energies using the values of partial charges is much more accurate than the
classical dipole–dipole approximation.

Diagonalizing the Hamiltonian (Equation (22)), we obtain the eigenstates cα
n and

eigenvalues εα that allow for the transformation of the system parameters from the site
representation to the exciton representation. Thereby, the lineshape function (Equation (15))
in the exciton representation is gµναβ(t) = ∑

mnkl
cµ

mcν
ncα

k cβ
l gmnkl(t), where α, β, . . . = 1 . . . N

are indices of the exciton states. Finally, the expressions for exciton absorption, circular
and linear dichroism, and fluorescence spectra will be presented as a sum over exciton
states [9,36]:

σext
abs(ω) ≈ ω

π

N

∑
α

d2
αRe

∞∫
0

dtei(ω−εα)te−gαααα(t)e−0.5Kααt (23)

σext
CD(ω) ≈ ω

π

N

∑
α

RαRe
∞∫

0

dtei(ω−εα)te−gαααα(t)e−0.5Kααt (24)

σext
LD(ω) ≈ ω

π

N

∑
α

[
dz

α
2 − 1

2

(
dx

α
2 + dy

α
2
)]

Re
∞∫

0

dtei(ω−εα)te−gαααα(t)e−0.5Kααt (25)

σext
f l (ω) ≈ ω3

π

N

∑
α

(ndα)
2eεα β

∑n eεα β
Re
∫ ∞

0
dtei(ω−εα+2λαααα)te−gαααα

∗(t)e−0.5Kααt, (26)
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where λαααα = − lim
τ→∞

Im
[

dgαααα(τ)
dτ

]
is the reorganization energy of an exciton state α;

Kαα = ∑
β

Kαβ are the exciton relaxation rates; dα = ∑
n

cα
ndn is the Qy transition moments of

Chl transformed to the exciton representation; and Rα = ∑
nm

cα
ncα

mrnm(dn × dm) is a matrix

of the rotational strength necessary for CD spectra simulation.

5. Exciton Model of the Photosystem II Reaction Center

PSIIRC is an important PPC of photosystem II of higher plants and cyanobacteria. All
of the light quanta energy absorbed by photosynthetic PPC with minimum losses eventually
transfers to the reaction centers where chemical reactions of charge separation occur. In
addition to being the location of chemical reactions, reaction centers actively serve as a
light-harvesting complex, too. PSIIRC has six Chls, two pheophytins, and two carotenoids,
which absorb at the visible range. In this study, we are going to model the PSIIRC optical
response only in the so-called Qy region of Chl absorption which corresponds to the
650–750 nm range. It means that the excited states of carotenoids will not be taken into
account in the exciton Hamiltonian (Equation (22)). Since our simulations are focused
only on the linear spectroscopy (absorption, steady-state fluorescence, circular and linear
dichroism), the radical pair states are not considered. Thus, the PSIIRC exciton Hamiltonian
in our modeling will include contributions of eight pigments: two Chls of the special pair
(PD1 and PD2), two accessory Chls, two pheophytins, and two peripheral Chls (Figure 2B).

To explore the potential of DE as an effective optimization procedure for fitting the
PSIIRC spectra, we will use the simulated experimental data instead of the measured ones.
The real data are always noisy and may contain some inconspicuous contributions that
can only worsen the convergence of the optimization. The simulated experimental data
as target functions will allow the algorithm, in the case of successful configuration, to
converge almost to machine zero and determine the local minima for parameters of the
PSIIRC quantum model.

To simulate the optical response of Chl, we used the results of our previous studies.
The spectral density, absorption, and fluorescence spectra of monomeric Chl are shown in
Figure 2A. However, to take into account that the surrounding of Chls in PSIIRC is different
from that of it in solution, we used special values of {ωlow, Slow, γlow} determined previously
for the lowest vibronic mode. The total number of vibronic modes in Equation (21) was 39.
The number of points in the time and frequency arrays was defined as n = 211 = 2048. The
time step of integration was 0.0042 ps. The full set of

