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Abstract: The paper discusses the proportional-integral-derivative (PID) controller from the view-
point of (a) the analytical tuning of the PID controller for the double integrator plus dead time
(DIPDT) model and (b) the numerical tuning using the performance portrait method (PPM). In the
first case, the already published tuning with multiple real dominant pole, extended by integrated
tuning procedures, which incorporate the inevitable low-pass filters by delay equivalences, is elabo-
rated for modified sets of real poles. By considering several such modified sets of real poles, resulting
in several new sets of controller parameters, the design can be better adapted to the requirements
of the control tasks solved and to the limitations of the existing control loop hardware. In a noisy
and uncertain environment, the balance between speed of setpoint and disturbance responses and
acceptable excessive controller effort can thus be improved. The effectiveness of the analytical design
can be evaluated using the numerical performance portrait method (PPM). For an already generated
performance portrait (PP), it can offer a broad spectrum of controller settings that satisfy various
design constraints. However, the results of the analytical design are still important as they facilitate
the initial steps in the elaboration of the PPM and in explaining the nature of PID control. The devel-
oped controller tuning are compared using a new interpretation of PID controller as an extension of
the stabilising PD controller by disturbance observer (DOB). The input disturbances reconstructed
by DOB by evaluating the controller output of an integral process model in steady-state, can be
estimated by a low-pass filter with a sufficiently long (integral) time constant. All analysed results are
in full agreement with the proposed DOB interpretation, which furthermore contributes significantly
to the explanation of the problems related to the optimal design of PID controllers.

Keywords: filtration; modified multiple real dominant pole method; performance portrait method;
PID control; disturbance observer

MSC: 26A48; 34D20; 34D20; 34C20; 34C12

1. Introduction

The approximation of input–output dynamics by a double integrator with transport
delay is often used in the design of automatic control systems involving moving bodies
as handled in motion control, power control systems, robotics, and so on. The pole
assignment method is one of the most popular methods for designing simple systems [1].
Its advantage is that closed-loop requirements can be met simply by choosing a suitable
pole configuration; however, the method is not suitable for the direct design of time-
delayed systems [2–8]. This is because the transport delay is usually replaced by the
Taylor or Padé expansion, which limits the pole placement method to a relatively narrow
range of selected poles. We encounter similar limitations when using the popular SIMC
(SIMple Control) tuning [9–11], which has been called “the best simple tuning in the world”;
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however, the gradually increasing demands on control performance in practice and the
growing performance of hardware open up the possibility of developing control methods
for processes with larger delays and unstable systems. A more detailed analysis of the
SIMC method [12] has shown that its shortcoming lies in the approximation of delays
and the evaluation of excessive controller effort with the total variation criterion (TV).
The aforementioned works favour the use of the simplest controllers and are limited to
stable systems, which results from both the nature of the model-based approach and the
sensitivity constraints used in conjunction with the integral of absolute error (IAE)-based
optimisation. The values recommended in the textbooks for the maximum sensitivity
Ms ∈ [1.2, 2] (which are suitable for the control of stable systems) cannot be applied to
the control of unstable systems [13], where one even has to work with values ten times
higher (e.g., [14] recommends Ms ≈ 10, [15] Ms ≈ 20). Of course, the problems mentioned
only occur in some special applications. For the majority of processes, the original or
later modified SIMC approaches provide good control performance. This SIMC example
can be used to illustrate the current overall situation in the field of PID control. It seems
that a large number of existing methods [16] and a growing number of new methods (see
e.g., [17–23], to name a few) seem to be looking for some important detail that has been
overlooked so far in the abstraction process regarding the design of PID control, and they
try to compensate for it by using different artificial intelligence methods or fractional-order
PID control methods [24,25].

In this respect, the multiple real dominant pole (MRDP) method, which was used in
the early days of control engineering [26–29], seems to be more conservative. Its analytical
results remain valid over a wide range of time lags; however, its disadvantage is that it
provides a single solution with an n-fold real dominant pole (where n is given by the
characteristic quasi-polynomial order) and has no free parameter to adapt the solution to
the variable requirements. When designing stable systems, the mentioned disadvantage
can be eliminated by slowing down the transients with suitable low-pass filter, whose
equivalent delay is added to the identified process delay. Such a solution also suppresses
the adverse effects of measurement noise [30]; however, when controlling unstable systems,
it may not be acceptable to increase the total delay by intensive filtering (see e.g., [31]).
Moreover, the experimentally observed large differences in terms of the effects of noise and
modelling imperfections that occur when proceeding from a stabilising PD to stabilising and
disturbance-compensating PID controllers require a detailed analysis of the phenomenon.

In this paper, we show how the multiple real dominant pole method can be gener-
alised for processes with several different sets of real poles to derive the corresponding
sets of rigorously designed controller settings. The results of the analytical design are then
additionally evaluated and compared with the numerical optimisation based on the perfor-
mance portrait method (PPM). This two-stage analysis, based on a thorough comparison of
optimal settings of PD and PID controllers, subsequently helps to explain the nature and
purpose of series PID control as a particular type of plant stabilisation in conjunction with
disturbance reconstruction and compensation. Series PI and PID controllers are among
the oldest in history and among the most widely used controllers in the industry [32,33].
Despite several waves of innovation triggered by the state-space approach, internal model
control, disturbance observer-based control, active disturbance rejection, etc., they remain
in the focus of researchers and industrial users without deeper integration with newer
techniques [34]. To fill this gap, in this paper we take a slightly different approach from the
usual interpretation of PID controllers as three-term control, based on the work of Sperry
and Minorsky from the beginning of the last century [33,35]. In addition to the special
characteristics of series PID controllers in terms of limitations of control variables (which
in parallel PID control leads to the emergence of the wind-up effect [36–38]), in this paper
we focus mainly on the optimal tuning of PID controllers from the point of view of recon-
struction and compensation of disturbances. PI and PID controllers can be represented, in
accordance with modern and postmodern approaches, as including a disturbance observer
(DOB) [39]. This is a very simple special form based on the evaluation of steady-state values
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of the controller output of integral models. Due to the nature of the DOB used, PID control
includes a significant limitation in terms of choosing an appropriate integral time constant.
In addition, the introduction of positive feedback to compensate for the reconstructed
disturbances severely limits the possibilities for setting up the controller compared to the
stabilising PD controller. The effectiveness and limitations of this particular DOB-based
structure, based on the analysis of the obtained optimal settings, are discussed, which is
the basic contribution of the paper.

The rest of the paper is structured as follows. Section 2 presents the performance
measures used to evaluate the optimal PID controller design for the double integrator plus
dead time (DIPDT) model. Section 3 starts with the optimal PD and PID controller tuning
using the triple and quadruple real dominant pole (TRDP and QRDP) and extends this
approach to several modified sets of four real poles (MFRP) in Section 4. The transients
obtained with the proposed controllers, extended to include the inevitable implementation
of noise reduction filters, are evaluated by simulation in Section 5. In Section 6, the
analytical design of PID controllers is complemented, explained, and generalised by an
analysis of their optimal settings using the performance portrait method. The results of the
analytical and numerical design are discussed in Section 7 in the historical context of the
development of PI and PID controllers as system stabilisation structures complemented
by disturbance reconstruction and compensation using DOBs based on the evaluation of
steady-state values of the controller output. All results of analytical and numerical tuning
of PID controllers are compared with the proposed definition of the functional mission
of PID controllers and fully confirm this proposal. The overall results of the article are
summarised in in the conclusions.

2. Time and Shape Related Performance Measures

When evaluating the speed of transients, the integral of the absolute error (IAE)

IAE =
∫ ∞

0
|e(t)|dt ; e = w− y , (1)

is used, where w denotes a piecewise constant reference setpoint, y the process output
and e the control error. The advantage over using an alternative option called “settling
time” [40,41] is that the IAE does not have to define the width of the zone around the
desired state after which the transients are considered to be terminated. Since IAE minimi-
sation of optimal responses typically leads to overshoot of the output, the shape-related
constraints are combined based on the concept of monotonicity. The corresponding per-
formance measures can be based on the total variation (TV), introduced in [10] as the
sum of all absolute increments of a given variable. The fundamental problem with using
TV to evaluate excessive control effort is that even changes in control action required to
achieve the desired output transients after setpoint reference signal changes, or to eliminate
disturbances count as the excessive control increments; therefore, some modifications must
be made. Such TV modifications can then also be used much more broadly in evaluating
the deviations of all loop transients from monotonicity.

These modifications include TV0(y), using samples yi = y(Tsi), i ∈ [0, ∞) of the output
signal y(t) viewed with the sampling period Ts, where

TV0(y) =
∞

∑
i=0
|yi+1 − yi| − |y∞ − y0| (2)

TV0(y) can be interpreted as a measure of the deviation from monotonicity. TV0(y) = 0
only for monotonic responses y(t). Otherwise TV0(y) > 0. For a response with a single
overshoot amplitude ∆, TV0(y) = 2∆.

For a response with a single pulse (1P) shape [41], i.e., a shape consisting of two
monotonic intervals separated by an extreme point ym /∈ (y0, y∞) lying outside the interval
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formed by the initial and final output values y0 and y∞, evaluating the deviations from
monotonicity twice yields a deviation from an ideal 1P response

TV1(y) = ∑
i
|yi+1 − yi| − |2ym − y∞ − y0| (3)

This performance measure is be used to evaluate disturbance step responses at the
system output.

In the control of a double integrator [40,41], the shape of the ideal plant input (con-
troller output) of a piecewise continuous control signal u(t), t ∈ [0−, ∞), which is required
to obtain ideal monotonic setpoint steps and 1P disturbance steps of the output, is given by
the inverse plant dynamics. It can be shown that it specified by two extreme points um1,
um2, which occur at times t1, t2 ∈ (0, ∞), lie between the initial and final values u0 and u∞
and satisfy the condition

(um1 − u∞)(um2 − u∞) < 0. (4)

These extreme points divide the control signal into three monotonic control intervals.
The excessive control effort, which represents the deviations from such a 2P response and
summarises the deviations from monotonicity of the three subintervals, can be expressed
as follows

TV2(u) = ∑
i
(|ui+1 − ui|)− |2um1 − 2um2 + (u∞ − u0)sign(um1 − u∞)| (5)

Another problem of transient optimisation and evaluation is the quantitative expres-
sion of the adequacy of the input effort for the achieved speed of the transients, which
includes the optimality of the chosen parameters of the controller with respect to the sys-
tem dynamics, design uncertainties, non-modelled dynamics, and measurement noise.
However, the definition of adequacy cannot be easily generalised or standardised. Such a
concept always depends on the given system and the requirements of a particular applica-
tion. Since it is to be expected that as the transient speed increases, the excessive controller
effort also increases, a combined (speed-effort) cost function

Jk(u) = IAEk TV2(u) (6)

is considered for the optimisation of the controller settings. Here, the exponent k expresses
a variable weighting of the speed of the transients with respect to the shape deviations
considered, which is specified differently depending on the context of the optimisation.

3. PD and PID Controller Tuning with the MRDP Method

Let us consider the double integrator plus dead time (DIPDT) model [31]

F(s) = Kse−Tds/s2 (7)

With stabilisation by an ideal PD controller

U(s) = (Kp + Kds)E(s) (8)

the closed loop transfer function

Fwy(s) =
Y(s)
W(s)

=
Ks(Kds + Kp)

eTdss2 + Ks(Kp + Kds)
(9)

has a characteristic quasi-polynomial

APD(s) = eTdss2 + Ks(Kp + Kds) (10)
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It is well known that the change in the nature of transients from exponential to
oscillatory occurs at multiple real poles of the system. To find such an “optimal” pole so and
two parameters of the controller Kpo, Kdo, we need three equations that give the required
multiplicity of the pole so to make the calculation possible. From the properties of the triple
pole, the parameters were calculated to meet the following requirements:[

APD(s);
dAPD(s)

ds
;

dA2
PD(s)
ds2

]
s=so

= 0 (11)

In solving the given relations, we are interested in so, which is closest to the imaginary
axis in the left half-plane and which we can call the dominant pole. From the second derivative

dA2
PD(s)
ds2 = (s2 + 4s + 2)eTds = 0 (12)

we obtain an equation solvable via the variable s, which gives the TRDP and the associated
time constant as:

so = ε/Td = −0.5858/Td; To = −1/so = 1.7071Td (13)

The fastest non-oscillatory responses then correspond to a triple-real-dominant-pole
(TRDP) tuning

Kpo =
eε(10

√
2− 14)

KsT2
d

=
0.079
KsT2

d
; Kdo = −

εeε

KsTd
=

0.461
KsTd

; ε =
√

2− 2 (14)

A more compact notation of obtained results yields dimensionless controller parameters

κo = KpoKsT2
d = 0.079; δo = KdoKsTd = 0.461; τD = δo/κo = 5.8284;

po = soTd = −0.5858.
(15)

To eliminate the overshoot of the setpoint step responses caused by the zeros of Fwy in
(9), a pre-filter must be added to the PD controller (8)

Fp(s) =
1 + bs

1 + TDs
; TD =

Kd
Kp

; b = To, (16)

where both the numerator zero −1/TD and one of the triple poles of the closed-loop
so = −1/To are cancelled. For unit setpoint step responses, the controller then delivers the
IAE value

IAEw = 4.1213Td. (17)

Similarly, the following applied to an ideal parallel PID controller

C(s) =
U(s)
E(s)