{
ωj, Sj, γj

}
for Chl can be found in

our previous publications [9,23].
Parameters of the PSIIRC exciton model are shown in Table 1. The energies of the Qy

transition of Chls and pheophytins were chosen in such a way that the simulated linear
spectra, according to Equations (16)–(20), were as close as possible to the measured ones at
room temperature. The interaction energies between PSIIRC cofactors were calculated in
the extended dipole approximation, except for the coupling between Chls in the special
pair; according to the previous studies, it was set as 150 cm−1. It must be stressed that the
inhomogeneous broadening FWHMΩ [9] was not taken into account in the simulations,
since it requires averaging over random perturbations of diagonal elements of the exciton
Hamiltonian (Equation (22)). We deliberately made such a simplification in order to allow
the algorithm of DE to converge to machine zero. The Qy transition moments and the
spectral densities of Chl and pheophytin are slightly different and when modeling the real
experimental data, these distinctions must be accounted for; however, for the purposes
of this study, it is enough to consider them to be equal. As a result, the calculated spectra
of absorption, steady-state fluorescence, and linear and circular dichroism we used for
the strategy tests and for optimization with the maximum number of free parameters are
presented in Figure 2B.
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Figure 2. Optical properties of monomeric Chl, the main pigment of Photosystem II reaction center:
the spectral density (red) of Chl and the simulated absorption (blue) and fluorescence spectra
(magenta) of Chl (A); the mutual orientation of Photosystem II reaction center cofactors (B) is a key
factor in the exciton theory (a scheme (D) of the energy levels of PSIIRC) that was applied to simulate
absorption, circular and linear dichroism, and steady-state fluorescence spectra. These spectra were
used as the target functions (C).

Table 1. Material Hamiltonian of the PSIIRC exciton model used for simulation of target functions.

PD1 PD2 ChlaccD1 ChlaccD2 PheoD1 PheoD2 ChlZD1 ChlZD2 Ωn

PD1 0 150.00 −30.94 −100.96 −3.91 19.01 0.74 0.96 14,960.0
PD2 0 −96.75 −23.53 24.53 −4.22 1.11 1.06 15,070.0

ChlaccD1 0 12.43 60.92 −4.96 2.98 0.03 15,045.0
ChlaccD2 0 −5.80 54.97 −0.02 2.71 15,080.0
PheoD1 0 3.10 −4.06 −0.32 15,100.0
PheoD2 0 −0.29 −4.44 15,120.0
ChlZD1 0 0.24 15,180.0
ChlZD2 0 15,170.0

6. Results
6.1. Strategy Test

According to our previous modeling of the linear absorption of monomeric chloro-
phylls, bacteriochlorophylls, and carotenoids, DE/rand-to-best/1/exp and DE/best/1/bin strate-
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gies have demonstrated the best convergence rates. Preliminary trial runs of the optimiza-
tion algorithm for the PSIIRC complex showed that, in general, the results of convergence
are similar to those we obtained for monomeric pigments. Thus, in the case of PSIIRC, it
was decided to run a strategy test only for the two best DE classical strategies. The strategy
control parameters varied from 0.55 to 0.85 for F and from 0.8 to 1.0 for Cr with a discrete
step of 0.05.

The number of free parameters required to simulate the linear optical response of
PSIIRC without inhomogeneous broadening is 12:8 Qy transition energies Ωn for Chls
and pheophytins, the effective dielectric constant, which is used to calculate the coupling
energies between pigments, and 3 parameters {ωlow, Slow, γlow} for the lowest vibronic
mode in the spectral density. To reduce the calculation time and to more clearly demonstrate
the effect of convergence, only 5 of the 12 PSIIRC model parameters were set as free during
the fitting procedure: 4 transition energies and the dielectric constant. Moreover, fewer free
parameters allow the optimization algorithm to converge in fewer generations. So, we set
gmax = 50 and performed 30 runs of the program for each {F, Cr} pair. The results of the
strategy test are shown in Figure 3A,B.
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Figure 3. Strategy test. Distributions of the objective functions values obtained for DE/best/1/bin
(A) and DE/rand-to-best/1/exp (B) strategies after 30 runs of DE for each {F, Cr} pair. Comparison of
the best results for DE/best/1/bin (blue) and DE/rand-to-best/1/exp (red) are shown in plot (C). Latin
letters correspond to {F, Cr} pairs. Red lines indicate the local minima of optimization.

Figure 3C demonstrates the best values of the objective function obtained for two strategies.
The plots show that the optimization becomes stuck in at least in two minima. Thus, it
can be argued that if the value of objective function is less than the lowest local minimum,
which is equal to 4.37472 × 10−7, the algorithm finds the best solution and does not stick
at any local minima. Taking into account this criterion, the number of successful opti-
mizations for all {F, Cr} pairs and two strategies was calculated. These data are shown in
Tables 2 and 3.
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Table 2. The results of the strategy test. The number of successful optimizations of PSIIRC fitting
after 30 runs of DE for each {F; Cr} pair and the DE/rand-to-best/1/exp strategy.