= Kc

(
1 +

1
sTi

+ sTD

)
= Kc + Kds +

Ki
s

(18)

where Kc is the controller gain, Ti the integral and TD the derivative time constant, we
obtain the closed-loop transfer functions

Fwy(s) =
Y(s)
W(s)

=
KcKs(1 + Tis + TiTDs2)

Tis3eTds + KcKs(1 + Tis + TiTDs2)

Fiy(s) =
Y(s)
Di(s)

=
KsTis

Tis3eTds + KcKs(1 + Tis + TiTDs2)

(19)

For the characteristic quasi-polynomial

P(s) = Tis3eTds + KcKs(1 + Tis + TiTDs2) (20)
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the number of unknown parameters now requires consideration of four equations. These
can be formulated as conditions for the quadruple real dominant pole (QRDP) (11)[

P(s);
dP(s)

ds
;

dP2(s)
ds2 ;

d3P(s)
ds3

]
s=so

= 0 (21)

By solving these, one obtains the dimensionless (normalised) controller parameters

κo = KcoKsT2
d = 0.1248; δo = KdoKsTd = 0.5045; ηo = KioKsTd = 0.0121

τio = Tio/Td = 10.324; τDo = TDo/Td = 4.043
(22)

They correspond to the dimensionless dominant pole/time constant

po = soTd = −0.416; τo = −1/po = 2.405 (23)

To avoid overshooting of the setpoint step responses due to zeros of Fwy in (19), the
derived PID controller (18) can be extended by a pre-filter

Fp(s) =
1 + bs + cs2

1 + Tis(1 + TDs)
(24)

Since the simplest numerator tuning with the values

b0 = c0 = 0 (25)

further slows down the setpoint response, we will consider numerator tuning that speeds
up the setpoint responses by cancelling one or two of the dominant poles so, or s2

o , when
(with using the number of cancelled poles as index)

c1 = 0, b1 = To, or c2 = T2
o , b2 = 2To; To = −1/so = 2.405Td (26)

Depending on the numerator order, the QRDP tuning yields IAE values

IAEw0 = 10.323Td; IAEw1 = 7.918Td; IAEw2 = 5.513Td; IAEi = 82.728T3
d . (27)

The first two controller parameters Kc and Kd can be compared with the corresponding
values of the PD controller, which shows the basic problems of building PID controllers
with the QRDP method.

Remark 1 (Basic paradoxes in building PID controllers with the QRDP method). Due to
the introduction of the I-action implemented in form of a positive feedback, the proportional gain of
the PID controller has to be increased by 0.1248/0.079 = 1.58 times and the derivative gain by
0.5045/0.461 = 1.1 times. Nonetheless, the speed of the transients decreased by 0.586/0.416 = 1.4
times with respect to the dominant poles and with respect to IAEw, in the optimal case given by
IAEw2 by 5.513/4.1213 = 1.34 times, 1.92 times for IAEw1, and by 2.5 times for IAEw0. This
velocity decrease, together with the increased sensitivity of the control loop, may be sufficient to
completely eliminate the advantages of the controller I-action (as experimentally confirmed in [31]).

Therefore, in the following we focus on alternative circuit settings that, while retaining
the advantages of rigorous tuning, would mitigate the above shortcomings and thus help
to the expand the possible applications of this method in practice.

Remark 2 (QRDP PID controller integration time constant). The integration time constant
of the QRDP PID controller Ti = 10.324Td is much larger than the dominant time constant
To = 1.707Td of transients stabilised by the TRDP PD controller. This means that the signal at
the output of the low-pass filter with the time constant Ti settles much later than the output of the
stabilising PD controller (14).
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4. Modified Controller Tuning
4.1. Tuning of the PID Controller According to a Modified Position of One Real Pole

Next, find a controller tuning that corresponds to a triple real pole so and a single pole
so/m, where m > 0 is a real positive number. To simplify the solution, we start with a
characteristic quasi-polynomial

P(p) = τi p3ep + κ(1 + τi p + τiτD p2); p = Tds (28)

For a chosen m, the corresponding set of poles must satisfy four conditions[
P(p);

dP(p)
dp

;
dP2(p)

dp2 ;
]

p=po

= 0; P(
po

m
) = 0; m > 0 (29)

From

epo/m = −
[

κ(1 + τi p + τiτD p2)

τi p3

]
p=po/m

(30)

it is possible to express

epo =

(
−
[

κ(1 + τi p + τiτD p2)

τi p3

]
p=po/m

)m

(31)

and insert epo into the first three Equation (29). If one solves these systems of equations as a
function of κ, τD, τi and inserts this solution, parameterised by po, into (30), one obtains an
equation of the form

epo = f (po) (32)

with a single unknown po. The solutions obtained with computer algebra are listed in
Table 1 for different values of the parameter m.

Table 1. PID control according to the quasi-polynomial (28) with a triple real pole po and a single
pole po/m; Kd = KcTD; Ki = Kc/Ti.

m po = soTd τo = −1/po κ = KcKsT2
d τD = TD/Td τi = Ti/Td δ = KdKsTd η = KiKsTd

1/2 −0.33822 2.9567 0.1161 4.243 11.052 0.4926 0.01050

1 −0.41578 2.4051 0.1248 4.043 10.324 0.5045 0.01209

2 −0.47949 2.0855 0.1185 4.200 11.131 0.4977 0.01065

3 −0.50810 1.9681 0.1115 4.401 12.513 0.4906 0.00891

4 −0.52450 1.9066 0.1063 4.569 14.051 0.4856 0.00757

4.2. Tuning the PID Controller According to a Modified Position of Pair of Poles

Larger effects of changes can be expected for a controller tuning corresponding to a
obtained double real pole so and a changed pole pair so/m, where m > 0 is a real positive
number. A characteristic quasi-polynomial (28) is again assumed to derive the simplified
solution. The chosen set of poles leads to four conditions[

P(p);
dP(p)

dp

]
p=po

= 0;
[

P(p);
dP(p)

dp

]
p=po/m

= 0; m > 0 (33)

From

epo/m = −
[

κ(1 + 2τD p)
p3 + 3p2

]
p=po/m

(34)
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it is possible to convert

epo =

(
−
[

κ(1 + 2τD p)
p3 + 3p2

]
p=po/m

)m

(35)

and epo into the first two equations (33). Solving these systems of equations in terms of
κ, τD, τi and inserting this solution parameterised by po into (34), one obtains an equation
of the form

epo = f2(po) (36)

with a single unknown po. The solutions obtained with computer algebra are listed in
Table 2 for different values of the parameter m.

Table 2. PID control corresponding to the quasi-polynomial (28) with a double real pole po and a
pole pair po/m; Kd = KcTD; Ki = Kc/Ti.

m po = soTd τo = −1/po κ = KcKsT2
d τD = TD/Td τi = Ti/Td δ = KdKsTd η = KiKsTd

1 −0.41578 2.4051 0.1248 4.043 10.324 0.5045 0.01209

2 −0.56336 1.7750 0.1148 4.292 11.354 0.4926 0.010109

3 −0.64740 1.5446 0.1013 4.707 13.063 0.4768 0.007756

4 −0.70300 1.4225 0.08978 5.164 14.932 0.4636 0.006012

4.3. Tuning PID Controller According to Threefold Change in Pole Position

The strongest effect of changes can be expected for a controller tuning corresponding
to a single obtained real pole so and a modified triple pole so/m, where m > 0 is a real
positive number. Starting from the characteristic quasi-polynomial (28), the chosen set of
poles yields four conditions

P(po) = 0;
[

P(p);
dP(p)

dp
;

dP2(p)
dp2 ;

]
p=po/m

= 0; m > 0 (37)

The solutions obtained using computer algebra are listed in Table 3 for different values
of the parameter m.

Table 3. PID control corresponding to the quasi-polynomial (28) with a single real pole po and a triple
pole po/m; Kd = KcTD; Ki = Kc/Ti.

m po = soTd τo = −1/po κ = KcKsT2
d τD = TD/Td τi = Ti/Td δ = KdKsTd η = KiKsTd

1 −0.41578 2.4051 0.1248 4.043 10.324 0.5045 0.01209

2 −0.67643 1.4783 0.1161 4.292 11.052 0.49258 0.010504

3 −0.87156 1.1474 0.1013 4.707 13.063 0.4716 0.0084570

4 −1.0290 0.9718 0.09108 4.938 13.341 0.4498 0.006827

For all modified controllers, the prefilter tuning can be derived to cancel a dominant
pole so, so/m, or a pole pair s2

o , (so/m)2, or s2
o/m

c = 0, b = To, or c = 0, b = mTo; To = −1/so. (38)

Remark 3 (Integration time constants of modified PID controllers). Note that Remark 2 also
applies to all modified PID controllers listed in Tables 1–3.



Mathematics 2022, 10, 971 9 of 25

4.4. Tuning the Controller with Equivalent Delay

To obtain a proper controller transfer function, which is necessary for its implementa-
tion, and to attenuate the measurement noise, the ideal controller (18) must be combined
with a binomial low-pass filter Qn(s)

Qn(s) =
1(

Tf s + 1
)n ; n ≥ 1 (39)

In order to ensure sufficient filtering, the sampling period Ts must be chosen so that
the following condition is fulfilled Ts << Tf .

The model dead time Td must include, in addition to an estimate of the loop delay Tm
(which is the sum of the delays of the process, the actuators and the measurement sensors
with a communication and computation delay), an intentionally introduced equivalent
filter delay estimate Te

Td = Tm + Te (40)

Here Te (see e.g., [30]) is used to approximate the dynamics of the low-pass filters
Qn(s) in terms of a dead time that can simply be added to the total dead time Td. Te can be
approximated as follows

Te = nNTf (41)

where the coefficient N can be given by values in the range from N = 0.5 (equivalence
based on “the half rule”) to N = 1 (equivalence based on “the average residence time”).

Examples of setpoint and disturbance step responses with pole configurations and
tunings according to Tables 1–3 are shown in Figures 1–3. For the dead time of the system,
denoted by Tm = 1, all these responses take into account the first-order implementation
filter (39) with time constant Tf = Tm/10, which is included in the controller tuning
according to (41) with N = n = 1. They prove that the smooth, almost ideal transients
given by the QRDP method can also be extended to wider configurations of real closed-loop
poles. While the effect of increasing m in terms of the resulting circuit dynamics is always
clear (increasing m slows down the disturbance responses), the resulting effect in terms of
setpoint responses also depends on the prefilter setting used. Looking at the change in a
single pole by removing it from the setpoint response, an increase in m can actually speed
up the setpoint responses.

Figure 1. PID control according to the quasi-polynomial (28) with a triple real pole po and a single
pole po/m according to Table 1; n = N = 1; c = 0; no noise.
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Figure 2. PID control corresponding to the quasi-polynomial (28) with a double real pole po and a
pole pair po/m according to Table 2; n = N = 1; c = 0; no noise.

Figure 3. PID control corresponding to the quasi-polynomial (28) with a single real pole po and a
triple pole po/m according to Table 3; n = N = 1; c = 0; no noise.
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A picture of the effects of setting changes on the open-loop Nyquist curves can be
obtained from Figure 4.

Figure 4. Nyquist curves of the systems from Figure 1 (left) and Figure 2 (right).

5. Evaluation of the Performance Offered by the Analytical Design

The above conclusions are best quantified using appropriate performance measures.
The effect of increasing m on the IAEd values, corresponding to a step change in input
disturbance, is significantly greater when the two modified poles are considered (see
Figures 5 and 6, or the numerical values in Table 4). With the setpoint responses, the role of
the appropriate prefilter setting also becomes apparent.

Figure 5. IAE values of the 2DOF PID control with prefilter (24) and a first-order implementation
filter tuned according to (41) with a triple real pole po and a single pole po/m according to Table 1
(left) and with a double real pole po and a pole pair po/m according to Table 2 (right), no noise;
Tm = 1; Ks = 1; Tf = Te = 0.1; n = N = 1.

Figure 6. IAE values of the 2DOF PID control corresponding to the quasi-polynomial (28) with a
triple real pole po and a single pole po/m according to Table 3; no noise; Tm = 1; Ks = 1; Tf = Te = 0.1;
n = N = 1.
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Table 4. IAE values of the 2DOF PID control with prefilter (24) and a first-order implementation filter
tuned according to (41) with a triple real pole po and a single pole po/m according to Table 1 (above),
with a double real pole po and a pole pair po/m according to Table 2 (middle) and with a single
real pole po and a triple pole po/m according to Table 3 (below); a measurement noise amplitude
|δ| < 0.01; Tm = 1; Ks = 1; Te = 0.1; n = N = 1; Ts = 0.001.

- m = 1 m = 2 m = 3 m = 4

IAEw/IAEw(1), b = To 1.0000 1.1348 1.3169 1.5088

IAEw/IAEw(1), b = mTo 1.0000 0.9019 0.8780 0.8741

IAEd/IAEd(1) 1.0000 1.1353 1.3546 1.5878

IAEw/IAEw(1), b = To 1.0000 1.1969 1.4321 1.6725

IAEw/IAEw(1), b = mTo 1.0000 0.9987 1.0875 1.1985

IAEd/IAEd(1) 1.0000 1.1953 1.5564 1.9993

IAEw/IAEw(1), b = To 1.0000 1.2090 1.3931 1.5616

IAEw/IAEw(1), b = mTo 1.0000 1.0224 1.1034 1.1938

IAEd/IAEd(1) 1.0000 1.1507 1.4289 1.7688

To evaluate the influence of noise on the resulting loop performance, a noise generator
was added to the Matlab/Simulink scheme (see Figure 7), represented by the Uniform
Random Number block with output amplitude |δn| < 0.01. The influence of the noise on
the output signals was practically negligible, but became strongly apparent at the controller
output, where the noise amplitudes completely covered the useful signal.