F
Cr

0.8 0.85 0.9 0.95 1

0.55 29 25 27 24 21
0.60 27 27 25 24 23
0.65 29 27 28 26 25
0.70 28 30 28 28 28
0.75 30 28 30 28 25
0.80 27 29 28 26 25
0.85 19 23 25 24 27

Table 3. The results of the strategy test. The number of successful optimizations of PSIIRC fitting
after 30 runs of DE for each {F; Cr} pair and the DE/best/1/bin strategy.

F
Cr

0.8 0.85 0.9 0.95 1

0.55 20 14 9 18 9
0.60 24 24 23 22 17
0.65 21 23 22 17 24
0.70 22 26 23 24 22
0.75 27 29 26 26 23
0.80 25 24 24 24 25
0.85 24 28 26 25 26

To compare the effectiveness of the two strategies, we calculated the percentage of
convergence, taking into account the criterion of the lowest local minimum. The conver-
gence probability for DE/rand-to-best/1/exp strategy is 87.9% (923 of 1050) and 74.9% (786 of
1050) for DE/best/1/bin.

6.2. PSIIRC Linear Optical Response Modeling

To perform the optimization of PSIIRC linear optical response modeling, we tuned
the DE algorithm based on the values of convergence rates and convergence probabilities
obtained in the strategy test. Considering the results of the strategy test, the corresponding
values {F = 0.55, Cr = 0.9} were chosen. Unlike the strategy test, the number of free
parameters was nine. All of the excitation energies Ωn were set free, as well as the dielectric
constant. The initial boundaries for Ωn were from 14,500 cm−1 to 15.300 cm−1 and from 0.5
to 2 for the dielectric constant, ε.

For greater accuracy and more detailed information about the convergence dynamics,
the maximum number of generations gmax chosen was 300. The results of the PSIIRC linear
optical response fitting for the two strategies are shown in Figures 4 and 5. As we can see,
the DE/rand-to-best/1/exp strategy found the best solution as opposed to DE/best/1/bin which
stuck at local minimum.
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7. Discussion

Some attempts to use the evolutionary multiparametric optimization for modeling
the optical properties of PPC have already been made. The genetic algorithm was used
to estimate the charge and energy transfer rates in photosystem I core complexes [37].
However, this first effort was not really successful: linear spectra and kinetics were not
simulated; only transfer rates were calculated to compare with those measured. Moreover,
the protein crystal structure was not available at that moment, which significantly limited
the proper use of exciton theory. The later attempt employing the same approach was used
for the light-harvesting complex II from higher plants [38]. In this case, some parameters of
the exciton model were estimated, taking into account the existing crystal structure, but the
overall optimization approach based on two-dimensional lattice model appeared to be not
very effective.

PPCs with a large number of pigments are the perfect objects for testing the effective-
ness of optimization algorithms. Simulating PPC optical properties requires considering
the electronic transition energies of all pigments in PPCs [2]. The exciton spectra of pho-
tosystem I from Synechococcus elongatus [39] were simulated with the help of the genetic
algorithm. The monomeric complex of photosystem I is characterized by a large number of
Chls, about 100 per complex. The main drawback of this study is the simulation of linear



Mathematics 2022, 10, 959 14 of 17

optical response as “stick” spectra, which is a rough approximation of the spectrum widths
for such PPCs. However, transition energies were modeled using a variation of genetic
algorithm. For each pigment, the Qy transition energy could vary discretely within the
interval of 660–715 nm with a step of 0.25 nm. Such a discretization of the parameters to
search is the main disadvantage of the genetic algorithm in comparison with DE.

Another interesting example of the modeling of the exciton dynamic, linear spectra and
time-resolved fluorescence of the monomeric photosystem I, applying a certain mutation
strategy of genetic algorithm, is described in [40]. The spectra of individual excitonic states
were simulated in terms of the Redfield relaxation theory, which already makes it possible
to estimate the width of each exciton state depending on its energy. A different protein
environment around Chls creates variations in the Qy transition energies, which cannot
be estimated theoretically. The use of evolutionary optimization in this case is one of the
ways to solve the problem of finding Qy transition energies without resorting to tedious
quantum mechanical calculations. The authors of [40] proposed several mutation strategies
of the genetic algorithm for searching for transition energies; however, due to the huge
search space, the algorithm did not achieve a correct assignment of most Chl energies.