Figure 7. Matlab/Simulink simulation scheme in performance evaluation with measurement noise
generator by Uniform Random Number block; Pn = [Tf 1] represents the PID filter denominator,
a = 0.

The IAE and TV2(u) values measured with sampling period Ts = 0.001 and simulation
time tsim = 50 s, corresponding to the PID control with prefilter (24) and a first-order
implementation filter calculated according to (41) with a double real pole po and a pole pair
po/m according to Table 2 for the loop with Tm = 1; Ks = 1; Tf = Te = 0.1; n = N = 1, are
shown in Figure 8 (for the numerical values see Table 5). While the IAE values increase
with increasing m, the excessive controller effort values decrease. To automate the selection
of the optimal solution in such a situation, it is necessary to introduce cost functions (6)
that take both trends into account in an appropriate way. The key moment for the design of
such a function is the choice of the appropriate weighting, where the coefficient k is chosen
according to the specifications of the particular application. As the curves in Figure 9 show,
for a value of k = 1 the increasing trend J1 with increasing m predominates, but for a lower
weighting of the control speed (IAE values), given by k = 1/10, the general decrease in the
cost function already prevails.
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Figure 8. IAE and TV2(u) values of the 2DOF PID control with prefilter (24) and a first-order
implementation filter tuned according to (41) with a double real pole po and a pole pair po/m
according to Table 2, noise amplitude |δn| < 0.01; Tm = 1; Ks = 1; Tf = Te = 0.1; n = N = 1;
Ts = 0.001.

Figure 9. Jk(u) values (6) of the 2DOF PID control with prefilter (24) and a first-order implementation
filter tuned according to (41) with a double real pole po and a pole pair po/m according to Table 2
for k = 1 and k = 1/10, noise amplitude |δn| < 0.01; Tm = 1; Ks = 1; Tf = Te = 0.1; n = N = 1;
Ts = 0.001.

Comparing the PD and PID Controllers

Let us return to the basic problem of the transition from a stabilising PD controller
to a PID controller that allows full compensation after piecewise constant input distur-
bances from Remark 1. Now repeat the experiment from the above evaluation of different
modifications of the PID controller (see Table 6), keeping all parameters and settings of
the implementation filter for the PD controller. Under the influence of noise we obtain the
following values:

IAEw,PD = 4.533; TV2,PD(uw) = 560.3106 (42)

Comparing the figures (42) with the values of the PID controller in Table 6, we see
that despite the improvements achieved by the changes, the ratio of transient speed to
excessive controller effort has not improved significantly. Of course, additional sets of
real poles on which the design is based could also be investigated; however, since at the
time corresponding to the value To, the mode value corresponding to the time constant
4To is practically zero, one can assume that the ratio m = 4 already covers all realistic
combinations of real poles with sufficient accuracy.
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Table 5. The 2DOF PID control with prefilter (24) and a first-order implementation filter tuned
according to (41) with a double real pole po and a pole pair po/m according to Table 2: IAE, TV2(u),
J1(u) and J1/10(u) values ((6) for k = 1 and k = 1/10) normalised by numbers corresponding to
m = 1; a measurement noise amplitude |δ| < 0.01; Tm = 1; Ks = 1; Te = 0.1; n = N = 1; Ts = 0.001.

- m = 1 m = 2 m = 3 m = 4

IAEw/IAEw(1), b = To 1.0000 1.1969 1.4321 1.6725

IAEw/IAEw(1), b = mTo 1.0000 0.9987 1.0875 1.1985

IAEd/IAEd(1) 1.0000 1.1953 1.5564 1.9993

TV2(uw)/TV2(uw)(1), b = To 1.0000 0.9766 0.9452 0.9190

TV2(uw)/TV2(uw)(1), b = mTo 1.0000 0.9766 0.9452 0.9189

TV2(ud)/TV2(ud)(1) 1.0000 0.9766 0.9452 0.9190

J1(uw)/J1(uw)(1), b = To 1.0000 1.1689 1.3536 1.5370

J1(uw)/J1(uw)(1), b = mTo 1.0000 0.9753 1.0278 1.1013

J1(ud)/J1(ud)(1) 1.0000 1.1673 1.4712 1.8373

J1/10(uw)/J1/10(uw)(1), b = To 1.0000 0.9943 0.9798 0.9675

J1/10(uw)/J1/10(uw)(1), b = mTo 1.0000 0.9764 0.9531 0.9357

J1/10(ud)/J1/10(ud)(1) 1.0000 0.9942 0.9880 0.9849

Table 6. PID control corresponding to the quasi-polynomial (28) with a double real pole po and a pole
pair po/m; Kd = KcTD; Ki = Kc/Ti with a measurement noise amplitude |δ| < 0.01; Td = 1; Ks = 1;
Te = 0.1; n = N = 1; Ts = 0.001.

- m = 1 m = 2 m = 3 m = 4

IAEw, b = To 8.9518 10.7147 12.8197 14.9720

TV2(uw), b = To 1529.2 1493.4 1445.4 1405.2

IAEw, b = mTo 8.9518 8.9399 9.7348 10.7284

TV2(uw), b = mTo 1529.2 1493.3 1445.3 1405.2

6. Analytical Tuning versus Performance Portrait Method

In the following, we compare the results of the analytical tuning of the controllers based
on sets of real dominant poles with the performance portrait method (PPM). PPM [40,41]
assumes verification of loop properties at all possible relevant controller settings, which
should be expressed by a grid of points whose spacing is chosen fine enough to capture all
loop properties of interest. We simulated the loop (or control the process in real time) over
this grid and store the obtained transient properties in a matrix of performance measures.
These simulations should capture all the important features of the plant’s behaviour. Given
the multi-point loop evaluation, the authors of [42] referred to this method as a “brute force”
approach; however, this statement is not entirely accurate, because:

• PPM is the only optimisation method that, once a performance portrait (PP) has been
generated in dimensionless variables, allows its easy and unlimited reuse for different
circuit parameters and criteria to select the optimal solution in different combinations.

• Has no problems with convergence to the optimal solution, if the scope of PP genera-
tion and the point grid have been determined appropriately.

• The success of the method depends primarily on the choice of appropriate performance
measures that can overcome the effectiveness of traditional constraints based on
maximum sensitivity (Ms).
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• Similar methods for evaluating all relevant (admissible) solutions and selecting the
best solution are often applied in other areas of social practice, not only to mention
public procurement as a possible example.

6.1. Parallel PID Tuning without Prefilter Optimisation

The first step in using PPM is to select the appropriate ranges of each parameter when
dealing with the PID controller settings for the DIPDT system. In this step we rely on the
results of analytical controller design from previous sections, where we found optimal
solutions with parameters the (22) and with the parameters in Tables 1–3, which define
the intervals of interest as κo ∈ [0.079, 0.125]; δo ∈ [0.45, 0.51]; τio ∈ [10, 15]; τDo ∈ [4, 5.83]
(or τio ∈ [10, ∞], if one also wants to include the PD control). In view of these values and
the need to examine their immediate surroundings, we have therefore opted for PP with
the ranges

κ ∈ [0.05, 0.35]; ∆κ = 0.01; δ ∈ [0.35, 1.05]; ∆δ = 0.1; τi ∈ [6, 22]; ∆τi = 2. (43)

If we want to generate PP independently of the choice of filter needed to implement
the derivative action of the PID controller, we can use a scheme with available output
derivative (Figure 10). In this case, however, the prefilter must be chosen as follows to
delete the zero of Fwy(s)

Fp(s) =
bTis + 1
Tis + 1

(44)

To avoid choosing the optimal setting of the prefilter numerator chosen as bTis + 1,
b ∈ (0, 1) (which would require increasing the size of PP), we choose the default value
b = 0, which partially slows down the setpoint responses.

Figure 10. Matlab/Simulink simulation scheme used to generate PP with Fp(s) = 1/(1 + Tis).

When generating PP, we simulated the transients corresponding to the unit setpoint
steps and the unit input disturbance steps. After evaluating them, we stored the values
IAEw, IAEd, TV2(uw), TV2(ud), TV0(yw), TV1(yd) in the performance measures matrix.

After creating PP, we started comparing the results from PPM obtained with the
analytical design. We first focused on the fastest possible transients with the smallest
possible total values

IAE = IAEw + IAEd
TV2(u) = TV2(uw) + TV2(ud)

(45)

taking into account equal weighting on the results from the evaluation of the unit setpoint
and disturbance step responses. With regard to the IAE values (27), this means that in
the search for the optimal PID parameters, the values corresponding to the disturbance
step responses will dominate. As for the deviations from the ideal transients, we have
chosen separately

TV2(uw) ≤ 0.1; TV2(ud) ≤ 0.1; TV0(yw) ≤ 0.01; TV1(yd) ≤ 0.01. (46)
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Searching over the calculated and stored PP with performance measures that satisfy
the above requirements yields optimal controller tuning

κo = 0.24; δo = 0.70; τio = 8. (47)

A comparison of the transients with the analytical tuning in Figure 11 shows that PPM
makes it possible to find transients similarly fast as with the QRDP method even without
the prefilter optimisation. The advantage of the QRDP setting, however, is that it works
with lower controller gains (which is important for noisy control loops). It should provide
ideal response shapes for all values of the model parameters Ks and Td. The non-zero shape
deviations entered for dimensionless quantities are subject to changes depending on the
model parameters during the transition to real values of the shape deviations, which means
that they can ultimately be significantly different [41]. This transformation must be taken
into account when specifying the search conditions.

From the limited area with TV1(yd) ≤ 0.01 in Figure 12, which satisfies all specifica-
tions (46) at τi = 8, it is obvious why it is not possible to significantly reduce the noise effect
by reducing the proportional and derivative gains κ and δ. The shape of this area does not
allow a significant shift of the operating point without violating the specifications.

However, if we find the optimal operating point corresponding to a reduced value
δ = 0.35 (see Figure 13), we calculate the optimal setting as

κo = 0.08; δo = 0.35; τio = 14. (48)

We see that reducing the derivative gain also leads to a reduction in the proportional
gain and an increase in Ti. If we needed to reduce the gains further, it would be necessary
to generate PP for lower δ values and possibly adjust the ranges of other PP variables. Simi-
larly, it would also be possible to extend the range of performance measures, considered, for
example, by looking for disturbance responses with limited maximum output amplitude.

6.2. Alternative Controller Tuning Optimised under Consideration of Sensitivity Constraints

To complete the comparison, the responses with PID controller optimised under Ms
constraints (see Table 2 in [11] ) are going to be used. The dimensionless parameters of the
series PID controller for three Ms values are considered

κ = 0.0354; δ = 0.382; τ = 10.74; Ms = 1.59
κ = 0.0505; δ = 0.4737; τ = 9.37; Ms = 1.80
κ = 0.0625; δ = 0.5475; τ = 8.64; Ms = 2.00

(49)

They can be recalculated for the parallel controller according to (52) as follows

κo = 0.0710; δo = 0.1905; τio = 21.5310; Ms = 1.59
κo = 0.1011; δo = 0.2367; τio = 18.7502; Ms = 1.80
κo = 0.1259; δo = 0.2719; τio = 17.4000; Ms = 2.00

(50)

For simplicity, we again use the prefilter (24) with the numerator parameters b = c = 0.
The corresponding transients in Figure 11 show these responses yet much slower than for
the QRDP and PPM tuning. The question naturally arises whether their speed, such as the
speed corresponding to the PPM setting, does not carry risks in terms of lower robustness.

A similar task for the integrator plus dead time (IPDT) system analysed in [41] has
shown that PPM can solve a robust design with uncertain values of model parameters
specified in intervals much more efficiently than sensitivity-constrained optimisation.
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Figure 11. Unit setpoint (left) and disturbance responses (right) corresponding to optimal tuning
calculated by the PPM with the parameter grid (43) under the performance specifications (46) and
(48), by the QRDP tuning (22) and by the IAE-based optimisation under Ms constraints [11]; Tm = 1;
Pn = [Tf 1]; Tf = 0.1; Ks = 1; Ts = 0.001.

Figure 12. PP cross-section corresponding to τi = 8, indicating the optimal setting (47) fulfilling the
constraints (46).
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Figure 13. PP cross-section corresponding to τi = 14, indicating the optimal setting (48) fulfilling the
constraints (46) with an additional constraint δ = 0.35.

The fundamental limitation here remains the visualisation of the information contained
in the multidimensional PP, which by its nature is more suitable for computer support than
traditional texts.

The whole issue can be illustrated by plotting a three-dimensional (3D) PP cross-
section for the optimal value of τi = 8 (Figure 12). We see that the optimal point found,
which satisfies the given shape constraints for input and output (46), lies within the defined
areas and its localisation is predominantly influenced by the admissible values of TV2(ud).

Similarly, we were able to show that when the integration time constant τi is reduced
to speed up the responses, the admissible areas corresponding to the constraints on TV0(yw)
and TV1(yd) disappear, so that we no longer find the optimal setting that satisfies the given
shape requirements (46).