In our simulations of the linear spectra of PSIIRC, we applied the modified Redfield
theory [35] (actually, a combination of MBOM and the exciton theory) to calculate the
absorption profile for each exciton state (Equations (23)–(26)). This approach allows us
to reproduce very realistic spectra for each exciton state of PSIIRC. Chls and Pheos in
PSIIRC are characterized by a set of 39 vibronic modes, which gives the advantage in
modeling the effect of electron–phonon interaction compared with the standard Redfield
approach. However, in applying this complex approach, we increase the number of free
model parameters, which in turn increases the computational costs of the experimental data
fitting. Our previous studies of the linear optical response of Chl, BChl, and carotenoids in
solutions were modeled considering MBOM theory [4,22,23]. To overcome the complexity
of the fitting procedure with several dozen free parameters, the DE algorithm was used. All
of the classical strategies and their tuning parameters were tested, and the best DE strategy
for fitting of monomeric pigments had been found.

PSIIRC is a system of interacting pigments fixed in the protein skeleton and, in
comparison with monomers, needs additional computational procedures such as matrix
diagonalization (eigenstate problem) and integrations over a time scale to assess the relax-
ation rates. As in the case of monomers, we perform the strategy tests for PSIIRC modeling.
The test results showed that the DE/rand-to-best/1/exp and DE/best/1/bin strategies are the
best choices for the system; however, after thoroughly testing the strategy parameters
{F, Cr}, it was found that each of those two has its own advantages and disadvantages.

For such computational algorithms, sticking at local minima for high-dimensional
multimodal function is a rather serious problem. The global solution to this problem will
sufficiently simplify the calculations because when the algorithm passes through the last
local minimum, the rate of convergence becomes clearly exponential (Figure 5). In fact, with
an increase in the number of free parameters, the convergence probability decreases greatly.
Even with optimal values of the parameters, the percentage of convergence has a certain
limit, which is determined by the initial conditions and the statement of a specific problem.

For example, with the best tuning parameters {F = 0.55, Cr = 0.9}, the convergence
rate for the DE/rand-to-best/1/exp strategy with nine unknown parameters is equal about
27%. DE/best/1/bin cannot find the best solution and is always stuck. It is worth noting that
with an increase in the number of unknowns, the value of the best tuning parameters is
retained. Therefore, the next step in solving the problem will be the creation (development)
of the algorithm, which can determine local minimum and after it can get out of there. A
more flexible selection of tuning parameters [27,28,41] (for example, an adaptation of the
SADE algorithm [29,42]) or a way to get out from the local minima could make a wide step
towards solving this problem.
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8. Conclusions

We have shown that the use of a heuristic evolutionary algorithm such as DE in
modeling the optical properties of PPCs allows us to obtain high-quality calculated spectra
and, at the same time, to assess the uniqueness of the obtained parameters of the exciton
model of the energy transfer in PPCs.

In this study, the DE algorithm was used for simulation of the linear optical response
of a system of interacting chlorophyll and pheophytin pigments. Applying the MBOM and
the theory of molecular excitons, we have demonstrated that the linear optical response
of the PSIIRC (absorption, circular and linear dichroism, and steady-state fluorescence)
can be fitted by DE with high accuracy. To explore the effectiveness of DE, we used the
simulated experimental data as the target functions instead of those of actually measured.
After the strategy test was performed, it appeared that only 2 of the 10 DE strategies have
shown the best performance of the optimization algorithm. The best tuning parameters
were determined to run the full optimization of PSIIRC linear optical response modeling.
Finally, using the DE/rand-to-best/1/exp strategy, we found the exact solution for the PSIIRC
exciton model and fitted the spectra with a reasonable convergence rate.

However, the chosen “optimal” strategies and their settings still do not allow us to find
the desired exciton models of pigment–protein complexes with 100% probability. The main
problem is that the optimization algorithm becomes stuck in the local minima (Figure 4 is a
typical example). Thus, the development of modified DE strategies that can detect local
minima and allow the algorithm to find ways to bypass them in the parameter space that
minimizes the objective function is the immediate goal of our further research in this field.
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