So far, we have shown with the help of PPM that in the analytical design of the
regulator considering different MFRPs, we did not omit any settings at which the result-
ing dynamics could be significantly improved, especially in terms of Ti reduction. This
statement will not change even after the PPM has been extended to optimise pre-filter
settings [43]; however, a complete picture of the usefulness of the calculated PID controller
setting can only be obtained by evaluating the effect of the noise. If we again use noise
generation by the Uniform Random Number block with an amplitude of δn ≤ 0.01, we
obtain the performance measures in Figure 14 calculated according to (6) and (45). Evalua-
tion of the setpoint step responses shows that the optimal tuning (47) found by PPM yields
almost the same IAEw as the QRDP tuning. However, since we used PP without optimised
prefilter tuning, which is achieved with higher controller gains (47), the corresponding
TV2(uw) values are higher than for the QRDP tuning (22) with the prefilter cancelling one
closed-loop pole (26). The same is true for the combined cost function (6) Jk(uw) et for the
setpoint responses.
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Figure 14. Performance measures for unit setpoint step responses corresponding to optimal tuning
calculated for the PP achieved with (43) under the performance specifications (46) (left), by means
of PPM with decreased controller gains (48) (right), by the QRDP tuning (22) and by the IAE-based
optimisation under Ms constraints [11]; Td = 1; Ks = 1; Ts = 0.001.

Tuning (48) with reduced controller gains determined via PPM results in a significantly
higher IAEw and a lower value of TV2(uw). While the cost function J1(uw) with a higher
weighting of transient speed for PPM shows almost the same values as the QRDP tuning,
the cost function J0.5(uw) corresponding to a lower weighting of the transient speed shows
better performance.

All IAE-optimisation-based PID settings with Ms constraints yield the highest IAEw
values and lower TV2(uw) values than the QRDP method. While they are comparable
to the other design methods when evaluated with J0.5(uw), they are significantly worse
when evaluated with the cost function J1(uw), which gives higher priority to the speed of
the transients.

Similar conclusions can be drawn for the summary performance measures (45) and (6).
The differences in IAE values are not as large as for IAEw, which consequently also affects
the combined cost functions (6) for k = 1 and k = 5. While much attention has been paid to
considering Pareto fronts in terms of setpoint and disturbance responses when designing
optimal PID controller settings, a similar evaluation of transient rate and noise sensitivity
is not yet known.

The knowledge gained could be extended to larger values of Ti, which are of interest
to us with respect tof the transition from PID control to PD control considering Ti → ∞ .

Remark 4 (Validation of Remarks 2 and 3). Also the PP-based analysis of transients satisfying
shape-related constraints (46) confirms the property resulting from Remarks 2 and 3 that the value
of Ti cannot be arbitrarily reduced to accelerate the reconstruction of the disturbances and the speed
of the transients.

7. PID Controllers as Stabilising Controllers with Disturbance Observer (DOB)

The use of PPM, which allows us to overcome the computational difficulties of an-
alytical design, has not produced significant changes in transients; therefore, we try to
look at the problem of optimal setting of PID controllers from a broader perspective and
include other alternative approaches. Although PID controllers are very commonly used for
disturbance compensation, their evaluation and comparison with other alternative meth-
ods of reconstruction and disturbance compensation, such as the “modern” state-space
approach [44,45],“postmodern” disturbance observer (DOB) based control [46], active
disturbance rejection control (ADRC) [34,47], or intelligent PID control (referred to as
model-free control) [48], is still pending.

A Brief History of Series and Parallel PID Control

In explaining the fundamental problem of the transition from PD to PID control, which
causes the large increase in sensitivity to measurement noise and a significant decrease
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in the speed of transient responses experimentally demonstrated in [31], we must first
understand the associated change in the functionality of the PID controller, in which the
ability to eliminate the effects of constant disturbances plays a key role. The study of the
effectiveness of automatic control with disturbance compensation has been the subject of
intense research for decades [34,45].

At the beginning of 20th century, two branches of automatic process control devel-
opment emerged. The first was more practically oriented, the second investigated the
theoretical aspects of automatic control. One of the pioneers of PID controllers is Elmer
Sperry, who as early as 1911 developed an autopilot for ships and aircraft, attempting to
imitate the behaviour of a human operator. The theoretical analysis of effective automatic
control of ships was carried out in 1922 by Nicolas Minorsky, whose research also based
on an analysis of the activities of the human operator, which he converted into mathemati-
cal operations and justified the need for proportional, integral and derivative actions of
the controller [35]; however, the problem did not end with the naming of the necessary
components, but rather overshadowed the need to divide the two levels of the proposal:
stabilisation of the basic system and counteracting of disturbances involving deviations
from the basic system [34].

First of all, it should be recalled that the first PI controllers, which appeared in 1935–
1938 as the pneumatic regulators “Fulscope” (by Taylor Instrument Companies, originally
called “pre-act”) and “Stabilog” (by Foxboro Instrument, known as “Hyper-reset”, [49])
played an important role. They arose from the generalisation of older controllers called
“automatic reset”, in which the output of a stabilising P controller was changed by introduc-
ing a positive feedback via a delay with the time constant Ti. Its operation can be easily
explained using the example of the control of integrating systems, where the input of the
integrator must be zero in steady state. This means that the controller output in steady state
must be equal to the negative value of a constant input disturbance. Thus, to reconstruct
and compensate the disturbance, it is sufficient to wait until the next steady-state reached
with a stabilising controller (P or PD), and then subtract the obtained disturbance value
from the previous output of the stabilising controller. In view of the opposite signs of the
steady-state controller output and the reconstructed disturbance and the need to compen-
sate for the disturbance by subtracting it from the controller output, this means adding the
value of the steady-state control signal to the controller output. Such a procedure means
the introduction of positive feedback. If one wants to avoid the necessity of a steady state
testing, it is sufficient to introduce such a feedback with a sufficiently long delay Ti, which
is significantly longer than the dominant time constant of the stabilised loop transients
(see Figure 15).

In the later development of the theory of automatic control, the use of the older (and
possibly more concise) terminology was abandoned and new names for the series PI and
PID controllers were introduced instead. Although the structure of series PI and PID
controller can be found in numerous textbooks, its characteristic as a stabilising controller
supplemented by a disturbance observer went unnoticed. The companies that developed
series PID controllers were not motivated to explain its essence, but rather sought patent
protection for their solutions, which are determined by aspects other than the explanation
of functionality. The theoretical “branch” was content with naming the components that
the PID controller introduces into to the circuit and their secondary effect on the achieved
performance as the primary mission of the controller. Even if an attempt is made to present
PID controllers as an industry standard, this is not possible due to the existence of various
controller structures, of which the best known are series and parallel controllers. Let us just
remember that in order to achieve the same loop dynamics (to obtain the same controller
transfer function), it is generally necessary to calculate different series and parallel PID
parameters, when (using the indices “s” and “p”) it must be true that

C(s) =
U(s)
E(s)

= Kcs
(1 + sTis)(1 + TDss)

sTis
= Kcp

1 + Tips + TipTDps2

Tips
(51)
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Figure 15. Matlab/Simulink simulation schemes of series PI and PID controllers (above) designed
as stabilising controllers extended by the disturbance observer based on evaluating the steady-
state values of the controller output and the parallel PID controller with additional disturbance
observer filter with the time constant Ti (below); Tf —the implementation and noise attenuation filter
time constant.

The transitions from a series to a parallel controller is always possible according to

Tip = Tis + TDs; Kcp = Kcs
Tis + TDs

Tis
; TDp =

TisTDs
Tis + TDs

(52)

The calculation of the series PID parameters from the parallel PID controller accord-
ing to

Tis = [Tip ±
√
(T2

ip − 4TipTDp)]/2

Kcs = Kcp[Tip ±
√
(T2

ip − 4TipTDp)]/(2Tip) =

= Kcp[0.5±
√
(0.25− TDp/Tip)]

TDs = [Tip ∓
√
(T2

ip − 4TipTDp)]/2

(53)

is only possible for Tip ≥ 4TDp.
When designing controllers, we should not forget the fundamental aspects of control

design. Just as “every good regulator of a system must be a model of that system” [50],
it should also be true “if the controller is to compensate for disturbances, it must also
reconstruct them”. In the case of PID controllers used with piecewise constant input
disturbances, this can be verified by calculating the transfer function

Fiu(s) =
U(s)
Di(s)

= − F(s)C(s)
1 + F(s)C(s)

= − KcKs(1 + Tis + TiTDs2)

Tis3eTds + KcKs(1 + Tis + TiTDs2)
(54)

In steady state, with Fiu(0) = −1, compensation of a constant input disturbance di is
provided by the controller output.

Since the mission of the series PID controller is also crucial for the successful solution
of its optimal settings, we summarise it in the following definition.

Definition 1 (Series PI and PID controllers). The series PI and PID controllers are the first
historically known disturbance counteracting controllers using DOB that complement the stabilising
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P and PD controllers by the positive feedback of their output. They can be designed by approximating
the steady-state output values of the controller based on integral models, representing the negative
values of constant input disturbances. To filter out stabilising transients, the (nearly) steady-state
values of the controller output can be achieved using low-pass filters with sufficiently long (integral)
time constant Ti.

Remark 5 (Compactness of the series PID controller). The reconstructed disturbance signal
could also be obtained (see Figure 15) by observing the output of the parallel PID controller through
a delay with a sufficiently long time constant Ti (to filter out stabilising transients), but (in contrast
to compact series PID controllers), such an observer would require an additional filter transfer
function. Furthermore, the use of an integrator in parallel PI and PID controllers is a source of
redundant integration called windup.

Remark 6 (Limitations on Ti selection). Understanding PID functionality is crucial to un-
derstanding why we cannot arbitrarily reduce the integral time constant Ti with respect to the
dominant time constant of the loop stabilised by the PD controller (see Remarks 2–4). This assump-
tion can be confirmed by all the above analytical and numerical calculations of the optimal PID
controller settings.

8. Conclusions

The present work has shown that the delayed double integrating systems controlled
by the PID controller can be tuned efficiently by both analytical and numerical methods.
Moreover, the analytical approach proposed in [30] can be extended to a much larger
number of real loop poles, considering the degree of noise and time delays caused by
additional filters. The proposed approach increases the apparent time delay of the process
by adding the time constants of the controller filter. Thus, the main advantage is that the
tuning method remains simple and efficient. Moreover, the proposed approach can be
easily adapted to include other inertial elements in the process (control loop).

All analytical derivations of the optimal PID controller settings for the DIPDT model
confirmed the proposed interpretation of the traditional (series) PID controller as a stabilis-
ing PD controller with a disturbance observer that reconstructs the input disturbance from
the steady-state values of the controller output. Here, the steady-state values can simply
be replaced by the output of a low-pass filter with an “integral” time constant Ti that is
much larger than the dominant time constant of the loop stabilised by the PD controller.
After selecting performance indicators to measure the deviations of the transients from
ideal shapes, we can arbitrarily change the resulting dynamics of the transients using the
performance portrait method.

Since the operation of PID controllers is based on the reconstruction of the distur-
bances from the steady-state values of the controller output, the reconstruction cannot
be arbitrarily accelerated by reducing Ti. The analysis of the performance portrait shows
that the dynamics of the disturbance compensation cannot be chosen independently of the
dynamics of the stabilising controller.

Since the structure of the PID controller is based on the use of ultra-local integral
models, it is similar to the active disturbance rejection controllers (ADRC) and to the
model-free control. These are also primarily based on the use of ultra-local integral models.

The interpretation of PID controllers as stabilising controllers with disturbance ob-
servers unifies the interpretation of all control structures with compensation of
constant disturbances.

In addition to several innovations related to the optimal setting of PID controllers for
DIPDT plants, one of the main contributions of the paper is a clear explanation of PID
functionality that goes beyond previous approaches based only on three basic PID terms.
The new explanation, along with other modern and postmodern approaches, uniformly
classifies the PID controller as stabilising controller with disturbance reconstruction and
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compensation. Such a two-stage approach can significantly clarify the regularities of their
optimal setting.
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Abbreviations
The following abbreviations are used in this manuscript:

1P One-Pulse, response with 2 monotonic segments (1 extreme point)
2P Two-Pulse, response with 3 monotonic segments (2 extreme points)
3D Three-Dimensional
ADRC Active Disturbance Rejection Control
DIPDT Double Integrator Plus Dead-Time
IAE Integral Absolute Error
IPDT Integrator Plus Dead-Time
LESO Linear Extended State Observer
MFRP Modified sets of Four Real Poles
MRDP Multiple Real Dominant Pole
PID Proportional-Integral-Derivative
PP Performance Portrait
PPM Performance Portrait Method
QRDP Quadruple Real Dominant Pole
TRDP Triple Real Dominant Pole
TV Total Variation
TV0 Deviation from Monotonicity
TV1 Deviation from 1P Shape
TV2 Deviation from 2P Shape
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7. Pekař, L. On Simple Algebraic Control Design and Possible Controller Tuning for Linear Systems with Delays. Int. J. Mech. 2018,
12, 178–191.

http://doi.org/10.1109/TCST.2020.3043447
http://dx.doi.org/10.1016/S0005-1098(03)00167-5
http://dx.doi.org/10.1007/s11432-017-9403-x
http://dx.doi.org/10.1016/j.isatra.2013.09.013
http://www.ncbi.nlm.nih.gov/pubmed/24091193


Mathematics 2022, 10, 971 24 of 25
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